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Some Remarks on the Convergence of Approximate
Solutions of Nonlinear Evolution Equations
in Hilbert Spaces

By Laurent Veron

Abstract. Let 9® be the subdifferential of some lower semicontinuous convex function @ of a
real Hilbert space H, f € L*(0,T; H) and u, a continouous piecewise linear approximate
solution of du/dt + d®(u) 3 f, obtained by an implicit scheme. If uy € Dom(®), then
du,,/dt converges to du/dt in L*(0, T; H). Moreover, if u, € Dom(3®), we construct a step
function ,,(¢) approximating ¢ such that im,,_, 1o, [q 0, | du,/dt — du/dt|* dt = 0. When @
is inf-compact and when the sequence of approximation of f is weakly convergent to f, then u,,
converges to u in C([0, T']; H) and 7, du, /dt is weakly convergent to tdu/dr.

Introduction. Set H a real Hilbert space with scalar product (-, -) and norm | - |
and ® a lower semicontinuous proper convex function from H into (—co, + co]. The
subdifferential 3® of ® is the multivalued operator from H into P( H) defined by

y € 90®(x) if and only if, Vu € H, ®(u) — ®(x) = (y,u — x).
The operator d® is a maximal monotone operator on H (cf. [4]) and the semigroup
generated by —d® has strong regularizing properties which have been discovered by
Brezis [6]. In particular, if f € L*0,7; H) and u, € Dom(3®), then the weak
solution of

du/dt + 0®(u) 3 f on (0, + ),
1) {u(O) = u,,

is in fact a strong one. If we assume Min @ = 0 (which is always possible), then the
following estimate holds

@ ([

where K = {x € H: ®(x) = 0}. Moreover if u, is the solution of

du

dt

2 172 1/2

T, 2 1 T 1
tdt <( |j]tdt) +— | |fldt + — dist(u,, K),
) fo ﬁfoﬂ 2 (0. )

5

3) {dun/dt +3®(u,) 3 f, on (0, +x),

u,(0) = ug,
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326 LAURENT VERON
and if lim,,_, 4, uy, = ugand lim,_ ., [ | f — f,|* dt = 0, then

(i) nliffoo lu — wllcqory; my =0,
(4) T|du, du

(ii))  lim 7@

n— +oo

tdt =

However, it can be noticed that if (4)(i) is an obvious consequence of the properties
of weak solutions and remains valid in more general cases, (4)(ii)) was only dis-
covered in 1977 (cf. [5] and [1] for a similar result).

In this paper we introduce the approximate solutions of (1) through the implicit
scheme

Ul ap(uk) s pE k=12, N(n)

Tk k-1 b = gLy eey n’
(5) =

ul=u, and 0=10<t < - <MW =T,

If £, is the step function taking the value f* on (¢zf7',¢¥), u, the continuous
piecewise linear function taking the value u* at ¢, and 7, the step function taking

the value %~ ' on (57!, t¥), then

@ ([ 7

Moreover if lim,,_, 4, MaXgcpaniny (18 — 1571 = 0 and lim,,_ 1 o [T |f, — f|* dt =
0, then

du,
dt

dist(ugy, K ).

dz)'/zs(formfnndt)/ 42 [l + -

(i) lim fu, — u”C([O,T]; m =0,
n— +oo

(7) T|du, dul’

(i)  lim o @

n— +oo

n,dt = 0.

It must be noticed that if (7)(i) is already well known in more general cases (cf. [7])
and is more or less a consequence of the theorem of Crandall and Liggett, (7)(ii) is
new and could be of some use in numerical analysis. However, in the general case it
appears that it is not possible to obtain error estimates for the convergence of
du,/dt.

When @ is inf-compact and f, weakly convergent to f in L*(0, T; H), then (7)(i)
remains valid and 7, du, /dt is weakly convergent to tdu /dt as n — + co.

We give also an extension of that type of result for a more general operator 4
generating a semigroup (.S(¢)),.o which is compact for r > 0.

The Main Estimates. Set ® a lower continuous proper convex function from H
into (— oo, +00] such that Min® = 0 and K = {x € H: ®(x) = 0}. For T> 0 we
set Pb,={0=10<1t)<---<tN™ =T} a partition of [0, T], ek =t — ¢~ and
1P, Il = Max g<x<n(n) k. We define the two step functions 1, and f from [0, T'] into
R and H, respectively, as the functions taking the values tX~! and f* on (47!, t%).
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Thanks to the maximal monotonicity of 3®, the sequence {u¥},_, 5 is well
defined by the following relations

uk_uk 1

L —+3d(uf) 345, k=1,..,N,
(8) &,

ud = u,.

If u,, is the continuous piecewise linear function taking the value u* at ¢%, then

—t t— k! du uk—u
— n k—1 n k n _ “n n
u,(r) = “ + B and R
n n

on (1571, 1).

THEOREM 1. Suppose u, € Dom(0®). Then the following estimates hold:

7| du 172 T 2 172 T
(7| ret) = ([ 1) 2 [ g
) ld( X)
+ — dist( u,, ,
\/z 0
rldu ? \'? T, 2  \/? 2
(/8 &, dt) ([Tl a)” )5 [ lla
(10)

+ e dist(uy, K ),
28

for all 8 such that 8 = t2, 1 < p < N(n). Moreover if u, € Dom(®), we have

(11) (/OT zdt)l/zs(foT|j;|2dz)'/2+/qEO—).

Remark 1. If we no longer assume Min ® = 0, we obtain inequalities similar to
those of Theorem 1 in changing ® and f,. To get this we consider x, € Dom(d®)
and £ € 99 (x,), and we set D(x) = ®(x) — ®(x,) — (£, x — x,) for x € Dom(®)
and f, = f, — £ As 3® = 3@ — £, {u*) satisfies (8) with ® and f, replaced by ® and
fand Min® = 0.

Remark 2. If we let f, = 0 in Theorem 1, we deduce from (9) that

t| du, 2 172 1
(12) (fo - n,,dt) —‘/rdlst(uO,K)
for any 0 <¢<T. If we want to have a pointwise estimate on du, /dt, we have to

suppose e,’f =T/N, for k=0, 1,...,N. We then deduce from the monotonicity of
0® that | du,/dt| is nonincreasing. Hence

(13 =0

du,
dt

= Dt — i<

1
—— dist(uo. K),

forany t*"' <t <tk k> 1.
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Before proving our estimates we need the following result which is somewhat
analogous to Lemma A.5 of [4].

LeEMMA 1. Suppose {a,} and {b,} are two sequences of nonnegative numbers such
that

(14) la2 —l—a + zn:a =0
27 2 =
Then
n
(15) a,<ay+23 b VYn=0.
j=1

Proof. By induction we define the nonnegative sequence {a,},~ by

1 1 -
(16) 5af,=§a§+§ ab; Yn=1.
Then of — 2a,b, — (af + 2272 ;b)) = 0. But o}, = a5 + 237" { a;b;, s0 af —

2a,b,—a2_,=0anda,=b, + |b? + a?_,. Hence a, < 2b, + @, _,, and a,, < a,

+ 227, b As it is easy to see by induction that a, < a,forn=1, we get (15).
Proof of Theorem 1. First we assume u, € Dom(®), and we prove (11). From the
definition of {u¥}, we have ¥ — (u% — uf™") /ek € 3®(u¥). Then
k_ k=1
(st = it = ) = () — 00
sn

so we get

(17) ——'L D(u) — O(ut1) < (5wt~ ui~) W1 <k

N

N.

Summing all those inequalities, we have

Nk k1) N k_ k=1
5 L o) - o) < B (4554
k= 1

@ AN
that is,

T|du, |
(18) [\ o) < <1>(u0)+f ( dt)dt
So we deduce (11).

From (17) we getfor ] <k <N,

(19) *_______Iu,’j— uﬁ_lle,’ft,’,‘" +(P(uk) — @(ur "))tk < | £F U Uy | I
(8")2 n n n n'n

Summing those inequalities and using the fact that

N N—1
S (o(ur) = @(uy Nt =0(uy)ey ' = T @(uf) (e — 157")
k=1 k=1
N.‘
=@(u)) ™' = 2 0(uf)er,
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we deduce that

N Iuk gk 2
,El o =™ (ek)"z etk 4+ @(ul )N !
n

N
Tz

and so,as ® = 0in H,

T|du,|? T du, T ..
(20) fo - nndt<j; (fn,w)nndt+fod>(un)dt,

where i, is the step function taking the value u¥ on (1X~!, ¢¥). By Schwarz inequality
we get

1) (fOT 21,,, dt)l/2< (j(;T(D(ﬁn)dt)]/z + (fortf,,[zn,, dt)]/z.

On the other hand, we have for any v € Dom(®)

du,
dt

uk—l

K _
®(v) — O(ur) = fn"—u”—”—~,v—u,’,‘ .
n ek

In particular, if v € K, ®(u¥) — ®(v) = ®(u¥) and

k k—1
uf —u
-"——”—,uf,‘—u)<(f",uf——v) VI<k<N.

k n
8”

(22) @(u¥)+

n

But (uy —uy™'uf — o) = ((uf —0) = (uf 7' — o) uf —0)>4|uk — 0P -
3 |uk™' — v|% So we get from (22)

N

S (£ uk = o)ek + 2o — ol

5 Nk 1w 2
k=1 k=1

that is,
T . . 1~ 2 _ 1 2 T .
(23) j(;(b(u,,)dt+ 'jl“n o <—2—|u0 vl +j(; (f,, @, —v)adt.

Moreover, that last inequality remains true if we replace T = ¢ by ¢ and u? by u¥,
$0

1 2 k - .
Sl = + T ®(uy)e]
j=1
<-2—|u0—v| + Esﬁlf,ﬂ(lu{,—v! +22‘I>(u;,)£;
j=1 i=1

4

By applying Lemma 1, we deduce

K 1/2 K
(25) |u:;—o|2+22 @(u{,')eg,') <lug—o| +2 3 |file].
~ et

j=1



330 LAURENT VERON

In particular, for k = N, we have
26 ( o (i, dt) < —|uy — o| + 2 ldt.
(26) [ o(a,) ﬁlolffolfl

From that inequality and (21) we get (9) when u, € Dom(®). For u, € Dom(9®) =
Dom(®), we consider {u,,,} € Dom(®) such that u;, —m-cuy. If {u, ,} is the
sequence of continuous piecewise linear approximate solutions defined by the same
implicit scheme as u,,, with initial data u, , instead of u,, then llu, — u, .|l co.7). i
<|u,— u,,,|. Hence we get (9) as lim,,_, . du, ,/dt = du,/dt, uniformly on
[0, 7]

In order to get (10), set 8 = ¢# for some p = 1. We have

5[ ®(a,)dr €[Min{®(u;): 1 <i<p};Max{®(u}): 1 <i<p}].

If Min{®(u!): 1<i<p}= <I>(u"°), then ®(uko) < (1/8)(f ®(d,) dt. In summing
the inequalities (17) for k = k, + 1,...,N, we get

/,T sl g+ @ (u) u0)<f"(,,, dt)

dt

so we have

1/2

du, 2dt)1/2< (‘/(‘)T‘fnizdt) /

(fsr dt

But, from (26) with T replaced by 8, we have

(%j;)atb(ﬁn)dt)l/zs—z‘[%luo—oH \/_%f:imdt.

With those two last inequalities we deduce (10).
Remark 3. By changing slightly the proof of (9) we can also obtain the following
inequality valid for any v € Dom(®):

T 172 T 1/2 r
(fo d’) <(f0 |1, nndt) +ﬁf0 |, |dt
ug — o]+ /T®(v) .

+ (%f;q:(a,,)dt)l/z.

du,
dt

(27)
1
+ |
2
To get this, we start from

n

®(v) — (uk) = (f,," -t - u") Vo € Dom(®),
and then we get
/Tq)(d )dt-i—l|u,’:’—v|2<l|uo—v|2 + T®(v) +fT(f,ﬂ —v)dt.
O n 2 2 O n n

Using (24) (with § | uy — v|* replaced by 1 |u, — v|* + T®(v)) and Lemma 1 we
deduce (27).
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The Convergence Theorems. We still keep the notations of the first section and we
suppose that u is the strong solution of

du
(29) a7 0®(u) > f on (0, +00),
u(0) = u,,

with u, € Dom(d®) and f € L*(0, T; H). Our first result is the following

THEOREM 2. If uy € Dom(d®) and lim, . |1P,|| = lim, . 4o [T|f —f, [P dt =

then

(i) n_l)lm lu, — ull co.ry; my = 0,
(29) T|du, du

(ii) n—l>lr4l:loo @ @ n,dt = 0.

Moreover, if uy € Dom(®), then

T|du, ﬂz
dt dt

Before proving Theorem 2, first notice that (29)(i) is known in quite more general
cases (cf. [7]). We first need the following result.

(30) lim

n—+oo

dr = 0.

LEMMA 2. Suppose u, € Dom(3®) and lim,,_ 1 o, || P, |l = lim,,_ 1o [J | f— f,[* dt
= 0. Then v, du, /dt converges weakly to tdu/dt in L*0, T, H).

Proof. As || P,|| - 0, for every ¢ > 0, there exists n, € N such that 7,(¢) >¢/2 on
(e, T] for any n = n,. By Theorem 1 and classical results on maximal monotone
operators (cf. [4]) du,, /dt converges weakly to du/dt in L3 ((0, T]; H).

Sety € L*0, T; H). For any a > 0, we have

T( du, du o du, du
'/(‘) ("1,, dr I—E’lp)dt_'/(; (T'n dt t ,'4J)dt

du
+f ( RE dt dt \P) dr.
When n tends to + oo, 1,(¢) — ¢ tends to 0, uniformly with respect to ¢, so
. T du, du -
n—l}r-il-loo A ('qn 7 tE \p)dt—O.

Set 8 > 0. There exists v € Dom(®) such that | u, — v|<§. For such a v there
exists ay, > 0 such that for 0 < a < ayand n € N we have (see Remark 3)

([, ar) ™ o [+ (o) <,

as | f,| is uniformly equi-integrable on (0, T'). Hence ( [§| du,,/dt|*n, dt)'/? < 28. If
a is also fixed such that ([&| du/dt |*t dt)'/? < 8, we deduce
lim sup

T( du, d )
¢ | dt
n—+oo '/(; (nn dt d 4/
Hence 7, du,/dt — tdu/dt converges weakly to 0 in L*(0,7; H) and similarly
n(du,/dt — du/dt), as lim,_ ;o [J(t —m,) | du/dt |* dt = 0.

< 38|[Yll20,7; m)-
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LeMMA 3. Under the hypotheses of Lemma 2, we have

(1) hmsupf ®(i1,) dt < /T‘I)(u)dt,

n— +oo

i, being the step function taking the value u on (171, t¥).

Proof. We start from the following inequalities valid for v € Dom(®) and
1<k<N.

uk — gk
(32) ®(u(z)) — (uf) = (fn"— "T",u(t)—u’,f),
uk — k=1
(33) @(v)—@(u,’f)?(fn"—"T",v—uf)
From (33) we deduce
3
tho(0) = [“(a,)d= [*(fo—a)d— 3 (w]—u" 0—u).
0 0 j=1
But —(w) —u L o—ul)=%|ul— o — L |ul"! — v| sowe get

2

2
(34) j()'fq>(an)dt<t:q>(v)—j0‘"k( o — @) di — 3o —uil’ + o — ugl’.

On the other hand we have from (32) (integrating over (¢/, t/*') and summing for
j=k,...,N)

T . T T _
(35) £:¢(un)dt<£:®(u)dt ft: (f,u— )dt+f ( Pk it )dt
From (34) and (35) we get for v € Dom(®)
T ., _ tk - 1 2 1 2
fOCD(u,,)dt<t,',‘(I)(v)—f ( n,v—u,,)dt—5|v—u,’,‘| +5|v-—u0|

(36)
+/‘I>(u)dt f(f,,,u u)dt+f (d LU — u)dt.

For e >0, as || P, |l =u-+a 0, there exists a sequence {¢%"} such that t5» — ¢ As
n— +

(£} and {du,/dt} remain bounded in L(t*», T; H) independently of n and as

u — i, goes to 0 in L*(0, T; H) when n tends to + oo, we deduce from (36)

lim sup f ®(a,)dr <e®(v) —f (foo—wu)d— —|o - u(e)‘
(37) n— +oo |
2
5 lo = ugl +fe ®(u) dr.
As u is continuous, we deduce (31) in letting ¢ — 0.

Proof of Theorem 2. First we prove (29)(ii) by supposing u, € Dom(0®).
From (19), as in the proof of Theorem 1, we get

(38) j(; du,

. n,,dt-i-tN 10 (u <f ®(i, )dz+/ ( = )n,,dt
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But we also have, obviously,

(39) /Od tdt+ TO(u(T)) = fCI)(u)dt+f( )tdt

Moreover as lim, ,  ,t¥ "' =T, T®(u(T)) < lim inf,_, ;7Y '®(uY). Using the
fact thatlim,_, , o [J (f,, du,/dt)n, dt = [T (f, du/dt)t dt and Lemma 2, we deduce

o e [ e
As {/m, du,/dt} converges weakly in L*(0,T; H ) to f du /dt, we conclude that
. T| du,
,,l"fco 0 dt ‘/_l dr = 0.
But
IR
o | dt T dr

g{/o“’d“t ol d,} +{ el (i = o, dt}/z.

From Lebesgue’s theorem and the estimate (2),

(e~ o) =0

lim
n—+oo Y0
so we get (29)(ii).
To prove (30), first we notice that {du, /dt} remains bounded in L*(0, T; H) when
uy, € Dom(®). Hence, from the maximality of 0®, it converges weakly in
L*(0, T; H) to du/dr. As we have already seen in the proof of Theorem 1, we have

T|du, |* T du, N
fo " dts@(u0)+f0 (f,,,Tt)dt—cb(u,,),
so we get
. T|du,
(41) I:Til;pj; d ( /s dt)dt-@(u(T)).

But as | du/dt|* = d(®(u))/dt + (f, du/dt) a.e. on (0, T) (cf. [4]), integrating on
(0, T') we obtain
T|du T
defa=

So we have (30), which ends our proof.

Remark 4. Using similar devices, we can obtain the convergence result (29) in
replacing the initial data u, of {u%} by a sequence {u,,} in Dom(3®) such that
U, —n—+oo Ug. Moreover if u, , € Dom(®) and ®(u,,,) = P(u,), we have (30).

Remark 5. We can also obtain some results concerning the convergence of
{®(u,)} from Theorem 2. For example, if u, € Dom(®), we have

(42) lim [|®(u,) — ®(u)|cqory = 0.
n— +oo

du |?

7 dt.

lim sup f

n—-+o v0




334 LAURENT VERON

In order to prove this, we start from (17) and we have for 1 <k < N,
|
() o(ut) <o) + [* (1. 52) - [*|%

For ¢t €0, T], as || P,|l — 0, there exists a sequence {¢%"} such that lim %= = ¢ and
thn > t so ®(ukr) = ®(#1,(¢)) and

2
dr.

(44) llTiup(I)(u (1)) < ®(u,) + f ( f, = ) dt — ft 7’; 2dt.
But from [4]
®up) + [ (1. %) = [| %] = @(u(0)) < iminta(a,0);

hence lim, _, ., ®(i,(¢)) = ®(u(r)), and it is not difficult to see that this limit is
uniform on [0, 7'] and that i, can be replaced by u,,.

For k=0 we set Q, = {v € H: ®(v) + |v|* <k}. Our second result is the
following

THEOREM 3. Suppose §, is compact for any k=0 and u, € Dom(afl)) If

lim, 1 I P,Il = 0 and if f, converges weakly to f in L*(0, T; H)), then
(i) nlimw lu, — ulleqo,ry; 1y =0,

(45) du,  du
(i) m,—= dt — 1= weakly in L*(0,T; H)asn - +o0.

Moreover if u, € Dom(®), then du,/dt converges weakly to du/dt in L*(0, T; H).

Proof. First we suppose that u, € Dom(®). From (10) {du, /dt} remains bounded
in L%0, T; H), so we deduce from (18), with N replaced by k, that {®(i,(7))} is
bounded, uniformly with respect to ¢ and »n. From the convexity of the function ®, it
is the same with {®(u, (1))}, and, as {u,(¢)} is bounded, the set {u,(¢)} is relatively
compact in H for any ¢ > 0. From (10) the set {u,} is equicontinuous, so by Ascoli’s
theorem, it is relatively compact in C([0, T']; H). Hence there exist a subsequence
{u,)} and 4 € H'(0,T;H) such that u, »>y_+ei in C([0,T];H) and du,, /dt
— . +oodu/dt weakly in L*(0, T; H). Hence # satisfies (28) and is equal to u, so
instead of the subsequence {u,,} we can take {u,} in the previous convergences.

We suppose now that u, € Dom(9®). There exists a sequence {u,,} in Dom(®)
converging to u, as m — +oo. If u, ,, is the continuous piecewise linear solution of
(8) with initial data u, ,, instead of uy, then llu, — u, .|l co.r) my <|%o = %o m] -
Hence {u,} converges to u in C([0, T]; H). But as Lemma 2 remains valid we have
(45)(ii).

Remark 6. Using classical estimates on convex functions, it is easy to check that
®((I + N9®) 'x) (A > 0) remains bounded when x is bounded. If §, is compact for
any k = 0, the resolvents (I + Ad®) ' are compact operators, and then the semi-
group (S(2)),=, generated by —9® is compact for r > 0. In the following section we
give an extension of Theorem 3 to a more general situation.

Remark 1. As the convergence of {du, /dt} in both Theorems 2 and 3 is obtained
via weak compactness and lower semicontinuity arguments, it is clear that in the
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general case it is not possible to obtain any error estimate of interest (see (55),
Lemma 4). However, such error estimates should exist in many applications.

Extension to More General Operators. Set 4 a maximal monotone operator of H
and (S(1)),=, the semigroup of contractions of D(A) generated by —A. Thanks to
the maximal monotonicity of 4 we can construct a sequence {u¥} with the relations

uk _ uk—l
(46) -—7(————’?:-1‘ +Au59fn", k= 1,2,...,N(n),
tn - tn

u'=u,eD(A) and 0=0<i<--- <YW =T.

We define the functions f, and u,, as before. If fis a given function of L'(0, T; H), we
set u the weak solution (cf. [4]) of

du
(47) o TAu>f on [0,T],
u(0) =u, € D(4),

which means that u € C([0, T']; H) satisfies u(0) = u, and

3l =" = 3lu(s) = 2 = [ (u(r) = % fr) = y) i,

foranyx € D(A),y € Axand0<s<t<T.

(48)

If 4 is defined on (0, T') X (0, T'), we set
A 1* = inf{{lgll ooy + /0., fand g € LY(0, T),

|h(o,7)|<f(o) + g(r)ae.on(0,T) X (0,T)},
and we call W the completion of C([0, T'] X [0, T]) for || [I* (cf. [7]).

(49)

THEOREM 4. Suppose the operators S(t) are compact for t > 0, the set of real valued
functions h,(7,0) =|f(7) — f(0)| is relatively compact in W, lim,_ I[Pl =0
and { f,} converges weakly to f in L'(0, T; H). Then {u,} converges to the solution u of
47) in C([0, TY; H).

Proof. We set v, the weak solution of

(50) {d”n/df +Av,2f, on(0,T),
vn(O) =uy € D(A) .

As the set {|f,|} is uniformly equi-integrable on (0, 7'), we deduce with a slight
modification of the proof of Theorem 2 of [2] that {v,} is relatively compact in
C(0,T], H), so there exist # € C([0, T']; H) and a subsequence {v,.} of {v,} such
that v, — @ in C([0, T]; H). For any x € D(A4), y € Ax, and 0 <s<t<T, we
have

(D glon() = xf = 5lon(s) =5 < [(0,(1) = x. fulr) =y) .

Going to the limit in (51), we see that 7 is a weak solution of (47), so # = u and
lim, 4,0, =uin C(0, T]; H).
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At this point of the proof we need the following result:

LEMMA 4. Under the hypotheses of Theorem 4, u, — v,

., converges to 0 in
C(0,T]; H)as n - + 0.

Proof. That result is a consequence of Theorem 2.8 of [7]. We first suppose that
uy, € D(A), and we consider a partition P, which is a refinement of P,: P, =
{0 =350 <s), <---<sM=T}, and we construct the sequence {#/} as follows

S
(52) et TARS L =L M,

O = o, S = i (sh " sh) € (67" 1F).
Fory € Auywe set w, (1 —s) = [i~(| f(a)| +|y|) da and

fshn(a,a'—sﬂ-a)da ifr=s,
(53)  G(w,. h)(s,7)=w,(r—s)+{ 2

fTh,,(s—'r-l-a,a)da ifs=>r.
0

Set H™" the piecewise constant function on (0, 7) X (0, T) taking the value
| v, — uk| on (s47', 541X (¢tk71, tk]. For a function /4 defined on (0, T) X (0, T),
we call &, the piecewise constant function taking the value (s}, t¥) on (s}, s7] X
Nk

If @ € C3(—T,T])and h € C*(0, T] X [0, T']) with A(0,0) = 0, Theorem 2.8 of
[7] gives

1™ = G (@, 1) 0.1y x 070
(54) < 2”(0" - (‘b” L*(—T,T) + 2||hn - };”* +||};A - };”*
+2||Pn||{T||&)"||L°°(—T.T) +||&||ze—=7.my + (1 — 2T)2||l;||c2([0,T]X[0,T])}.
Moreover ||hy — AlI* < Tk, — Rl L=©1)x© 1) and as k is continuous, that last
quantity goes to 0 as n - +oo. When m — + oo, the step function v, ,, defined from
the sequence {&/} converges to v, uniformly on [0, T']. As G(w,, h,)(s,s) =0, we
get

lu, = Oull ccto.ry: a1y < 2l — ol o—77y + 2||hn - h~||* + lim sup ”’;A - };”*

m— +

(55) +2”Pn|| { T“‘*’"||L°°<—T,T) + ”“"”Lw(—r,r)

2
+ (1 - 2T) ||h||c2([0,r]><[0,rl)}~

As {|f,|} is uniformly equi-integrable on (0, T'), the functions w, are equicontinuous

and uniformly bounded on [— 7, T], hence relatively compact in C({—T, T']). By

hypothesis the functions h, are relatively compact in W. So there exist & €

C(—T,T])and & € W such that

(56) lim sup ”“n - '?n”a[o,r]; mn s 2”5 - 5’”L°°(—T,T) + 2”’;_ };”*

n— +oo
That last quantity can be made as small as we want, the density of the test functions
(&, h)in C([—T, T]) X W being easy to prove; so lim,_, ; , llu, — v, I cqo.ry, 1y = O
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If u, €D(A), we consider a sequence u, ,, € D(A) such that ug,, =m- +w U,
and we get as previously

lim sup [lu, — vllco.ry; my < 2llue — ol
n— +oo

which ends the proof.
End of the Proof of Theorem 4. We have

”“n - u”C([O,T]; H) <”“n - Un”cqo,r]; H) +"Un - “HC([O,T]; H)-

From Lemma 4, lim,_, 4 , I, — u, |l ¢o.7r), vy = O and, from the first part of the
proof of Theorem 4, lim,, _, 4 o Ilv, = ull (0,7}, ) = 0, Which ends the proof.

Remark 8. Our result remains true if A4 is an m-accretive operator of some general
Banach space X when we replace a weak solution by an integral solution (cf. [3]),
under the assumption that the set {(u, f): u € C([0, T]; X), f € L'0, T; X), uis an
integral solution of (47)} is closed in C([0, T']; X) X L0, T; X)-weak, in particular
if X is uniformly convex. Without that assumption we just obtain the relative
compactness of the {u,} in C([0, T']; X).
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