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Approximation of the Spectrum of an Operator 
Given by the Magnetohydrodynamic 

Stability of a Plasma 

By Yves Jaccard and Hugo Evequoz 

Abstract. The study of the magnetohydrodynamic (MHD) stability of a plasma in a toroidal 
configuration leads to a problem of computing the spectrum of a noncompact selfadjoint 
operator T. The spectrum of T will be approximated by the eigenvalues of Th, a Galerkin 
approximation of T. 

We present a two-dimensional model problem with two components containing most 
difficulties arising in the physical problem. We give subspaces and prove sufficient conditions 
for obtaining convergence using partial regularity of T. 

1. Introduction. We consider an equilibrium plasma in a toroidal geometry Up. 
Linearizing the evolution equations near the equilibrium position characterized by 
the magnetic field Bo. the pressure po and the density po, the Eulerian equations can 
be written in the form 

where ( is the displacement in the variables of Lagrange and where 

F(() = grad( -grad po + ypo div) 

+ 4II(rot Bo 0A Q +rot Q A BO) 

with Q = r6t(( A BO); see [7, p. 252]. 
In order to study the stability of this equilibrium, we search solutions of (1.1) of 

the form 

(1.3) ((x, t) = ((x)eict. 

Using integration by parts, the potential energy 

(1.4) WPM = -2 F(i) dx 
up 

can be written in the following symmetric form 

W (P) =2j f { r3t( AB) + A (J n) 12 + ypo(div) 
(1.5) 

n-(n * ( A nh)(B.0 n-)'0} dx, 
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444 YVES JACCARD AND HUGO EVtQUOZ 

where j0 = rot B0/4L1 and no = -l griid p0 '` grid p0 is the external unit normal to 
the isobar. 

Moreover, by the energy principle, ((x) is a stationary point of the form 

(1.6) Wp(- W 

where 

(1.7) ~~~ ~~WC( = 2 2 p 12 dX (1.7) r( )1G, fPoIId 
p 

is the kinetic energy. 
Then the solutions (1.3) belong to the invariant subspaces of the selfadjoint 

operator T defined by 

(1.8) a(Tt, F) = b(t, F) 
for all displacement , where a(-,) and b(-,) are sesquilinear forms such that 
a(t, () = Wp(() and b(t, W) = c() 

On the other hand, 1/X2 belongs to the spectrum of T and the stability criterion 
bears upon the sign of w2. 

Supposing the revolution symmetry of the equilibrium system relative to the axis 
Oz. Parametrizing the toroidal domain Up by the cylindrical coordinates (r, qp, z), 
eliminating the angular variable qp by means of Fourier series and by a change of the 
two other independent variables in some polar-like coordinates using physical 
properties of Bo. po and p0, we describe a section of the torus with specific variables 
(s, X) lying in the rectangular domain S = [0, 1] X [0, 211]. The magnetic surfaces 
are given by the equation s = constant. 

Applying simultaneously a change of the dependent variables (er' (p (Z) 

(X, Y, V), WP(M) and Wc(() can be written 

WP= fI ds dXT 4ST 3S2 

2 
a X + inX] + TI 

l 

asX + a8v12 WP 2 s qr4 B2 q X q~ 

qr 2B2 TT 
+ T4SP2 sas('X) +sa (2v) +SOT(-aXX+inX) 

S22 

(1.9) -ST (-aXV+ inV ) + 2 Xs jTs 
q x 

~~rqB 
2 

+ YPOT as(r2X) + ax(r2V) + q (-ax(r 2Y) + inr2y 
qr2 q nY 

8 TKr2 4S I X12 
q 

S 4 2+ r6qB2v y. x 
11)W W217J _ds p 24Is2 242'r4- J 
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The quantities Tk, , q, Bp, 0, j,, and K depend on the geometry S and on the fields 

Bo andpo; see [1] and [5]. 
In order to eliminate the singularity of (1.9) and (1.10) for s = 0, we consider the 

operator T associated to a plasma without vacuum region evolving in a toroidal 
crown (let us mention that this singularity is such that the space of displacements is 
not a product space; see [6, Annexe A]). 

The spectral convergence of a Galerkin discretization of T for a one-dimensional 
plasma situation has been studied by J. Rappaz [8]. The two-dimensional problem 
involves new types of difficulties and requires other methods of treatment. In 
particular, V and Y admit in (1.9) only one partial derivative with respect to X, and 
this fact requires the construction of an unconventional Sobolev space. On the other 
hand, an untraditional result of directional and global regularity of the operator 
allows for coupling terms of (1.9). 

For the sake of simplicity, we shall however restrict ourselves here to a similar 
two-component problem. In our thesis, we have obtained results for a rather general 
framework which includes in particular the one-dimensional plasma situation studied 
by J. Rappaz in [8]. On the other hand, H. Evequoz analyzes in [3] a nonconforming 
finite element method for the same type of problem. These numerical schemes are 
used successfully in several laboratories for plasma physics, in particular in the 
CRPP of the Federal Institute of Technology, Lausanne. 

Let us describe a theoretical general method for spectral approximation of T 
(Galerkin's method): Let U be a complex Hilbert space with scalar product (, )u 
and {Uh}<1h1 be a family of closed subspaces. Let T: U -* U and Th: Uh -* Uh be 
the operators defined by a(Tu, v) = b(u, v) Vu, v C U and a(Thu, v) = b(u, v) 
V u, v E Uh, where a(-, -) and b(., -) are continuous sesquilinear forms (linear in the 
first argument and antilinear in the second). We suppose that a(, ) is coercive on 
U. Let ph: U -* Uh be the (, -)u-projection. 

J. Descloux, N. Nassif and J. Rappaz showed in [2] that the eigenvalues and 
eigenvectors of Th are "good approximations" of the spectrum and invariant 
subspaces of T if the following properties hold: 

(P1) lim sup 11(I-ph)TUIIu = O? 
h -0 UcUh; IIUIIU=l 

(P2) lim 11(I- Ph)u U=0, Vu E U. 
h-0O 

When T is compact, the following classical proposition shows that (P2) implies (P1). 

PROPOSITION 1.1. Let B be a Banach space with norm II B and Z: B -> U a linear 
continuous operator. If property (P2) holds and if Z is compact, then we have 

lim sup II(I-ph)ZUIIU=O? 
h -0 ucB; 11ullu=1 

In this paper, we shall construct a family of finite element subspaces {Uh}<blhl 
associated to the preceding MHD stability problem for which we shall verify that 
conditions (P1) and (P2) are satisfied. 

2. The Exact Problem. Partial Regularity of the Operator. Let S = (0, 1) X (0, 1) 
C R2. We denote by (x, y) the independent variables in R2. 

Let 6D = {u/S2 I u E C?(R X [0, 1]), u is 1-periodic in the variable x} C C?(S3) 
and 6D0 {u E r- 6 i > 0 depending on u such that supp(u) C [0, 1] X [e, 1 -e]} 
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Let V' be the completion of 6D for the norm 

IIuIIISQ = (IIUIIg,Q + I8axuII2,Q + aU 12,)1/2 

(III *'o is the norm in L2(g)), U' be the closure of 6DO in Vi, V2 be the completion 
of 6D for the norm ii U i X = (u U 2Q + 11 a,u 11 

2 Q)1/2, U2 be the closure of 6DO in V2 
(we have U2 = V2), V VI X V2 with the norm 

lUllr = (ii uI2I + II U2111a 
1/2 

where u = (ul', u2) E Vand U= U' X U2. We denote by (, )v the scalar product 
of V which induces the norm II 11 v 

Consider the hermitian sesquilinear forms a(, ) and b(, ): V X V -> C defined 
by a(u, v) = fQ[v]*A[u] and b(u, v) = fQ{V}*B{U} where A (resp. B) is a 5 X 5 
(resp. 2 X 2) hermitian matrix with coefficients in 6D, [u] =t(ul, axul' ayul', u2, axu2), 
[v] =t(vl, axv', ayl, v2, axv2) {u} =t(ul, u2) and {v} =t(vl, v2). Suppose that a(., *) 
is coercive on U, and define the linear continuous selfadjoint operator T: U -> U by 
a(Tu, v) = b(u, v) Vu, v E U. 

THEOREM 2.1. If u E U, then (ax)'Tu E U VO < i < 2, and there exists c > 0 
independent of u such that 

2 

E, II(aj)Tul lUII -::~cIIv- 
i=O 

The proof which relies strongly on the property of periodicity of U is obtained in 
[6] by the differential quotient method; see, for example, [4]. 

3. Discretization Subspaces. The choice of the subspaces is connected to the 
coupling terms. Using the same subspaces for each component of the one-dimen- 
sional problem, Rappaz shows, for example in [8], the existence of a suite of 
eigenvalues of Th that converges in the resolvent set of T. This type of phenomenon, 
so-called "spectral pollution", can appear when property (P1) is unsatisfied. The 
intuitive argument that suggests the choice of the discretization subspaces is the 
following: 

Let Sa*, -) be the part of a(, ) exclusively constituted by coupling terms. Setting 
ao(- *) = a(-, -)-Sa(-, *), we define To and R by ao(Tou, v) = b(u, v) and 

ao(Ru, v) = Sa(u, v). We have the relation 

(I+R)(T- Th)= To- TOh-(R-Rh)Th 

Supposing (P1) for To. we must prove a similar property for R. For the term 

f ayu8vu2, the approximation property holds when ayu' belongs to the subspace 
discretizing the second component. In this way, we choose a subspace Uh = Uhl X Uh2 
such that ayl U and u2 have the same form, Vu = (u', u2) E Uh. 

Let H'(0, 1) be the Sobolev space of the functions f E L2(0, 1) such that f' E 
L2(0, 1), H4 (O, 1) = {f E Hl(O, 1)If(O) = f(l)} and Ho(O, 1) = {fE H l(O, 1)If(O) 
=f(l) = 0). 

For rl, r2 E N, we denote by Pl '2 the space of polynomials of two variables of 
degree < r, in the first variable and < r2 in the second one. P,, is the space of 
polynomials of one variable of degree ? rl. 
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For 0 <h ? 1 such that Nh = 1/h E N, let xi = ih and y, = jh VO i, j? Nh, 

R1j= (x 
1,x,) X(yj11,yi) V j?i,j<Nh and 6' h ={R jI?, i 9 Nj N}. Let 

r E N, r - 1 be fixed. Define 

Uh = {u E U l u/R E Prsr VR E 6C J 

Uh2 = {U E U21 u/R E Pr,r-I VR E 6C } h 

and Uh Uhl X Uh2. Note that Uh2 contains discontinuous functions if Nh > 2. Set 

Ph (?9 1) = {f EE H#1(0,9 1) I fl (xi 1, Ixi) EE Pr VI -,< i Nh}, 

Qh(?, 1) = {f EE Hol(O 1) I fl (YJ- I yj) EE Pr VI <- j Nh} 

Q2(?9 1) = {f L2(0,9 1) I fl (YJ- I yj) EE Pr- I VI< N^} 

One can verify that 

U,: Ph(O, 1) 0@ Qh(O 1) ={n~ f t(x)gn(y) If e P I(O 1), gn E Qh(O, 1), 1 E 

and U2 = ph(0, 1) 0g Q2(O, 1). 

The essential property of Uh which will allow us to prove condition (P1) is the 
following: if u = (u', u2) h Uh, then ayu'(x, 2) and u2(x, -) are both in the same 

space Q2(0, 1) Vx E (0, 1). This property is used in the proof of Lemma 5.3. 
Define furthermore the infinite-dimensional subspaces W,= H'(O, 1) 0 Qh(O, 1) 

h h(O, 1) 0 Qh(? 1) and Wh = Wh X WhJ. We have Uh C Wh C U. 

4. Results. Let Ph: U -- Uh be the ( , )v-projection. 

THEOREM 4.1. There exists Ch > 0 with lim hO -h = 0 such that 

II(I-Ph)TU IV <?cEh 1 U 1V V U C Wh. 

THEOREM 4.2. iMhoII(I -Ph)uII V = 0 VU C U. 

Theorems 4.1 and 4.2 show that the properties (P1) and (P2) are simultaneously 
satisfied for the triples (U, {Uh}0<h?l, T) and (U, {Wh}0<h?l, T). 

5. Proof. The density of 6Do X 6D0 in U and classical results of interpolation imply 
Theorem 4.2. Let us prove Theorem 4.1 in some detail. 

For n E N, we denote by Hxn(Q) the completion of 6D for the norm 
n 1/2 

IUIIn,x,Q= 01(x) 0lo 
i=O 

Let 

H#(0 ) = f E 2(0, 1) If (i) E 2(0, 1) t0<:: i < n,f(i)(0) 

=f (')(1) VO < i < n - } 

with the norm 11 f 11 n ((OI) 0 11 f(l) 0( 2,))/2 (11 *I 0o(0,1) is the norm in L2(0, 1)). 
We have that U2 = V2 = Hx(Q). 

Let a(, -): Hx(,) X Hx,(Q) -- C and /B(, ): L2(S) X HI(2) C be the two 

sesquilinear forms defined by 
I 

a(u, v) E fak k(X)ku (ax)kv and ,B(u, v) f8,u (ax)'v 
k,k=O 
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where ak?,i_ / E 6D and 0 ? q ? 1. Suppose that a(-,) is coercive on Hj(2) and 
define S: L2(g) -* HXI() by a(Su, v) = ,B(u, v) Vv CH'(), u E L2(g). We re- 
mark that Su E HX2(0) Vu E Hq(Q). This property can be proven with the same 
arguments as in Theorem 2.1. 

PROPOSITION 5.1. There exists eh > 0 with lim h C0 h = 0 such that Vu E H4(O, 1) 
0 Q,2(0, 1) 3Wh EC Uh2 satisfying IISu -Wh 1WI,x < ChIIUIIq,x,Q 

The proof of Proposition 5.1 is given at the end of the paper for the case where 
coefficients ak, k and /3 are independent of y. 

Define the hermitian sesquilinear forms a'(-, -): Ul X Ul -* C, a2(_, _): U2 X 
U2 -* C and ao(., *), Sa .): U X U -* C by a'(ul, vl) = a((ul, 0), (vl, 0)), 
a2(U2, V2) = a((O, U2), (O, v2)), ao(u, v) = al(ul, vl) + a2(u2, v2) and Sa(u, v) = 
a(u, v) - a0(u, v) Vu = (u1, u2), V = (V1, V2) E U. ao(., -) (resp. a'(-, -), a(_, )) 
is coercive on U (resp. on U%, on U2). 

Define the operators T05 R: U -- U by ao(Tou, v) = b(u, v) and a0(Ru, v) = 

Sa(u, v) Vu, v E U. 

LEMMA 5.2. There exists Ch > 0 with limh -O Eh = 0 such that 

II(I-Ph)TOUIIV, ^1IIUIIV VU E Wh. 

Proof. Suppose that B22 = 0. In this case, To is compact by compactness of the 
injection from U1 into L2( U). Thus, the lemma follows from Proposition 1.1 and 
Theorem 4.2. 

By linearity, we can suppose now that b(u, v) = fQ B22U2V-2. By Proposition 5.1 
with a(-, ) = a0(., ), /3 = B22 and q = 0, Tou = (0, Su2) and Vv E Wh2 C L2(O, 1) 
0 Q2(0, 1), 3wh E Uh2 such that 11 Sv-Wh 1I X u < II | V 1 Consequently 

11(I p,P)Tou11v 11Su2 WhII1,x ?Cu ShIIUIIv- ?L 

LEMMA 5.3. There exists eh > 0 with limh 10 Eh = 0 such that Vu E Wh satisfying 
(aJ)u E Wh VO i 2. We have 

2 

II(1-Ph)RUII v < Eh I II(aJ)UII| 
i=O 

Proof. It suffices to prove Lemma 5.3 separately for each term of Sa(, ). We 
shall do it for two of them. The proofs are similar for the other ones. 

Consider first the case where Sa(u, v) = fQ A25ax u2axvl. 
We define the space E = {u EE U (aJ)'u E U VO ? i ?2) with norm 11u11E = 

i= I II(aJu 11 v. We show that R: E -- U is compact by the assumption of periodic- 
ity, Sa(u, v) = -fQ ax(A25axu2)i-v. Since ax(A258au2) E L2(Q) Eu E , R: E -- U is 
compact by the compactness of the injection from U' into L2(g). By Theorem 4.2 
and Proposition 1. 1, II(I-ph)Ru I IV eh 1I U II E VUE E. 

We treat next the term Sa(u, v) = fQ A35axU 2ayv1. 
Let u E Wh be such that (a8)Ju E Wh VO ? i ? 2 and w E U' be defined by 

a(w, qp) = Sa(u, (qp, 0)) Vg EC U1. In this proof, Ch is a generic positive function of h 
such that limhO Ch = 0 and c is a generic positive constant. Moreover Ch and c are 
independent of u. Since a'(-, *) is hermitian and coercive on U%, it is possible to 
show that 3a > 0 such that A33(x, y) > a V(x, y) E Q. Set z = A35axu2/A33. Then 
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z E H'2) and 11 Z II 2,x, Q C 11 U 1 E' Using the arguments of the proof of Proposition 
5.1, it is possible to show the existence of Zh & Jh2 such that liz - zll S 

Eh 11 axU2 1 2,x,Q ' C Ih U 11 E- 

Define t, th & V1 by ayt = Z, ayth = Zh t(X,O) = th(X,O) 0 VX E (0,1). Set 
d(x, y) = y - t(x, 1) and dh(x, y) = y th(X, 1), t = t -d and th = th - dh. Then: 

11 t 11 2,x,Q + 11 ayt 11 2,x,Q <- C 11 Z 11 2,x,Q C || U || El 

2 

2 11(ay) jdII2,x,0 < -cllt(-, 1)112,(O,I) < 
-c(lltll2,x,a + 11 ayt 112,x,O) C 1 CIU 11E 

J =O 

(1) t - th1I x + llay(t 
- 

th)ll,x, 
- 

Ccllz -ZhIll,x,&2 - thIIU "EI 

Id- dhlll, < C(lit -thlll,x, + llay(t th)lll,x,Q) -< thIIUIEI 

t and th & V', and, since t(x,O) = th(x,O) = t(x, 1) = th(x, 1) = 0, Vx & (0, 1), t 

and th & Ul. 
Using the essential property of Uh mentioned in Section 3, we prove that th & Uh: 

Set zh(x, Y) = n fn(x)gn(y) where fn & P,(0 1) and gC & Q 2(0, 1). Let gn be de- 
fined by dg,/dy = g, gn(O) = 0. We have th(x, y) = fJ(x)q9(y), where qn(y) = 

gJy) - yg(l). Since qg & Qh(?, 1), th C Ph(0, 1) 0 Q'(0, 1) = Uhl. Define w1 and 
& Wl by al(wl, v) = foA33 tv- al(t, v) Vv & Ul and al(w2, v) = al(d, v) 

tvv ul. 
We prove that the operator which associates w1 & U' to t & {4 & H(2) I d'P E 

Hx2(0)) with the norm 11 4 11i 2x, + 13 ay4 11 2,x,& is compact. We have 

fA333yt ayV - a0(t, v) 

= -f t(A,Iv + A21 axv + A31 ayV) 

- xt(AI2 + A22 aXv + A32ayV) -fyAV 3at3v -fA23ayt axv 

Since t and axt C Vl, the only term for which the compactness is not evident is 
-Ja A233ytaxv. Let ax(A23&yt) C L2(Q2) and -fa A233yt3XV = JF 3iA233yt)i. Thus the 
operator associating w1 to t is compact. Consequently, Theorem 4.2 and Proposition 
1.1 imply the existence of Wlh & Uhl such that 

(2) || WI - Wlh || 1,2 < Ch(1i t ii 2,X,O + || ayt || 2,x,Q) < ?h 11 U 1 E . 

In the same way, by the compactness of the injection from {4 e Hx2(Q) I (ay)J' c 
Hx2(Q) VO < j < 2), with norm 22=0 11(ay)'j4 11i 2 x, into V1, 3W2 h Uhl such that 

2 

(3) 11W2 - W2hi 1 < C/h 11(a8y) dil2,x, h ? U iiUiiE- 
J0 
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We prove that w = t+ wI + W2. For v & U1, we have 

a1(w-4,v)= f A35 2 aV - a(t, v) + a'(d, v) 

- fA333yt 3,yv - a'(t, v) + a'(d, v) = al(WI + W2, V), 

i.e., w = t + wI + W2 since t & U . Set wh = th + Wlh + W2h e U11. 

By (1), (2), and (3), we finally obtain that 

UlI P ))1/2v llw whl saIR l 
a o.ulE. 

C 
Define IIuIIao = (ao(u, u))'/2 Vu & U, and set IIRIIao = SUPUCU;IlUlla0=iIIRUIIao 

LEMMA 5.4. 11 RIi ao < 1. 

Proof. Since R is selfadjoint, it is sufficient to prove that its spectrum a(R) C 

(-1, 1). We prove that the form ax(u, v) = ao(u, v) + X3a(u, v) is coercive on U 
VX & [-1, 1]. By coerciveness of ao(-, ), 3a > 0 such that min(a(u, u), ao(u, u)) 2 

aIIu12IVu& U.Letu& Ubefixed.If X[O,I], 

ax(u, u) = Xa(u, u) + (1 - X)ao(u, u) 2 (Xa + (1 - X)a)UIIU2= a= uIIU2I 

If X & [-1, 0], set v = (u1, -u2) and so 

ax(u, u) = ao(v, v) - X3a(v, v) = ax(v, v) 2 a IIVI2 = aIIuIUI1. 

Consequently, if X & [-1, 1], X # 0, we have a0((I + XR)u, v) = ax(u, v) V u, v & U 

and, by coerciveness, I + XR: U -- U is an isomorphism. Letting X vary, we obtain 
that a(R) C (-1, 1). C1 

It is not difficult to prove that Wh is a closed subspace in U. Define then I11h: 
U -* Uh and 171h: U -* Wh the ao(-, *)-projections. 

LEMMA 5.5. Let n & N be fixed. If u & U satisfies the relation (aJ)'u & UVO < i < 

n, then (3x)'r11hu & Wh VO < i < n and there exists c > 0 independent of u and of h 

such that 
n n 

z l(ax)ii*l vA hU 11V c2I(aJ)ul V- 
i=O i=O 

This lemma can be proven with arguments similar to those in the proof of 
Theorem 2. 1. 

Proof of Theorem 4.1. Let u & Wh. In this proof, ch denotes a generic function of h 
such that limho0 eh = 0 and c represents a generic positive constant. Moreover, 1h 
and c are independent of u. For v & U, we have ao((I + R)Tu, v) = a(Tu, v) = 

ao(T0u, v). Thus, Tu = Tou - RTu. Consequently, we have that 

(I- L1h)TU 11 ao < (- rh)TOU 11 ao + I1(-h h ao)RIJ1TuII 

+ I(1 n-Ih)R(I- fJ)TU ao. 

By Lemma 5.2, 

I(1 - rh)TOU 11 ao cII(I -ph)TOuIIv?< ChIIUIIV- 

By Theorem 2.1 and Lemmas 5.5 and 5.3, 
2 

1( - 171)RTU11TUIan h cII(I -p11)RfJ11TuIIV<h 2 11(a xi( hTU)f TII? c < hIIuIIV- 
i=O 
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Moreover, 

i(i - rII)R(I - Ih)TuUIa IIRIIaoII(I -Il)TuII O IIRII aoI(I-fJh)TuII 

since Uh C Wh. Consequently, 

I(I Ih ) TU 11ao < hlluII1+ IlRllao IV- rh)TU 11ao. 

By Lemma 5.4, 11 R ao < 1 and consequently 11(I - Hh)TU 1 aO h II U II V. Finally, 

II(I-Ph)TU II v V 'CI-I(Hh)TU CT aO ? h IIUIIV Dv- 

We prove now Proposition 5.1. For the sake of simplicity we shall suppose that 
the coefficients aOkC and /B are independent of the variable y, and we give the proof in 
this case. 

Define the sesquilinear forms a(-, *): H4(O, 1) X H4(O, 1) C and ,B(, * ): 
L2(O, 1) X H4(0, 1) --C by 

ak(fd g) = x and /3(f, g) f'/3(X)fg(q) dx. (f fa)k,k(X)fgdx(x 
k,k=O 

a'(-, *) is coercive on H'(0, 1). Let S: L2(O, 1) HH(0, 1) be defined by ai(Sf, g) = 

13(f, g) Vg E H4(O, 1), f & L2(O, 1). 

LEMMA 5.6. Let u(x, y) = f(x)g(y), where f and g & L2(O, 1). Then Su(x, y) = 

(Sf )(x)g(y). 

Proof. One uses test functions in H'(O, 1) 0 L2(O, 1) and the density of H4'(O, 1) 0 
L2(O, 1) in Hx(0, 1). El 

LEMMA 5.7. There exists eh > 0 with limh )O Ch = 0 such that Vf & H4(O, 1), 3gh C 

Ph(0, 1) satisfying I ISf -gh I 1,(0,1) < eh II f I q,(O, I) 

Proof. By the compactness of the injection from H,(0, 1) into H'(0, 1), by density 
at the limit (property (P2)) of {VA(?, 1)}o<hl 1 in H'(O, 1), and by Proposition 1.1, 
there exists Ch > 0 with limh O Ch = 0 such that Vg & H4(0, 1), and there exists 
gh C Ph(O 1) satisfying I g - gh II 1,(0,1) < h I I g I1 2,(O,1). By elliptic regularity of S, 
Sf E H4(O, 1) Vf E H4(O, 1) and there exists c > 0 independent of f such that 
IISf 11 2,(O 1) < c J f I q,(O 1) Setting g = Sf, we obtain: 

11Sf - gh 111 I(0,I) < ' h 11 Sf 11 2,(0,I) '-- '-hf1 q,(0,I) :1 

Proof of Proposition 5.1. Let { g, 1 < i < rhj be a (, )0,(0I)-orthonormal basis of 
Q2(0, 1). (rh = rNh is the dimension of Q2(0, 1).) Let u(x, y) = /(x)g1(y) r 

H4(0, 1) 0 Q 2(0, 1). By Lemma 5-7, 3 1) such that 11Sf- h II 1(0,1) 

hl||f||q,(o,1) hi 
h 

i X rh. Set wh(x, Y) = Eilflt(x)gl(Y) & Uh2. By Lemma 5.6, we 
have 

rh ~~~1/2 S Wh( h 11/f12 ? 2) 

rh 1 /2 
< h q,(O,t 1 q0) th Ul"1 q X a 
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