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Approximation of the Spectrum of an Operator
Given by the Magnetohydrodynamic
Stability of a Plasma

By Yves Jaccard and Hugo Evéquoz

Abstract. The study of the magnetohydrodynamic (MHD) stability of a plasma in a toroidal
configuration leads to a problem of computing the spectrum of a noncompact selfadjoint
operator 7. The spectrum of T will be approximated by the eigenvalues of T, a Galerkin
approximation of 7.

We present a two-dimensional model problem with two components containing most
difficulties arising in the physical problem. We give subspaces and prove sufficient conditions
for obtaining convergence using partial regularity of 7.

1. Introduction. We consider an equilibrium plasma in a toroidal geometry ,.
Linearizing the evolution equations near the equilibrium position characterized by
the magnetic field EO, the pressure p, and the density p,, the Eulerian equations can
be written in the form

(1.1) pol8,)°E = F(£),
where £ is the displacement in the variables of Lagrange and where
(12) F(€) = grad(£ -grad p, + yp,div§)
+ %(r(’)’t By A Q +16t 0 ABy)
with 0 = rot(€ A B,); see [7, p. 252].

In order to study the stability of this equilibrium, we search solutions of (1.1) of
the form

(1.3) E(x, 1) = £(x)e™".
Using integration by parts, the potential energy

R 1 > =
(1.4) %(5)——5 j;lpﬁ-F(g) dx
can be written in the following symmetric form

R 1 e = R, S
Wp(g) D) /s.z {Irot(£ /\Bo) + (”0 : 5)(10 A ”o) |2 + YPo(d1V5)2
(1.5) 4

(- ) A o) (By - %)) d.
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444 YVES JACCARD AND HUGO EVEQUOZ

where j, = ot B, /411 and 71, = ~| grad p, | grad p, is the external unit normal to
the isobar.
Moreover, by the energy principle, £(x) is a stationary point of the form
(1.6) W,(8) — W &).
where
1 o Z2
(1.7) WAE) =56 [ pol €[ dx
QP

is the kinetic energy.

Then the solutions (1.3) belong to the invariant subspaces of the selfadjoint
operator T defined by
(1.8) a(TE,{) = b(£,{)
fog aﬁl displac:fment f,;w_l}ere a(-,_) -) and b(-, -) are sesquilinear forms such that
a(€, &) = W, (&) and b(&, &) = W) /w.

On the other hand, 1/w? belongs to the spectrum of T and the stability criterion
bears upon the sign of w?.

Supposing the revolution symmetry of the equilibrium system relative to the axis
O,. Parametrizing the toroidal domain £, by the cylindrical coordinates (r, ¢, 2),
eliminating the angular variable ¢ by means of Fourier series and by a change of the
two other independent variables in some polar-like coordinates using physical
properties of §0, P, and p,, we describe a section of the torus with specific variables
(s, x) lying in the rectangular domain £ = [0, 1] X [0, 2II]. The magnetic surfaces
are given by the equation s = constant.

Applying simultaneously a change of the dependent variables (£, ¢, €,) -
(X,Y,V), W(&) and W(£) can be written

W=E éd 4\ps'rs

2
1 73
X+ inX| +—|d X+ V|
» Zstqr“szqx X‘ a5, <

r2B?
il sas(lx) +sax(1V) +s0¢(laxx+ inX)
TY,S q q q
2y, j.rs? ’
/s TS
(1.9) —S’r(laxV+ inV) +%X
q rqB,

+

YBT3 (r2X) + 8, (r2V) + q(%ax(rzY) + inrzY)

)

B 8'rquz\I/ss2 Xl

ds 2\{/1's
— 2 = S
(110) W, =Tl [ < dXPo{ 45

B?
| XP+ "”|Y|2 "”|V+Y W}



APPROXIMATION OF THE SPECTRUM OF AN OPERATOR 445

The quantities ¥, 7, ¢, B,, 0, j,, and K depend on the geometry 2, and on the fields
B, and p,; see [1] and [5].

In order to eliminate the singularity of (1.9) and (1.10) for s = 0, we consider the
operator T associated to a plasma without vacuum region evolving in a toroidal
crown (let us mention that this singularity is such that the space of displacements is
not a product space; see [6, Annexe Al).

The spectral convergence of a Galerkin discretization of T for a one-dimensional
plasma situation has been studied by J. Rappaz [8]. The two-dimensional problem
involves new types of difficulties and requires other methods of treatment. In
particular, ¥ and Y admit in (1.9) only one partial derivative with respect to x, and
this fact requires the construction of an unconventional Sobolev space. On the other
hand, an untraditional result of directional and global regularity of the operator
allows for coupling terms of (1.9).

For the sake of simplicity, we shall however restrict ourselves here to a similar
two-component problem. In our thesis, we have obtained results for a rather general
framework which includes in particular the one-dimensional plasma situation studied
by J. Rappaz in [8]. On the other hand, H. Evéquoz analyzes in [3] a nonconforming
finite element method for the same type of problem. These numerical schemes are
used successfully in several laboratories for plasma physics, in particular in the
CRPP of the Federal Institute of Technology, Lausanne.

Let us describe a theoretical general method for spectral approximation of T
(Galerkin’s method): Let U be a complex Hilbert space with scalar product (-, -),,
and {U,}o<s<: be a family of closed subspaces. Let T: U - U and T,: U, — U, be
the operators defined by a(Tu, v) = b(u,v) Vu,v € U and a(T,u, v) = b(u, v)
Vu, v € U, where a(-, -) and b(-, -) are continuous sesquilinear forms (linear in the
first argument and antilinear in the second). We suppose that a(-, -) is coercive on
U.Letp,: U~ U,be the (-, -),~projection.

J. Descloux, N. Nassif and J. Rappaz showed in [2] that the eigenvalues and
eigenvectors of 7, are “good approximations” of the spectrum and invariant
subspaces of T if the following properties hold:

(P1) lim sup (I —p,)Tull, = 0.
h=0 yeU,; llully=1
(P2) lim [|( — p,)ull, =0, VueU.
h—0

When T is compact, the following classical proposition shows that (P2) implies (P1).

PROPOSITION 1.1. Let B be a Banach space with norm || - ||y and Z: B - U a linear
continuous operator. If property (P2) holds and if Z is compact, then we have
lim sup (1 —p,)Zull, = 0.
h=0 yeB; llull,=1
In this paper, we shall construct a family of finite element subspaces {U,}y-,<1
associated to the preceding MHD stability problem for which we shall verify that
conditions (P1) and (P2) are satisfied.

2. The Exact Problem. Partial Regularity of the Operator. Let & = (0,1) X (0, 1)
C R We denote by (x, y) the independent variables in R?.

Let o) = {u/S_Z |u € C*(R X [0,1]), u is 1-periodic in the variable x} C Cc2(9)
and ), = {u € 9| 3¢ > 0 depending on u such that supp(u) C [0, 1] X [e, 1 — &]}.
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Let V! be the completion of ) for the norm

12

lull, g = (lullZ g + N18.ullZ g+ ||8yu||(2),9) /

(Il - l,g is the norm in L2(2)), U' be the closure of 9 in ¥, V2 be the completion
of 9 for the norm llull, , o = (lull3 o + 18,ull}g)"/2, U? be the closure of ), in V2
(we have U2 = V?), ¥V = V! X V? with the norm

1/2
lull, = (a2 + Nu?ll, ,q) ",

where u = (u', u?) € Vand U = U' X U% We denote by (-, -), the scalar product
of ¥ which induces the norm || - Il .

Consider the hermitian sesquilinear forms a(-, -) and b(-, -): ¥V X ¥V - C defined
by a(u, v) = [p[v]*A[u] and b(u, v) = fo{v}*B{u} where A (resp. B) is a 5 X 5
(resp. 2 X 2) hermitian matrix with coefficients in ), [u] ='(u', 3,u',d u', u?, 3, u?),
[v] ='(v', 8,0',3,0", 0%, 8,0%), {u} ='(u', u*) and {v} ='(v', v®). Suppose that a(-, -)
is coercive on U, and define the linear continuous selfadjoint operator 7: U — U by
a(Tu, v) = b(u,v) Vu,v € U.

THEOREM 2.1. If u € U, then (3,)'Tu € U YO <i <2, and there exists ¢ >0
independent of u such that

2
2 1(3,) Tull, < cllull,,.
i=0
The proof which relies strongly on the property of periodicity of U is obtained in
[6] by the differential quotient method; see, for example, [4].

3. Discretization Subspaces. The choice of the subspaces is connected to the
coupling terms. Using the same subspaces for each component of the one-dimen-
sional problem, Rappaz shows, for example in [8], the existence of a suite of
eigenvalues of 7}, that converges in the resolvent set of T. This type of phenomenon,
so-called “spectral pollution”, can appear when property (P1) is unsatisfied. The
intuitive argument that suggests the choice of the discretization subspaces is the
following;:

Let 8a(-, -) be the part of a(-, -) exclusively constituted by coupling terms. Setting
ay(-,-)=a(-,-) —da(-,-), we define T, and R by ay(Tyu, v) = b(u,v) and
ay(Ru, v) = 8a(u, v). We have the relation

(I+R)T—T,)=T,— Ty, — (R— R,)T,.

Supposing (P1) for 7;,, we must prove a similar property for R. For the term
I ayulﬁz, the approximation property holds when ayu' belongs to the subspace
discretizing the second component. In this way, we choose a subspace U, = U,| X U2
such that 3,u' and u* have the same form, Vu = (u', u*) € U,

Let H'(0,1) be the Sobolev space of the functions f € L?(0, 1) such that f’ €
L20,1), HYO,1) = {f € H'(0,1)|/(0) = f(1)} and HY©,1) = {f € H'(0,1)|f(0)
= /(1) = 0).

For r|, r, € N, we denote by P, , the space of polynomials of two variables of
degree <r, in the first variable and <r, in the second one. P, is the space of
polynomials of one variable of degree < r,.
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For 0 </ <1 such that N, = 1/h €N, let x; = ih and y, = jh V0
R, =(x;—, ) X (¥, y) VI<i, j<N, and Ry,={(R,|1<i,j
r €N, r = 1 be fixed. Define

U'={ueU'|u/REP, ,VRER,},
U2={uecU?|u/REP,, \VRER,},
and U, = U} X U2. Note that U? contains discontinuous functions if N, = 2. Set
P,(0,1) = {f€ H(0,1)|f/ (x;—, x;) EP,VI<i<N,},
0,(0,1) = {f € Hy(0,1) |// (3,1, ») ERVI<j<N,},
0i(0,1) = {7 € L. 1)|f/ (31, 3) EP_, VI <j < N,}.

One can verify that

i, J <N,
N,}. Let

<
<

!

U} = P,(0.1) ® 0}(0.1) = { S (X)) 1f, € Bi0.1), 5, € OX0.1). 1 € N},

n=

and U? = P,(0,1) ® QX0, 1).

The essential property of U, which will allow us to prove condition (P1) is the
following: if u = (u', u*) € U, then d,u'(x, -) and u?(x, -) are both in the same
space Q2(0, 1) Vx € (0, 1). This property is used in the proof of Lemma 5.3.

Define furthermore the infinite-dimensional subspaces W, = H.(0,1) ® Q}(0, 1),
W2 = HL0,1) ® Q}0,1) and W, = W}! X W2. We have U, C W, C U.

4. Results. Let p,: U - U, be the (-, -),-projection.
THEOREM 4.1. There exists g, > 0 with lim,,_ o &, = 0 such that

(I —p,)Tull, <e,llull, Yue Ww,.
THEOREM 4.2. lim,, o ll({ — p,)ull, =0Vu € U.

Theorems 4.1 and 4.2 show that the properties (P1) and (P2) are simultaneously
satisfied for the triples (U, {U, }o<n<1> T') and (U, {W, }o<n<1> T).

5. Proof. The density of ), X %), in U and classical results of interpolation imply
Theorem 4.2. Let us prove Theorem 4.1 in some detail.
For n € N, we denote by H(Q) the completion of % for the norm

n 1,2
Nully xq= ( > H(ax)‘ul!é,g) :
i=0

Let
H(0,1) = {f€ L*0,1) |/ € L*(0,1) VO <i < n, f)(0)
=fO)Vvo<si<n—1}

with the norm || £ 1l o) = =0l f N3 01" > (I - 0,y is the norm in L*(0, 1)).
We have that U? = V2 = HY(Q).

Let a(-,-): H(Q) X H(Q) - C and B(-,-): L} Q) X HY(Q) — C be the two
sesquilinear forms defined by

a(w0)= 3 [aid) (@) 0 and Blu,0)=[pu(3,)0,
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where a, ;, 8 € D and 0 < g < 1. Suppose that a(-, -) is coercive on HX(Q), and
define S: L*(Q) —» HY(Q) by a(Su, v) = B(u, v) Yo € H(Q), u € L¥(Q). We re-
mark that Su € HX(Q) Vu € HY(Q). This property can be proven with the same
arguments as in Theorem 2.1.

PROPOSITION 5.1. There exists €, > 0 with lim, o ¢, = 0 such that Vu € H4(0, 1)
® 07(0,1) Iw, € U} satisfying I|Su — w, |l . o < gllull, . q

The proof of Proposition 5.1 is given at the end of the paper for the case where
coefficients «, ;and B are independent of y.

Define the hermitian sesquilinear forms ag(-,-): U' X U' - C, a?(-,-): U? X
U? - C and ay-,), 8a(-,-): UXU-C by al(u',v") = a((u',0),(v,0)),
aj(u?, v*) = a((0, u?),(0, v?)), ag(u, v) = ab(u',v") + a(u? v*) and Sa(u, v) =
a(u, v) — ag(u, v) Yu = (u', u?), v = (v', v?) € U. ay(-, -) (resp. aly(-, -), a3(-, -))
is coercive on U (resp. on U', on U?).

Define the operators T, R: U~ U by ay(Tyu, v) = b(u, v) and a,(Ru, v) =
da(u,v) Vu,v € U.

LEMMA 5.2. There exists €, > 0 with lim, o &, = O such that
I(I—p,)Toull, <e,llull, YueWw,.

Proof. Suppose that By, = 0. In this case, T; is compact by compactness of the
injection from U' into L?(®). Thus, the lemma follows from Proposition 1.1 and
Theorem 4.2.

By linearity, we can suppose now that b(u, v) = [, B,,u’0>. By Proposition 5.1
with a(-, -) = a3(-, -), B = B,, and ¢ = 0, T,u = (0, Su?) and Vv € W2 C L*0,1)
® 07(0,1), 3w, € Uy such that | Sv — w, Il , o < ¢,llvll,o. Consequently

I( = pp)Toull, < 1Su? — wyll, o <ellull,. O

LEMMA 5.3. There exists €, > 0 with lim, o ¢, = O such that Vu € W, satisfying
(3,)'u € W, V0 <i<2. Wehave

2
(I —py)Rull, <e, 3 1(3,) ully.
i=0

Proof. 1t suffices to prove Lemma 5.3 separately for each term of 8a(-, -). We
shall do it for two of them. The proofs are similar for the other ones.

Consider first the case where 8a(u, v) = fg 4,50, 4?0, 0"

We define the space E = {u € U|(3,)'u € U V0 <i <2} with norm |lull ;=
32 (3, ull,. We show that R: E — U is compact by the assumption of periodic-
ity, 8a(u, v) = —[q 3,(A,59,u*)v". Since 3,(A4,59,u?) € LX(Q)Vu EE,R: E > Uis
compact by the compactness of the injection from U' into L2(2). By Theorem 4.2
and Proposition 1.1, (I — p,)Rull , < g,llull ; Vu € E.

We treat next the term 8a(u, v) = fg A359,u%,0'.

Let u € W), be such that (3,)u € W, VO<i<2 and w € U' be defined by
ay(w, ) = 8a(u,(9,0)) Vo € U'. In this proof, €, is a generic positive function of A
such that lim, ¢, = 0 and ¢ is a generic positive constant. Moreover ¢, and ¢ are
independent of u. Since a((-, -) is hermitian and coercive on U', it is possible to
show that 3¢ > 0 such that A;;(x, y) = 0 V(x, y) € Q. Set z = 4,59 u>/As;. Then
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z € HX(Q) and llz|l,, g < cllull ;. Using the arguments of the proof of Proposition
5.1, it is possible to show the existence of z, € U2 such that ||z — z,ll, , o <
&y ”aqu I 2,x,Q <g, Tl E-

Define ¢,1, € V' by 3t =z, 3,1, =z, ((x,0) = 1,(x,0) =0 Vx € (0,1). Set
d(x,y)=y-t(x,1)and d,(x, y) =y - t)(x,1),t =t — dand t, = t, — d,. Then:

Il g+ 18,2150 <cllzlly . g <cllull,,

2 .
S3,) dll 500 < cllt(-, Dl < (el g+ 18,205, 0) < cllull
=0

(1 e =2l o+ 13,(2 =t o <cllz = z,ll, o <eg,llullg,
ld = d,ll, g <c(llt = 1,0l oo+ 13,(r = 1)1l 40) <exllull g,

e — t;,”1,9<€;,”u”5,

t and £, € V', and, since #(x,0) = 1,(x,0) = t(x,1) = £,(x,1) =0, Vx € (0, 1), ¢
andt, € U'".

Using the essential property of U, mentioned in Section 3, we prove that ¢, € U,
Set z,(x, y) = 2, f(x)g(»), where f, € P,(0,1) and g, € 03(0, 1). Let &, be de-
fined by dg,/dy = g,, £,(0) = 0. We have /,(x, y) = I, f,(x)9,(y), where ¢,(y) =
g.(y) — yg,(1). Since @, € 0)(0, 1), £, € P,(0,1) ® 0}(0,1) = U;". Define w, and
w, € W' by ay(w,v) = foA33d,08,0— al(t,v) Vo € U' and al(w,, v) = ay(d, v)
Vo e U'.

We prove that the operator which associates w, € U' to 1 € (¢ € HX(Q) |9,y €
HZ(Q)} with the norm [ ¢l , o + 113, ¢1l, , ¢ is compact. We have

fQA338yt_8—y; — ay(t,v)
=~ [ 4,5+ 4,80 + 45, 30)
Q
—fﬂaxz(Ana + Ay 80+ Apdv) — fQAnaytE - fQABayz'a';.

Since ¢ and 9,7 € V', the only term for which the compactness is not evident is
~Jg Axd,13,0. Let 3,(A4,39,¢) € L*(Q) and - Jo A230,10,0 = [50,(A,;0,¢)0. Thus the
operator associating w, to ¢ is compact. Consequently, Theorem 4.2 and Proposition

1.1 imply the existence of w,, € U, such that
(2) wy = wylly o < 8h(“tnz,x,ﬂ + “ayt”2,x,ﬂ) <eg,llullg.

In the same way, by the compactness of the injection from {y € H2(2) |(3,)y €
H2(Q) V0 < <2}, with norm 32_,1(3,)/¥l, , o, into V', Aw,, € U} such that

2

(3) lhwy = waplli g <& ZN(3,) dll 0 <e,llull .
=0
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We prove that w = £ + w, + w,. Forv € U, we have

aby(w—1t,0) = /QA”axuz'a'y? —al(t,v) + aj(d, v)

= /A338yt8y_v —al(t,0) + al(d,v) = al(w, +w,, v),
Q

ie,w=1+w, +wsincer € U'. Setw, =1, + w,, + wy, € U,.
By (1), (2), and (3), we finally obtain that
I(I = py)Rull, <llw—w,ll, g <egllullg. O
Define llull,,, = (ao(u, u))'/> Yu € U, and set [ Rl ,, = sub ey, juy, =1 | Rl o
Lemma 54. IRl < 1.

Proof. Since R is selfadjoint, it is sufficient to prove that its spectrum o(R) C
(~1,1). We prove that the form a,(u, v) = ay(u, v) + Ada(u, v) is coercive on U
VA € [-1, 1]. By coerciveness of ay(-, -), 36 > 0 such that min(a(u, u), ay(u, u)) =
ollull2Vu € U. Letu € Ube fixed. If A €0, 1],

ay(u, u) = Aa(u, u) + (1 = N)ag(u, u) = (Ao + (1 = N)o)llull} = ollull}.
If A €[-1,0], set v = (u', —u?) and so
ay(u, u) = ag(v, v) — Aa(v,v) = a_\(v,v) = alloll} =ollul}.
Consequently, if A € [-1,1], A # 0, we have ay((I + AR)u, v) = ay(u,v) Vu,v € U
and, by coerciveness, I + AR: U — U is an isomorphism. Letting A vary, we obtain
thato(R) C (-1,1). O

It is not difficult to prove that W, is a closed subspace in U. Define then II,:
U - U, and T1,: U - W, the a,(-, -)-projections.

LEMMA 5.5. Let n € N be fixed. If u € U satisfies the relation (3,)u € UV0 <i <
n, then (3,)'TI,u € W, Y0 <i < n and there exists ¢ > 0 independent of u and of h
such that

S 0(8,) Tull,<c 3 1(3,) ull,.
i=0 i=0

This lemma can be proven with arguments similar to those in the proof of
Theorem 2.1.

Proof of Theorem 4.1. Let u € W,. In this proof, ¢, denotes a generic function of 4
such that lim, ¢, = 0 and ¢ represents a generic positive constant. Moreover, ¢,
and ¢ are independent of u. For v € U, we have ay(({ + R)Tu, v) = a(Tu, v) =
a(Tyu, v). Thus, Tu = Tyu — RTu. Consequently, we have that

(1 = IL,) Tull,, < I(I — IL,) Tyull ,, + II(X — I1,)RIL, Tull,,
+I(1 = 11,)R(I — 11, Tull,,.
By Lemma 5.2,
(1 = IL,) Toull o, < (1 = py) Toully, < g, llull,.
By Theorem 2.1 and Lemmas 5.5 and 5.3,

2
I(I — IL,)RIL, Tull, < cl(I — p,)RILTull, <&, 3 I(3,)TL,Tull, <e,lull,.
i=0
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Moreover,
(1 = T0,)R(I = T1,) Tull,, < I RIl ., (1 — T1,)Tull,, < I Rl (] = TT,) Tull,,
since U, C W,. Consequently,
(1 — 11,)Tull,, < &, llull, + IR, II(I — I1,)Tull,,
By Lemma 5.4, ||R|l, <1 and consequently (I — IL,)Tull,, <e¢,llull,. Finally,
(I = p,)Tull, <cl(I~— 0,)Tull,, < eg,llull,. O
We prove now Proposition 5.1. For the sake of simplicity we shall suppose that
the coefficients a, ; and B are independent of the variable y, and we give the proof in
this case.

Define the sesquilinear forms a(-,-): HL(O0,1) X HL0,1) - C and B(-,-):
L*0,1) X H,L(O, 1) - Cby

1 1 - ] 1 L
a(f,g)= Y / o, i(x)f®g®dx and B(f,g) :/ B(x)fg® dx.
ki=0"° 0
a(-, -) is coercive on HL(0, 1). Let S: L%(0, 1) - HL(0, 1) be defined by &(Sf, g) =
B(f, g) Vg € Hy0,1), f € L*0, 1).

°LEMMA 5.6. Let u(x, y) = f(x)g(y), where f and g € L*(0,1). Then Su(x, y) =
(Sf)(x)g(y).

Proof. One uses test functions in H,(0, 1) ® L*(0, 1) and the density of H,(0,1) ®
120, 1) in H'0,1). O

LEMMA 5.7. There exists €, > 0 with lim,_ o ¢, = 0 such that Vf € H4(0,1), 3g, €
Py(0,1) satisfying || Sf — gy Il 0,1y < & ll 1l 4 0,1)-

Proof. By the compactness of the injection from H2(0, 1) into HA(0, 1), by density
at the limit (property (P2)) of {P,(0,1)}o—s<, in HA(0, 1), and by Proposition 1.1,
there exists &, >0 with lim, ¢, = 0 such that Vg € H2(0, 1), and there exists
8 € P,,(O 1) satisfying Ilg — g/l 01) < & 118ll ) By elliptic regularity of S,
Sf € HX0,1) Vf € H4(0,1) and there exists ¢ >0 independent of f such that
(VAL 20 < cll fll - Setting g = Sf, we obtain:

ISf = gallio < &llSflla0ny <&l fll 0n O

Proof of Proposition 5.1. Let {g,|1<i<r,} be a (-, -)gq,y-orthonormal basis of
Q?(,1). (r, = rN, is the dimension of 0?#0,1).) Let u(x, y) = 3 Ji(x)g(y) €
HZ(0,1) ® 0(0,1). By Lemma 5.7, 3f, € P,(0,1) such that | Sf, — Flhon <
el fill goy Y1 <i<r,. Set w(x, y) = zzr"_lfx,,(x)g,(Y) € Uy By Lemma 5. 6, we
have

" 1/2
_ S 2
| Su — Wh”l,x,sz = ( 2 IS, _fx,,”l,(O,l))
=1

1/2
(lefllq(m)) = eyllull, g O
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