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Two Classes of Internally S-Stable Generalized 
Runge-Kutta Processes Which Remain Consistent 

With an Inaccurate Jacobian 

By J. D. Day and D. N. P. Murthy 

Abstract. Generalized Runge-Kutta Processes for stiff systems of ordinary differential equa- 
tions usually require an accurate evaluation of a Jacobian at every step. However, it is possible 
to derive processes which are Internally S-stable when an accurate Jacobian is used but still 
remain consistent and highly stable if an approximate Jacobian is used. It is shown that these 
processes require at least as many function evaluations as an explicit Runge-Kutta process of 
the same order, and second and third order processes are developed. A second class of 
Generalized Runge-Kutta is introduced which requires that the Jacobian be evaluated 
accurately less than once every step. A third order process of this class is developed, and all 
three methods contain an error estimator similar to those of Fehlberg or England. 

1. Introduction. In this paper we are concerned with the approximate numerical 
integration of nth order stiff systems [22, p. 228] of ordinary differential equations of 
the form 

(I. 1) Y' = f(y); y(xo) = y. 

The most widely used algorithms are those based on multistep formulas (e.g., [18]). 
These methods are efficient, especially for computing accurate solutions (i.e., when 
the specified error tolerance is small). However there is a limit to the level of 
numerical stability that a multistep method can possess. In particular, no multistep 
method of order greater than 2 can be A-stable [22, p. 233], and consequently 
multistep methods usually satisfy a relaxed stability criterion, such as A(a)-stability 
or Stiff-stability [22, p. 233]. Thus the methods are not suited to problems in which 
the eigenvalues of the Jacobian contain large imaginary parts. In addition, the 
stability analysis is linear, and numerical experience indicates that, for very stiff 
nonlinear systems, A-stable methods are inadequate. This led Prothero and Robin- 
son [25] to define S-stability, which, although it also uses a linear scalar test 
equation, was claimed by the authors to be suitable for nonlinear systems, in which 
the eigenvalues are widely separated. The criterion has been applied to implicit 
Runge-Kutta methods which were originally defined by Butcher [7]. These S-stable 
implicit Runge-Kuttas are thus more reliable, in the sense that a wider range of stiff 
systems can be computed with them, but less efficient than the multistep methods, in 
the sense that more computation per step is required. In attempting to reduce the 
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computation per step of the implicit Runge-Kuttas, we consider generalized Runge- 
Kuttas which are linearly implicit, and hence eliminate the need for solving nonlin- 
ear algebraic equations, which must be solved by an iterative technique such as 
Newton-Raphson, and hence require additional function evaluations for every 
iteration at every step. It should be noted, however, that these methods may require 
less than one Jacobian evaluation and matrix factorization per step, or several 
Jacobian evaluations and matrix factorizations per step, depending on the conver- 
gence of the Newton-Raphson iterations. Following Verwer [29], we describe a 
Generalized Runge-Kutta process for solving Eq. (1.1) by 

v 

(1.2) Yn+I = Yn + A(V+ I)iki 

where 

ki = hnf(Yn), ki = hnf Yn + Aijkj 2,3, .... , v, 

and where Ajj, i = 2,..., v + 1; j 1,... ,i -1, are nth order square matrices 
which are functions of the Jacobian matrix af(y(x))ay lx=x (- Jn) or some 
approximation to the Jacobian. We assume that the system (1.1) is inherently stable 
(i.e., the eigenvalues (X., j = 1,..., n) of the Jacobian are such that Re(X1) < 0, 
j = 1, . . , n). It is possible to define several classes of Generalized Runge-Kutta [ 10] 
depending on the type of matrix function used for the Aij. For example, if we use a 
rational polynomial function such as 

(1.3) A, =1a,, I+ z aqhn |I + z hnbkJn 

where aq, q 1,... ,r, and bq, q = 1, ... , r + 1, and ai1 are real scalars, and 1 2 1 for 
stability reasons (see Theorem 1), then at every step one or more matrices must be 
factorized and one or more systems of linear algebraic equations must be solved with 
this factorized matrix. In the interests of efficiency, we will use a matrix of the form 

(1.4) [I - hnbJnI (rl) 

since a matrix * matrix product Jn requires n3 operations, which is approximately 
three times the work required to factorize the matrix. Since the functions Aij all 
premultiply some vector, the powers of Jn in the numerator are not matrix * matrix 
multiplications, but rather matrix * vector multiplications. The use of (1.4) means 
that only one matrix factorization per step is necessary, although there will be 
several matrix * vector multiplications and several solutions of linear systems of 
algebraic equations. If the Jacobian is expensive to compute, it is interesting then to 
consider a class of methods which uses an approximation to the Jacobian (Jn), so 
that we have typically 

(1.5) A,1 a1,[I + ? ak h Jn] [I -h hbJn] 

As we will see in Section 3, the form (1.5) results in a requirement for more function 
evaluations per step than the form (1.3) and (1.4). To reduce this requirement, and 
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also the requirement that a Jacobian be evaluated at every step, we may use a 
Jacobian which has been evaluated accurately at a previous step, but not reevaluated 
for the current step. Such a function might be of the form 

r 

(1.6) A -a I+ :E a hq>J- [I - hbJflkl(r?I) 
q= 1 

where J -k is the Jacobian evaluated at Xn-k where Xn-Xnn k k= h Ex- 
plicit methods of order p, with v stages, are designated (p, v). The number of 
function evaluations per step is v, and this gives an indication of the efficiency of a 
particular method. For the Generalized Runge-Kuttas, we also have the operations 
of solving linear algebraic systems (usually by back substitution [17, p. 51]) and 
multiplication of a vector by a matrix. Thus it is appropriate to describe them by 
(p, v, j, r), where j is the number of back substitutions per step, and r the number 
of matrix * vector multiplications. In this paper, we designate the form (1.5) as 
Type 1, and the form (1.6) as Type 2. 

Many linearly implicit Runge-Kutta processes (sometimes called Rosenbrock 
methods) have been developed. Some require more than one Jacobian evaluation per 
step. However, the others are processes of Type (1.3) (see for example [1]-[5], 
[8]-[11], [19], [20], [23], [24], [26]). Little work has been done on Type 1 processes. 
Eitelberg [ 12] and Steihaug and Wolfbrandt [27] have developed second order 
processes. In this paper we develop second and third order processes of this type, 
which we consider to be superior either in terms of efficiency (less computation 
required per step), accuracy, or reliability (more stable). We are unaware of any 
work which has been done on Type 2 processes, and we will develop a third order 
formula. We will construct formulas of both classes which are Internally S- (or 
S(a)-) stable [29] when the Jacobian is accurately evaluated. When the Jacobian is 
not evaluated accurately at each step, the stability of the processes is uncertain, and 
we expect a deterioration in stability as the difference between Jn and either Jn or 
Jn-k increases. The analysis of this problem has not been considered in this paper. 
However, we expect the onset of instability to be detected by the local truncation 
error estimator which will force the step size to become smaller. We will use an 
imbedding type error estimator [21, p. 164] which is easy to obtain from the 
Generalized Runge-Kutta methods of the type described in this paper, and requires 
less computation per step than the well-known Richardson Extrapolation, or method 
of interval halving [22, p. 130]. The processes were tested on two systems taken from 
the literature. 

2. Stability. Since we intend to construct formulas which are Internally S-stable, 
when an exact Jacobian is used, we will summarize some stability results for 
methods of the Type (1.3). (The results are applicable to Type 1 and Type 2 
formulas if an accurately evaluated Jacobian is used.) If an integration method 
applied to the scalar test equation 

(2i1) Ytc=hfY 

yields the function R(Z), such that 
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where the complex number Z = hnX, and xn+I = xn + hnI then we have the 
definitions: 

Definition 1 [29]. A rational polynomial R(Z) is said to be (a) A-acceptable if 
R(Z) I < 1 whenever Re(Z) < 0; (b) Strongly A-acceptable, if it is A-acceptable and 

satisfies lim I R(Z) I< 1 as Re(Z) - -oo; (c) L-acceptable if it is A-acceptable and 
satisfies lim R(Z) = 0 as Re(Z) -* -oo. O 

Definition 2 [29]. Let h be any positive real number. Then the integration method 
is said to be S-stable if, for a scalar differential equation of the form 

(2.3) y' = g'(x) + X(y -g(x)), 

(n (= g(xn) - Yn) is uniformly bounded with n for all X with Re(X) < 0 and all 
h,, ( (0, h). D 

It should be noted in the above definition that the exact solution of (2.3) at xn is 
g(x,,) and the computed solution is yn. Verwer [29] analyzed the S-stability of 
Generalized Runge-Kutta methods, and following Verwer we characterize a Gener- 
alized Runge-Kutta by the array 

(2.4) 

0 

A21(Z) 

A A- | A31(Z) A32(Z) 

A MI(Z) ... AM(Ml )(Z) 0 

A(m? l)l(Z) A(m+ 1)2(Z) ... A(m? 1)(Z)(m 1) A(m+ l)m(Z) 

for the mth stage, where m E [1, v]. The parameters A,J, i 2,...,m + 1; j 
1,..., i- 1, are scalars, and are functions of the complex number Z (= hnX). The 
functions AIJ(Z) are the functions A,j(hn Jn) with hn Jn replaced by Z to give a scalar 
function rather than a matrix function. Verwer [29] introduced the stability function 
for the mth stage 

(2.5) R(m)(Z) = 1 + ZATm[I - ZA(Z)] fe, m = 1,2,...,v, 

where eT [1, 1,. . ., 1], the m th order unit vector, and proved the following theorem 
about methods with an accurately evaluated Jacobian. 

THEOREM 1 [29]. A Generalized Runge-Kutta method is S-stable if 
(a) R(v)(Z) is strongly A-acceptable, and 
(b) its coefficient functions A. i = 2,... ,v + 1, j= 1,... ,i - 1, have a zero at 

infinity. D 

Since sometimes overflows can occur in the intermediate stages of a Runge-Kutta 
method [14], Verwer [29] defined 

DEFINITION 3 [29]. A Generalized Runge-Kutta method is said to be Internally 
S-stable if at each m th stage, m = 1,... , v, the corresponding scheme of stage m is 
S-stable. If the above conditions only hold for I arg(- Z) I< a, then the method is 
said to be Internally S(a)-stable. O 
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THEOREM 2 [29]. A Generalized Runge-Kutta method is Internally S-stable if 
(a) R(m)(Z), m -1,. .. ,v, is Strongly A-acceptable, and 
(b) The coefficient functions AIJ i= 2,...,v + 1, j = 1,...,i-1, have a zero at 

infinity. D 

Note that all the S-stable methods are strongly A-stable, but not vice versa. 

3. Consistency. If we have xn+I = xn + hn and denote the solution y(xn) of Eq. 
(1.1) byyn, and the kth derivative of y(x) with respect to x(dkyldXk) byy[k], then 
the solution at x, is given by the Taylor series 

00 

(3.1) Yn+ 1 = Yn + E 1 /j!h' y[]]. 
J=1 

Runge-Kutta methods eliminate the need to calculate higher derivatives by using 
extra function evaluations. In order to derive Runge-Kutta processes, we start with 
the Taylor Series [21, p. 58]: 

00 

(3.2) f(y + c) =f(y) + E 1 j(c.-)Jf(Y), 
J=1 

where c is an increment not dependent on y and V is the gradient operator. 

LEMMA 1. Equation (3.2) can be written in the equivalent form 

00 

(3.3) f(y + c) =E vj), 
J =O 

where the terms v(J) are given by the recurrence relation 

(3.4) v(y) = l1ja1ay[v(j-')]c 

where v(?) = f(y). 

Proof. The proof is by inspection, using Eqs. (3.2), (3.3), and (3.4). 0I 
The Taylor series (3.3) thus has the form 

(3.5) f(y + c) = f(y) + Jc + 1/2!alay[ Jc]c 
+ l13!a1ay(a1ay[Jc]c)c + . 

where J -J( y) =-af(y)lay = Jacobian matrix and the notation a ay[v(y)], for 
any vector v a function of y, is taken to represent a matrix whose ijth element is 

av,layj. At this point we quote some results of Butcher [6], who obtained expres- 
sions for the derivatives y[k] of (3.1) in terms of "elementary differentials", which he 
defined. Butcher obtained general results. However, we will list the results for orders 
p < 4. 

(3.6) Yn"' = tf, y[2] = {t}, y3] = {2f }2 + ? f }' 

(.46) {3f ? l f f2 }2 ? 3{ fff} ? {f3}. 
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The elementary differentials on the right-hand side of Eqs. (3.6) are defined in [6]. 
Using this definition, and comparing the ith components of the vectors, we have the 
following identities: 

ifn {tf} Jnfn {2f}2 = fn {f } f ay[ Jfn] 

(3.7) t {3f}3 fJnQfn {2j }2 =Jnalay[ Jfn] nfn 
{{f}f} -aYJfn]njnfn - aay[Jjn]fnnnj 

{ f 3} = a/ay(a/ayI Jfn] fn)nfn 

In the formulas (3.7), both J and f are functions of y, and the notation Jn and fn are 
the values of J and f, respectively, evaluated at y = y(xn). The notation alay[V]n, 
for any vector v a function of y, is the matrix av(y)lay evaluated at y = y(xn). 
Hence, for example, we have 

a ay[Jfnj] a ay[J(Y(x))f(Y(Xn))]X=Xn- 

The vectors on the right-hand side of Eqs. (3.7) arise naturally when the Taylor 
series expansion of the form in Lemma 1 is used. 

3.1. Type 1. From Lemma 1, any Taylor series expansion, which includes matrix 
functions of Jn (an approximate Jacobian), will give rise to vectors which include 
both Jn and Jn as arguments. Hence we will describe these elementary differentials as 

4pi2) 3f f2 0j3f ~jf 4~3) jf 42 -Jnfn, 0 41 -ntn~ 42 -n Jn fn, 0 (3-n nA 

(3.8) ~ ~ ~ (4) =3_ (4) 
2 4) (3 .8) r4n4 -Jfn A 424 -n Jn fn ( (3 -Jn fn fnA 

X44) =-Jn Jn Jn fn 2 (4(s ) J nt 4 Jn Jn Jn fnA 

~4)=J2f_ 44=,aa[,fj1 4444?4 a aIY[Jjf]nJnjnf 07 Jn fn fn I - -Jnalay I Jn fn I n fn, 0(9)-a/Y[ A] n. 

Thus, using Lemma 1 and Eqs. (3.6), (3.7), and (3.8), consistency conditions can 
be established for processes of order p ? 4, although by using the results of Butcher 
[6] pertaining to higher orders, and extending Eqs. (3.7) and (3.8) to include higher 
order differentials, processes of higher order can be obtained. 

We now need to know the minimum number of stages required to construct a 
Type 1 process of given order. 

THEOREM 3. (a) A Type 1 process of order p requires at least as many stages as an 
explicit method of the same order. 

(b) Furthermore, the consistency equations of a v stage Type 1 process contain as a 
subset the consistency equations for a v stage explicit Runge-Kutta process of the same 
order. 

Proof. Since the process must remain consistent for all inaccurate Jacobians (Jn), 
it must be consistent for the null matrix (Jn- 0). This gives an explicit method. 
Both results then follow. O 

Steihaug and Wolfbrandt [27] were aware of the connection between the Type 1 
methods and explicit methods, although they did not formally produce the lower 
bound on the attainable order of these processes for a given number of function 
evaluations, which follows from Theorem 3. Instead they obtained an upper bound, 
showing that if the denominator of the stability function (2.5) has order m, then the 
maximum attainable order is m + 1. For a v stage process, the methods examined by 
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Steihaug and Wolfbrandt [27] (which are a subset of the Generalized Runge-Kuttas, 
and are called Modified Rosenbrock methods) have maximum attainable order 
(v + 1). For the methods examined in this paper, however, the order of the 
polynomial in the denominator of (2.5) is usually greater than v, for a v stage 
processs, and thus the upper bound is rather conservative. It seems at this time that 
the lower bound given by Theorem 3 is likely to be more useful when designing Type 
1 methods of given order. 

3.2. Type 2. To obtain consistency for Type 2 processes, we expand the Jacobian 

Jn-kk-af(Y(X))1aY IX=X,,-k 
in the Taylor series 

00 

(3.9) Jn-k Jn + I 1/j! (-hkhnY)Jf'J[, 
j=1 

where xn = xn-k + Lkh, Xn+=l Xn + hn with 

k 

(3.10) [Lk E hn-jlhn, k2I l, 0= 0 
j=1 

and where J,l'], I = 1, 2 ... ., is a matrix in which the ijth element is 

d11dx1(aj(y(x))Way1) 1X=X 

That is, it is the Ith derivative of the ijth element of J, evaluated at y y(xn). From 
Lemma 1, it can be seen that a Type 2 process will contain terms such as J[']fn, 
Jn J[l ]jfn, J [ l]Jn fn, and n.[2]fn These can be related to the elementary differentials 
of Butcher in Eq. (3.6). By comparing the ith components of the vectors, we have 
the following identities 

(3.11) {f2} Jn Jnfn 
j[ lj -{{}f }f , j[2]f{{f}ff } + {j3}, 

The presence of the parameter [Lk in (3.9) causes problems in obtaining con- 
sistency, since [Lk will increase from step to step (see (3.10)) until the Jacobian is 
reevaluated. From (3.11) it is apparent that the consistency equations will contain 

It k, although we will derive processes in which the scalar parameters are not functions 
of [Lk, in order to avoid the computation of these parameters at every step, and 
eliminate the possibility that these parameters become very small or very large, with 
consequent loss of significant figures of accuracy. In addition, we will obtain 
processes in which the leading truncation error term is not a function of tlk, since this 
would mean the truncation error would increase rapidly from step to step with 
consequent frequent reevaluation of the Jacobian. This is because we are obliged to 
use the estimate of error to judge when a computation is becoming unstable, and 
hence reevaluate the Jacobian to stabilize the solution. Since the primary purpose of 
these processes is to avoid this chore as much as possible, we will accept possible 
reductions in attainable order so that this aim is accomplished. Note, however, that 
the second truncation error term will contain Ek, and eventually this term will 
dominate the truncation error, so that it will not normally be possible to avoid 
reevaluating the Jacobian indefinitely. 

THEOREM 4. No second order one stage Type 2 process (in which the leading 
truncation error term is not a function of tL k ) exists. 
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Proof. From Eq. (3.11) it is apparent that the Taylor series expansion for Jn-k 

gives rise to the elementary differential {f 2}. By inspection of (3.7) it is obvious that 
{ f2) does not appear from any other source for a one stage process. It is thus 
apparent that the coefficient of { 12) for any second order one stage process gives 
'k = 1/3, so that PUk cannot be removed from the leading truncation error term. D 

Thus, using Lemma 1, (3.6), (3.7) and (3.11), consistency conditions for Type 2 
processes can be obtained. 

4. Some Type 1 Processes. It is well known that, for an explicit method of order p 
(p ? 4), we require p stages to obtain consistency (see, for example, [22, p. 120]). 
Hence we will construct a second order process with two stages and a third order 
process with three stages. The second order process has the general form 

(4.1) yn+I = y + A31kj + A32k2, 
k = htf(yn), k2 = htf(yn + A21k1). 

The characteristic matrix (2.4) has the form 

0 0 
a 21 

(4.2) ( -bZ) 0 

a3,(l + a311Z + a312Z2) a32(1 + a321Z) 

(1 - bZ)3 (1 - bZ)2 

Using the results of Section 3, we have, from the coefficients of the elementary 
differentials f, { f 1, and 0(2): 

(4.3) a31 + a32 - 1, 

(4.4) a32a21 = 1/2, 

(4.5) a31(3b + a3H1) + a32(2b + a321) = 0 

Equations (4.3) and (4.4) are those of a second order, two stage explicit process, as 
Theorem 3 indicated. We select the solution 

a3, = -1, a32 = 2, a 2, = 1/4, a311 = -3b, a321 = -2b. 

From Eq. (2.5) we have 

(4.6) R(1)(Z) = [I +(1/4 - b)Z]/ (1 - bZ) 

and 

(4.7) R(2)(Z) = [I +(1 - 3b)Z + (3b2 - 3b + 1/2)Z2]/ (1 - bZ)3 

if 

(4.8) a31a312 = b3- a32a321(a21 -b) 

i.e., a312 -b3 + 4b2 - b. For b = 0.435 866 521 508 459, which is a solution of the 
equation b3 - 3b2 + 3b/2 - 1/6 = 0, the stability functions R(')(z) and R(2)(Z) 
are Strongly A-acceptable and L-acceptable, respectively, and thus, from Theorem 2, 
the process (4.2) is Internally S-stable. We choose this value of b, since it gives us a 
process which is second order in general, but third order when Jn = Jn = constant 
matrix [10]. 
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The error estimator can be developed by deriving a first order formula of the same 
form as (4.2), so that we have the characteristic matrix 

0 0 
a 21 

(4.9) | (l- bZ) 0 

531( + a311z + 312z2) a32(1 + 321Z) 

(1- bZ)3 (1 - bZ)2 

The selection 

a3= a3+ + + 8, a32 a32-8 = 2 - 8 

-31l3H1= a31a311 - b - 3b - b, 

(4.10) a31a312 a31a312 = b 4b2 + b, 

a32632- = a32a321 - -4b, 

gives a process which is first order with a truncation error 

(4.11) ??1 = 6h 22) + 0(h3) 

where 8 is an arbitrary constant. The stability function of the error estimator is 

R(2)(Z) = (1 + (1 - 3b)Z + (3b 2- 3b + 1/2 + 6)Z2)/ (1 - bZ)3. 

Subtraction of the two solutions gives an estimate of the error of the lower order 
formula (4.11). Since a solution by the higher order formula is available with no 
extra computation, we accept this solution since, normally, it will be more accurate 
than the lower order formula. In particular, if the second order method has local 
truncation error 

n 
1h + 

n 

then the first order method has error 

n =hn(2) + hI(n1 + 642) + (hn 

so that our estimate of error of the second order method is 

eEST = 2hnp>2) + 6h>p2 + 4(h4) 

where AlI and 42 are functions of the elementary differentials. Thus we must select 8 
such that 

eEST (2) (i.e.) 8(h (2) + h3 h2) h31. 

If 8 is too small, the error is underestimated, and if 8 is too large, the error is 
overestimated, resulting in more computation than is needed to satisfy the error 
criterion. The problem of choosing a suitable 8 is a difficult one, which probably can 
only be solved with extensive computational experience. In this paper we have 
chosen 8 to be quite large, and hence conservative (see Section 7). If, however, we 
chose to accept the first order solution, then we would have had to select 8 such that 

8(h 2(2) + h2) 3 6h 2,2) + h3(411 + 6412) 

which, if the leading error terms dominate, is true for all 6. That is 

lim eEST () 
ES =-n+1 
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However, there are restrictions on the values of 8 which can be used if the first order 
formula is accepted, since R(2)(Z) will not be L-acceptable if 8 is too large. These 
restrictions do not apply if the second order solution is accepted, since 8 does not 
affect the formula, only the estimate of error. In addition, as mentioned above, we 
prefer the higher order formula since it is normally more accurate than the lower 
order formula. The efficiency of the integration process can be improved by using 
the partial fraction expansions 

(1 + a311Z + a312Z2)/ (1 - bZ)3 

(4.12) (a312/b2)/ (1 - bZ) + (-31 - 2a312/b2)/ (1 - bZ)2 

+ (1 + a311/b + a312/b2)/ (1 - bZ)3 

and 

(4.13) (I + a321Z)/ (I - bZ)2 

=(-a321/b)/ (I- bZ) + (1 + a321/b)/ (1 - bZ)2. 

Thus all the matrix * vector multiplications are eliminated. If we denote the matrix 
B = [I - hnbJn], then we can obtain the solution by 

k, = hnf(Yn), k2 = hnf(yn + 1/4B-'kl), 

(4.14) yn+l = yn + (P3B-'k, + 32B-2k1 + 33B-3k, + f4B-lk2 + 35B-2k2), 

n+?l = (1IB-2k1 + 32B-2k2), 

where 

Pi = b-4 + 1/b, fP2 = -3- 2/3, /3 = 2 + 31, 

P4 = 4, P5 = -2, Pi = 4, ,P2 = -4, 

and b = 0.435 866 521 508 459. Thus the process is (2, 2, 5, 0). 
In a similar manner, we can develop a third order process of the form 

(4.15) Yn+ 1 = yn + A41kj + A42k2 + A43k3, k- = hn f(Y) 

k2 = hnf(yn + A21kj), k3 = hnf(yn + A31kj + A32k2). 

The characteristic matrix (2.4) has the form 

0 0 0 
a1 

(1-z 0 0 

a l+ a311Z + a312Z2) a32(1 + a321Z) 0 

(4.16) (1 - bZ)3 (1 - bZ )2 

a4,(l + a411Z + a412Z2 + a413Z ) a42(1 + a421Z) a43 

(1-bZ)4 (1 - bZ)2 (1-bZ) 

The following solution satisfies the consistency equations: 

a41 = 1/6, a42 2/3, a43 1/6, a21 = a21 = 1/2, a31 = -1, a32 = 2, 

a411 = -3b, a412 9b2, a421 -5b/2, a311 = -b, a321 = -2b. 
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The stability functions are 

R(1)(Z) = [1 + (1/2 - b)Z]/ (1 - bZ), 

R(2)(Z) =[I + (1 - 3b)Z + (3b2 -5b + 1)Z2]/ (1-bZ)3, 

if a321 -b3 + 4b2 
- 2b, and 

(4.17) R(3)(Z) = [I + (I - 4b)Z + (6b2 -4b + 1/2)Z2 

+(-4b3 + 6b2 - 2b + 1/6)Z3]/ (1 -bZ)4 

if b4 + a41a43 - a42a42b(1/2 - b) = 0, i.e., 

(4.18) a413 = -6b4 + lOb3 - 5b2. 

For b = 0.572 816 062 5, which is a solution of the equation 

b4- 4b3 + 3b2 - 2b/3 + 1/24 = 0, 

the stability function R(')(Z) is strongly A-acceptable, R(2)(Z) is L(a)-acceptable 
(a C [0, 750]), and R(3)(Z) is L-acceptable, so that, from Theorems 1 and 2, the 
process (4.16) is S-stable and Internally S(a)-stable for a < 75?. We choose this 
value of b, since it gives us a process which is third order in general, but fourth order 
when Jn = Jn = constant matrix [10]. We construct an error estimator by deriving a 
second order formula of the same form as (4.16), and the error estimate is obtained 
in a similar manner to the second order process. Thus the process is given by 

(4.19) Yn+l =Yn + (p6B-'k, + /7B 2k1 + /8B-3k1 + gB3-4k1 

+ f3oB-lk2 + f31B 2k2 + P13B-'k3), 

where 

B =[I - hnbJ, k, - hnf(yn), k2 = hnf(Yn + 1/2B'k,), 

k3 = hnf(yn + 11B-'k1 + 132B-2k, + /33B-3k, + /4B-'k2 + 13B-2k2), 

and the error estimate is given by 

n+?l =2(/,B-'k, + f2B2k1 + 33B3k, + f34B4k, + f5B'k2 + 36B-'k3), 

where 

b, - b4 + 2/b, 92 = -1 - 2p, P3 = #I, P4 = 4, #5 = -29 

(4.20) f6 b b-5/3 + 5/ (6b), 37 = 3/2-3/36, 38 = -5/2 + 336, 

99 7/6 - P6, gl= 5/3, :11=-l, 12= 1/6, 91= Il/b- 2, 

P2 - -3 - 3p 1, 93 =-92, 94 = 11-:, 95 = 2, P6 = -1, 

and b = 0.572 816 062 5. Thus the process is (3, 3, 7, 0). 
It should be noted that the error estimator described in this section for second and 

third order processes is unlikely to be successful for higher order formulas. The 
consistency equations for an explicit method are a subset of the consistency 
equations for a Type 1 process, and so the problems of obtaining an error estimator 
are the same as for explicit Runge-Kuttas. Thus, for the higher order formulas, it 
might be more fruitful to generalize successful explicit methods such as the Fehlberg 
formulas [15], [16]. 
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It should also be noted that in this section we have derived processes which are (2, 
2, 5, 0) and (3, 3, 7, 0), respectively. It is possible to obtain processes which are (2, 2, 
3, 0) and (3, 3, 6, 0), although in these cases the error estimator will have a stability 
function which is not asymptotically zero (i.e., limz _,, I R(Z) I= 0). We prefer the 
error estimator to have an asymptotically zero stability function, since it is easy to 
imagine situations where the stiff components of a system cause the error estimator 
to select a step size which is smaller than it has to be, from truncation error 
considerations. In addition, we prefer a method of order p to be order (p + 1) if 
Jn = J- = a constant matrix, since the extra accuracy is obtained at only a modest 
increase in computation. This latter requirement gives rise to reference formulas 
which are asymptotically zero. 

5. A Type 2 Process. As a consequence of Theorem 4, we will construct a third 
order, two stage process of the general form 

(5.1) Yn+l = yn + A31k1 + A32k2, k1 = hnf(yn), k2 = hnf(yn + A21k1), 

with characteristic matrix 

0 0 
a21(1 + a211Z) 0 

(5.2) (1 - bZ)2 

a3(l + a311Z + a312Z2 + a313Z3) a32(1 + a321Z) 

(1 - bZ)4 (1 - bZ)2 

Using the results of Section 3, we have the consistency equations, which arise from 
the coefficients of f, {f}, {2 f }2, { f 2}, {3f 13, {2f f2}2 {{ f }f}, and { f 3}, respec- 
tively: 

(5.3) a31 + a32 - 1, 

(5.4) a3l(4b + a311) + a32(2b + a21 + a321) = 1/2, 

a31(10b2 + 4ba311 + a312) 

+a32[a2l(4b + a211 + a321) + 3b2 + 2ba321j = 1/6, 

(5.6) 1/2a32a21 - ,ik[a3l(4b + a311) + a32(2b + a321)] = 1/6, 

a31[20b3 + 10b2a311 + 4ba312 + a3131 
(5.7) 

+a32[4b3 + 3b2a321 + a2l(10b2 + 4ba211 + 4ba321 + a211a321)] 1/24, 

. 2a832a21(2b + a321)1-ka31(10b2 + 4ba311 + 312) 
(5.8) 

32 23131 32 

-11k a32[3b + 2ba321 + a21(2b + a211)]= 1/24, 

a32a21(2b + a211) -ka31(lOb + 4ba311 + a312) 

(5.9) 11ka32[3b + 2ba321 + a21(2b + a321)] 

+ 1/2 2 [a31(4b + a311 + a32(2b + a321))] = 1/8, 

(5.10) 1/6a32a21 + 1/2tLkja33(4b + A4311) + a32(2b + 321)] = 1/24 
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The solution 

a31 = 1/4, a32 = 3/4, a21 = 2/3, a211 = 1/3 - 2b, a321 = 1/3 - 2b, 

311 = -1 - 4b, 312 = 9b2 + 2b - 2/3, 

a313 -4b4 + 6b3 - 9b2 + 8b/3 - 2/9, 

b = 0.572 816 062 5, 
where b is a solution of the equation 

b4- 4b3 + 3b2 - 2b/3 + 1/24 = 0, 

gives a process which is third order in general, fourth order when J = k a 
constant matrix, and in which the O(h 4) terms are devoid of U In fact the 
truncation error is given by 

(5.11) en+1 = h4[1/24{2f2}2 + 1/8{{f}f} + 1/24{f3}] + o(h 5). 

The stability functions are 

(5.12) R(')(Z) = [I + (2/3 - 2b)Z + (b2 - 4b/3 + 2/9)Z2]/ (1 bZ)2 

and 

R (2)(Z) [I + (I - 4b)Z + (6b 2- 4b + 1/2)Z2 

+(-4b3 + 6b2 - 2b + 1/6)Z3]/ (1-bZ), 

which are Strongly A-acceptable and L-acceptable, respectively, giving a process 
which is Internally S-stable (for Jn-k = Jn). 

In a similar manner to the previous section, we construct an error estimator by 
seeking a second order process of the form 

0 0 
a21(1 + a211Z) 

(5.14) ( - bZ) 

a31(l + 311z + 312z2 + 313z3) a32(1 + 321Z) 

(1 - bZ)4 (1 - bZ)2 

We choose the solution 

a31 = a31- 8, a32 a32 + 86 a3-a3,, = a3la3,1 + 8(4b - 1), 

(5.15) a31a312 3 aa312 + -(lOb/3-5b2 - 2/9), 

a313,3 =a31a313 + (-2b3 + 3b2 -8b/9 + 2/27), 

a32632, =a32a321 + 8(1/3 - 2b), 

with b 0.572 816 062 5, which gives a second order process with truncation error 

3= 8h[2/9{2f}2 + (2/9 + 2/310k) ff}] + 0(h4) 

= 8h3n[2/9yn31 + 2/3[Lk{f2}] + o(h4), 

where 8 is an arbitrary constant, and Uik is given by (3.10). The stability function is 

R(2)(Z) [I + (I -4b)Z + (6b 2- 4b + 1/2)Z2 

?(-4b3 +6b22b 1/6 +2/98)Z]/ (1 -bZ), 
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which is asymptotically zero. Using partial fraction expansions the solution is given 
by: 

B = [I - hnbJn-kl, k, = hnf(yn), k2 = hnf(yn + fIB-1k1 + 32B-2kj), 

Yn+l =yYn + (33B- 'k, + f4B-2k, + f5B-3k, 

(5.18) +?/6B-4k, + 37B-lk2 + 38B-2k2), 

Cn+l = 2/96hn(f31B-1k1 + f32B2k1 + f33B3k, 

+34B-4k1 + P5B-lk2 + 36B-2k2), 

where b = 0.572 816 062 5, and 

di = 2/ (9b) - 4/3, d2 = -b + 3/2 - 9/(4b) + 2/(3b2) - I/(18b3), 

d3 = 9/4 + 1/ (2b) - 1/ (6b2), d4 =-1 - 1/ (4b), d5 = -3/2 + 1/(4b), 

P1 = -dl, 32 = 2/3 + dl, /3 = -d2, 34 = d3 + 3d2, 

f5 = -d4 - 2d3 - 3d2, 36 = 1/4 + d2 + d3 + d4, 37 = -d5, 

/8 = 3/4 + d5, d6 = -2 + 3/b - 8/(9b2) + 2/(27b3), 

d7 = -5 + 1O/ (3b) - 2/ (9b2), d8= 4 - /b, dg = I/ (3b) - 2, 

P1 = -d6, f2 = d7 + 3d6, 33 = -d8 - 2d7 - 3d6, 

34 = -1 + d8 + d7 + d6, 15 = -d9, 36 = 1 + d. 

Thus the process is (3, 2, 6, 0) and shows some improvement in the amount of work 
required per step for the (3, 3, 7, 0) Type 1 method. Note that from (5.16) and (5.18), 
the measured error is 

(5.19) En+? 2/98h3[yt ] + 3'k{f 2}], 

which is liable to increase from one step to the next, if the Jacobian is not 
reevaluated. This is a desirable property, since the truncation error of the third order 
method (or more correctly the second term in the truncation error) will also increase 
from step to step. If this is not accounted for in some way by the measured error, 
then the results may be inaccurate because the measured error is not representative 
of the true error. 

6. Comparison With Other Methods. Eitelberg [12] has obtained a second order 
Type 1 method which requires three function evaluations and two matrix factoriza- 
tions per step. The author was exploring the possibility of using a block diagonal 
matrix as an approximation to the Jacobian. All Type 1 methods permit an arbitrary 
approximation while maintaining consistency, and so this method is not competitive 
with the (2, 2, 5, 0) method described in this paper. Steihaug and Wolfbrandt [27] 
examined a class of generalized Runge-Kuttas, which they called "Modified 
Rosenbrock" methods, and produced a (2, 2, 4, 2) method which remains consistent 
with an approximate Jacobian. The method uses a third order reference formula to 
give an error estimator of the type due to England [13]. In this method, extra stages 
are required to obtain the higher order reference formula. The authors produced a 
second order, two stage process which is L-stable (and hence S-stable, though not 
Internally S-stable) when the Jacobian is accurately evaluated. In order to obtain the 
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reference formula of third order, they used an extra two function evaluations, which 
are saved if the step size remains unchanged. If the step size changes, the process 
becomes (2, 3, 6, 3), however the algorithms for Type 1 methods usually try to keep 
the step size constant for reasonable periods, so that the process is essentially (2, 2, 
4, 2) for a good part of the integration. This (2, 2, 4, 2) method thus requires slightly 
more work than the (2, 2, 5, 0) method described in this paper and does not share 
the same level of stability. However, the error estimator is liable to be more efficient, 
since the reference formula is third order, rather than first order. The (3, 3, 7, 0) 
method described in this paper is more accurate, being of higher order, and 
consequently requires more work per step. It remains to be seen if England's method 
can be extended to higher orders for Generalized Runge-Kuttas, since the more 
stages used, the higher the order of the stability function, and the more difficult it is 
to obtain highly stable formulas. It seems likely that the Fehlberg imbedded 
formulas [15], [16] will be more suitable for generalization. 

We are unaware of any work which has been done on Type 2 methods. 

7. Numerical Examples. The described methods were programmed in FORTRAN 
[10] and run on the PDPI0 computer at the Prentice Computer Centre at the 
University of Queensland. The computation was done in double precision (18 
significant figures), and the algorithm was modelled on Watts' and Shampine's 
program, as described in [17, p. 134]. Matrix operations of factorization and back 
substitution were performed using subroutines DECOMP and SOLVE described in 
[17, p. 51]. A mixed absolute and relative error criterion was used to control the step 
size, such that the allowable error at xn+l is 

(7.1) en+l REL(Yn+l +I ?yn 1)/2 + CABS, 

and all the elements of the computed error vector I En+ I (see (4.14)) must be less 
than or equal to the corresponding elements of en+,. For the second order method 
we compute 

(7.2) hn+ llhn en+ IlEn+ I 11 oo ) 

and for the third order methods 

(7.3) hn+ llhn (11 en+ I1In+ 111oo) 

In order to reduce Jacobian evaluations and matrix factorizations, we increase the 
step size only by a factor of 2, if (7.2) or (7.3) give hn+I/hn > 2. If hn+I/hn < 1, the 
error criterion has not been satisfied, and the current step must be recomputed. 
Normally we would halve the step size and recompute a step if h n/hn+l > 1. 
However, since the error constant (8) is arbitrary, we allowed a certain amount of 
latitude in accepting steps which did not satisfy the error tolerance. In particular, if 
(7.2) gives hn/hn+ 1 > 2' , or (7.3) gives hn/hn+ 1 > 2'/', the step size is reduced by 
a factor of 2, and the step recomputed. This means we allowed 8 to vary to 
approximately half its preselected value. This procedure eliminates the need for 
recomputing a step size when the error tolerance is only slightly exceeded. 

Although the Type 1 methods are designed to be consistent with any approximate 
Jacobian, for the purpose of comparison with the Type 2 methods, we evaluate, for 
both classes, an accurate Jacobian which is reevaluated every time the step size is 
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changed, or after a specified number of steps. It follows that every time the Jacobian 
is evaluated, the matrix must be refactorized. The reason for reevaluating when there 
is a step change is that there is obviously a substantial change in the principal error 
function (if hn+ /hn = 2 or = 1/2) and hence possibly a change in the Jacobian, 
and caution is justified. The reason for reevaluating after a specified number of steps 
is that the truncation error is a function of the Jacobian (Jn or Jn-k) which if not 
reevaluated, tends to make the principal error function fairly constant in some cases, 
resulting in long periods of computations at small step sizes. It is desirable to purge 
the truncation error of the Jn or Jn-k terms at regular intervals. Tests were done with 
the number of steps per Jacobian evaluation being 1, 5, and unbounded, in order to 
illustrate this. 

The initial step sizes are computed from, for the second order method: 

(7.4) h = (ABS/II Jofo 11' o 
2 

and for the third order method: 

(7.5) (cABjIIJ/fI~'3 (7 5) h o~~~~~ = ( ?ABS/ IIl Jo 0o1lo 

with the maximum allowable value of ho= 10-3 to avoid the situation where the 
principal error function might be very small at the x = xo (giving ho > 0), but 
increases very rapidly for x > xo. Thus, chatter in the initial step size selection is 
avoided. The error constant (8) was taken to be 8 1 for the Type 1 (second order) 
method, and 8 = 1/2 for the Type 1 (third order) and Type 2 (third order) methods. 
These values are most likely very conservative. 

The algorithms were tested on two stiff systems, using error tolerances of 
?REL = 10-4 and -ABS = 10-8. The systems are taken from [28] and are 

I y =0.01 -[1 + (Yl + 1000)(y, + 1)][001 +Y1 +Y2], 

Y2 = 0.-01 -[i ?Y]0 + Y+ + Y2], 

Y(0) = y2(O) = O. 

The reference solution is [28] 

y1(100) = -0.99164207, y2(100) = 0.9833636. 

II yi = 0.04-0.04(y, + Y2) - 104Y1Y2-3 * 107y , 

Y2 = 3 * 107yI, 

y(O) = Y2(0) = 0. 

The reference solution is [28] 

yM(10) = 0.1623391063 * 10-4, y2(10) = 0.1586138424. 

The first system is moderately stiff, and the solution over much of x E [0, 100] is 
almost a straight line, permitting an accurate solution by low order methods with 
large step sizes, providing the method is highly stable. The second system is very stiff 
and has the reputation [28] of being a severe test of an integration method. The 
results of the computation are given in Table 1. The parameter sd_ [28] is the number 
of significant digits which have been accurately computed at the reference point 

(7.6) sdJ = -log1 1 YJ/YJREF I - 
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TABLE 1 

Type/ System Steps Jacob. Matr B System per Steps sd1 sd2 Funct. Jcb arx Bc 
Order Jacob. Eval. Eval. Fact. Subs. 

Eval. 

1/2 I 1 472 4.2 4.4 949 477 477 2862 
5 469 3.7 3.7 943 111 111 2481 

oo 468 3.3 3.2 941 29 29 2394 
II 1 483 5.8 5.5 968 485 485 2910 

5 483 5.3 5.6 968 105 105 2530 
oo 930 2.9 3.5 1862 15 15 4675 

1/3 I 1 99 4.6 4.9 307 104 104 832 
5 101 4.1 4.6 319 41 41 804 

oo 102 4.1 4.6 322 31 31 801 
II 1 93 5.0 6.4 281 94 94 752 

5 107 3.9 7.3 367 63 63 973 
oo 113 3.9 7.2 385 59 59 1011 

2/3 I 1 69 3.7 3.8 143 74 74 518 
5 75 3.5 3.5 157 35 35 527 

x0 78 3.5 3.5 163 28 28 538 
II 1 69 4.6 5.9 140 71 71 497 

5 79 3.8 4.8 169 40 40 580 
lx 94 4.4 4.6 201 39 39 681 

The effect of having the number of steps per Jacobian evaluated unbounded is 
apparent from the Type 1/order 2, System II test, and the Type 2/order 3, System 
II test. 

8. Conclusions. The Type 1 processes are primarily useful when no accurate 
evaluation of a Jacobian is available. However, if the system is large, then the 
evaluation of a Jacobian might also be expensive, in comparison with function 
evaluations, and these methods might be more efficient than the usual Generalized 
Runge-Kuttas [29] which have fewer stages (one stage for a second order method, 
and two stages for a fourth order method [10]) but require a Jacobian evaluation at 
every step. This is especially true if the matrix has no special structure and must then 
require n3 /3 operations for factorization. The extra function evaluations required to 
obtain a Type 1 method is then not significant. The Type 2 methods require an 
accurate evaluation of a Jacobian and appear suitable for large systems where both 
Jacobian and function evaluations are expensive. It seems likely that they will 
require fewer function evaluations than a Type 1 method of the same order, 
although probably they will require more stages than the usual generalized Runge- 
Kuttas, because of the need to eliminate the parameter / (see (3.10)) from the 
leading error term. However, the Type 2 methods seem superior to the Type 1 
methods in terms of efficiency (see Table 1) for the particular algorithms used. 
However, another option not explored in this paper is to approximate the Jacobian 
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by some matrix having special structure (e.g., block diagonal, tridiagonal, etc.) which 
permits a cheap factorization. This approach was taken by Eitelberg [12]. Type 1 
methods permit this approach, and Type 2 methods do not. Further development of 
both methods and mathematical software, with more extensive testing, is required. 
Furthermore, some results on the stability of Type l and Type 2 methods using 
approximate Jacobians (or Jacobians evaluated at a previous step) would be welcome. 
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