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Galerkin Methods for Second Kind Integral Equations 
With Singularities 

By Ivan G. Graham 

Abstract. This paper discusses the numerical solution of Fredholm integral equations of the 
second kind which have weakly singular kernels and inhomogeneous terms. Global conver- 
gence estimates are derived for the Galerkin and iterated Galerkin methods using splines on 
arbitrary quasiuniform meshes as approximating subspaces. It is observed that, due to the 
singularities present in the solution being approximated, the resulting convergence may be 
slow. It is then shown that convergence will be improved greatly by the use of splines based 
on a mesh which has been suitably graded to accommodate these singularities. In fact, it is 
shown that, under suitable conditions, the Galerkin method converges optimally and the 
iterated Galerkin method is superconvergent. Numerical ilustrations are given. 

1. Introduction. In this paper we shall discuss the numerical solution of equations 
of the form 

(1.1) y(t) = f(t) + f'k(t, s)y(s) ds, t E [0, 1], 

where k and f are given functions on [0, 1] X [0, 1] and [0, 1], respectively, and y is 
the solution to be determined. We abbreviate (1.1) by 

y =f + Ky, 

where K is the integral operator given by 

(1.2) Ky(t) = |lk(t, s)y(s) ds. 

The Galerkin and iterated Galerkin methods are well-established numerical algo- 
rithms for the approximate solution of (1.1). It has been shown by Sloan et al., [28], 
[26], [27], that the iterated Galerkin method provides, in general, a more accurate 
approximation to y than does the Galerkin method. Accurate quantitative estimates 
for this improvement in order (or "superconvergence") have been obtained by 
Chandler [7], [8], [9], for the case when the underlying approximating subspace is a 
space of splines, and when the kernel k, and the inhomogeneous term f, are suitably 
smooth. The aim of this paper will be to obtain quantitative estimates for Galerkin 
and iterated Galerkin methods, again when splines are used as approximating 
functions, in the case when k and f may contain certain weak singularities. Such 
weakly singular equations arise often in practical situations [17], [23], [25]. 
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Our first main order of convergence result in Theorem 8 of Section 4. To illustrate 
the results of this rather general theorem, we use as an example the particular 
equation 

(1.3) y(t) tf + 'm(t, s)It - sla y(s) ds, t e [0, 1], 

where 1 > a > 0, 1 > / > 0, and m is smooth. Suppose our approximating subspace 
is a space of continuous splines of order r (i.e., of degree r - 1) defined on a uniform 
mesh over [0, 1], and let yI and ynI denote, respectively, the Galerkin and iterated 
Galerkin approximants to y. Then Theorem 8 predicts that 

(1.4) IlY- y'llo 0(1/nY) 

and 

(1.5) IY- Yn ll oo - (l/nY), 

where y = min{a, 3}, and n + 1 is the number of points in the mesh. 
More general error estimates are given in Theorem 8. However, the illustration 

given here highlights two important points which are also true in the general case. 
(i) The improvement obtained by using ynI instead of ynI is 0(1 /n). 

(ii) If either a or / is small, then both ynl and yII' may converge rather slowly to y, 
regardless of how large r is. 

The reason for the phenomenon (ii) is the well-known fact [5], [9], [16], [22], [24], 
[311, that any weakly singular integral equation, such as (1.3), will, in general, have a 
nonsmooth solution, and the order of approximation of such a solution using splines 
on a uniform (or indeed arbitrary) mesh will, in general, be rather low. 

This order may be improved, however, if we use a mesh which takes account of 
the singularities in the solution. In Section 5, we consider a class of equations of 
which (1.3) is an example and demonstrate how to improve convergence by using an 
appropriate graded mesh. Our second main order of convergence result is Theorem 
10 of Section 5. In particular, this theorem shows that, with a carefully chosen mesh, 
(1.4) and (1.5) may be improved to 

(1.6) IIY -I = O(l/nr) 

and 

(1.7) Ily -yn'lo = O(l1/nr+) 

(i.e., yI is optimal and ynI is superconvergent). 
The main convergence theory is contained in Sections 4 and 5. In Section 2 we 

define the Galerkin and iterated Galerkin algorithms and give a resume of existing 
convergence results. In Section 3 we present some theoretical tools which are used in 
Sections 4 and 5. The theory is illustrated in Section 6 by some numerical calcula- 
tions. 

The numerical solution of weakly singular integral equations has recently been the 
subject of much research activity. For example, Chandler [9], [10], Schneider [25] and 
Bechlars [5] have studied product integration, using graded meshes to obtain good 
convergence rates. Vainikko and Uba [32] have done the same for collocation 
methods. Spence [29] has used extrapolation methods to improve the rate of 
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convergence of product integration methods for weakly singular equations. (Lin Qun 
and Liu Jiaquan [20] have looked at extrapolation methods for equations with 
Green's function type kernels.) Anselone and Krabs [3] have used a double ap- 
proximation scheme based on replacing singular functions by bounded approxima- 
tions, while Anselone [2] has given a theoretical basis for the popular practical 
technique [23] of subtracting out the singularity from the solution. Delves, Abd-Elal 
and Hendry [13] have studied ways of making the Galerkin method for weakly 
singular equations more economical. We also note the extensive treatment in Baker's 
book [4, Sections 5.3-5.8], where the performance of most of the standard methods, 
as applied to the numerical solution of weakly singular equations is discussed. Many 
numerical examples are given there, and also in the reports of Bechlars [5] and Volk 

[33]. 
This present paper is an amplified version of a preliminary study made in [17]. 

2. Methods and Background. We shall let N denote the positive integers, and No 
denote the nonnegative integers. Let us assume, for the moment, that K is a compact 
operator on L2[0, 1], that (I -K)- 1 is well defined on L2[0, 1], and thatf E L2[0, 1]. 
For each n E N, let Un denote some finite-dimensional subspace of L2[0, 1], let Pn 
denote the orthgonal projection of L2[0, 1] onto Un, and suppose that I1 - Pn, ) ll 2 
0, as n xo, for every 4 E L2[0, 1]. The Galerkin solution of (1.1), yn, is then 
defined by the equation 

(2.1) K ,f (2.1 ) ~~~~~Ynl = Pn f + Pn YnlK 

and the iterated Galerkin solution, yn", is obtained by the natural iteration: 

(2.2) Yn= f + Ky 
For details of the practical computation of these approximate solutions, see Sloan et 
al. [28]. Applying the operator Pn to each side of (2.2), and comparing with (2.1), it 
follows that 

(2.3) p YII =YI 

which on substitution into (2.2) gives 

(2.4) yn,l = f + KPnyYn'. 

A proof of Theorem 1 below can be then found in Sloan [26]. 

THEOREM 1 (SLOAN). For sufficiently large n, yn,I is well defined, and 

111 1y,2 < CIIKy - KPnYII2 < nilY - PnYII2 
where En -? 0, as n -x oo. 

Now it is well known that yn, also exists for large enough n, and that 11 y - ynI11 2 

approaches zero with an order of convergence that is asymptotically the same as that 
of II y - Pny 11 2. Hence it follows that II Y - Yn1 11 2 converges more quickly to zero, by 
at least a factor of cn, than 11 y 1-y, it 2. This "improvement by iteration" has 
particular practical significance since the calculation of yn11 requires roughly the same 
amount of computation time as the calculation of yn, [28]. The obviously interesting 
mathematical problem, therefore, is: What is the order of the improvement in 
accuracy obtained by using yn,l as an approximation to y rather than yn,? We shall 
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consider this problem for the particular case when Un is a certain space of spline 
functions, which we now define. 

For any n E N, let rIJn denote the mesh (partition) given by 

Hn: ? X0 < XI C X2 < . .. < Xn = I- 

For r E N and v E NO, with v < r, we shall let S,v(1In) denote the space of splines 
on [0, 1] which have order r, continuity v, and knots nn. Thus u E Srv(nn) if u has 
v - 1 continuous derivatives on [0, 1], and u is a polynomial of degree not greater 
than r - 1 on each (x'_1, x],] for i = 1,.. .,n. When v = 0, the splines are possibly 
discontinuous at the knot points, but, to ensure that they are well defined, we 

assume left continuity at each knot and right continuity at 0. 
Throughout the remainder of this paper YnI and YII' will denote the approximations 

toy defined by (2.1) and (2.3), where 

(2.5) Un = Srp(r), n n E N, 

for some fixed r F N and v F NO, with v < r. It will be necessary in Section 5 to 
make a further restriction on the choice of P. We shall give our order of convergence 
estimates in terms of the maximum mesh spacing h, defined by 

h= max (xi-x 11). 

We note that for a uniform mesh we have h - 1/n. 
The following quantitative estimates in the uniform norm have been derived by 

Chandler [8], [9]. 

THEOREM 2 (CHANDLER). If k and f are sufficiently smooth ( for precise requirements 
see [8] or [9]), and if, as n varies, the meshes ,nn satisfy a certain quasiuniformity 
condition (see Section 4), then 

(2.6) IIY -YnI, - O(hr) 

and 

(2.7) Ily -y, ='l O(h2r). 

Remarks. (i) The estimates (2.6), (2.7) demonstrate the great improvement of ynII 
over yn, when all our given information is sufficiently smooth. It is usually said that 
yII exhibits "global superconvergence" (since the best uniform approximation to a 
smooth y from splines of order r is generally only O(hr)). If weak singularities are 
present in k or f, however, the regularity requirements of Theorem 2 will not be 
satisfied (see, for example, [8, p. 106]), and estimates of II y - ynI I oo and II y - yn,I I oo 

are not yet available. Such estimates will be obtained in Sections 4 and 5 of this 
paper. 

(ii) An elegant overview and further development of the theory of superconver- 
gence for equations with smooth and Green's function kernels are given in Chatelin 
and Lebbar [11], [ 12]. 

3. Regularity and Approximation. In this section we present two important 
theoretical results. The first (Theorem 3 below) describes how weak singularities in 
the kernel or inhomogeneous term of (1.1) affect the behavior of the solution, y. The 
second (Theorem 4) gives some spline approximation properties of typical weakly 
singular functions. 
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These theoretical developments are facilitated by the introduction of certain 
Banach function spaces as follows. For m E N and 1 < p < xo, we define Wpm[O, 1] 
to be the usual Sobolev space of functions which have mth derivative lying in 
LO[0, 1]. We assume that this space is normed in the usual way [19, Chapter 5]. For 
a > 0 and 1 < p < xo, we define the Nikol'skil space Np[O, 1] by 

Np' [O, I] = f Lp [O, I] supR 
P=SP14 |[O.Io < I 

where, for any c R, 

[0, 1] := {t E [0, 1]: t + E c [0, 1]}, 

where [a] C No and 0 < a0 ? 1 are chosen to satisfy the equation 

a = [a] + ao, 

and where Ah stands for the usual forward difference operator. NpA[O, 1] is then a 
Banach space under the norm 

11<>ll a, p = 1101IP + 1 ~If 1a,p 
Remark. All the derivatives considered here are defined in the distributional sense 

[19, Section 5.3]. 
Fuller details of the motivation behind the introduction of the Nikol'skii spaces 

may be obtained by consulting [9] or [17]. However, their relevance to the analysis of 
weak singularities may be clarified by remarking that the function ta-I is in N [O, 1] 
but is not in Ng8[o, 1], for any / > a, and that ln t C N11[O, 1]. In addition, we point 
out the existence of the following continuous imbeddings [19, pp. 383-384, pp. 
389-391]: 

(3.1) Npm 0, 1] C Wpm[O 1] C Npm[N 1] C I Nm-pm 1], 

for m C N, 0 < E < 1, and 1 p o x, and 

(3.2) Np [O, 1] C.NO[0, 1], 

fora >0, 1 p < qs x, and a a-(l/p- lq) > 0. Thechainofimbeddings 
(3.1) demonstrates the fact that the Sobolev spaces are naturally immersed in the 
continuum of Nikol'skii spaces, while (3.2) shows that, given a function in a certain 
Nikol'skii space, we may trade in some of its differentiability to obtain some 
stronger integrability properties. 

We shall also use the space Cm([O, 1] X [0, 1]) (m E No) of continuous functions 
on [0, 1] X [0, 1] whose mixed partial derivatives of any order k with I k I< m exist, 
are bounded, and are uniformly continuous on (0, 1) X (0, 1) [19, p. 22]. 

We now introduce the assumptions: 
Al. The kernel k of (1.2) has the specific form 

k(t, s) = m(t, s)k(t - s), t, s F [0, 1], 

with k C N"[-1, 1] for some 1 > a > 0, and m F C2([O, 1] X [0, 1]). 
A2. The homogeneous equation 

y(t) ='m(t, s)k(t - s)y(s) ds, t F [0, 1], 

has no nontrivial solutions in L [O, 1]. 
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Then we have 

THEOREM 3. Suppose Al and A2 are satisfied. 
(i) Iff e C[O, 1], theny = (I - K)-f is well defined in C[O, 1]. 
(ii) If fE N + '[O, ], for some A > 0, then y E N min{a+1fA+1)[O, 1]. 

Proof. It is well known that the operator K given by Al is compact on C[0, 1]. The 
proof of (i) follows by the Fredholm Alternative. To obtain (ii), we refer to Chandler 
[9], where it is shown that we have the chain of mappings 

(3.3) Wj'v[0, 1] --Nc +0 1[0] -I WIv [0, 1], 
K Inclusion 

with K bounded and the inclusion compact. Hence K is compact as an operator on 
W,'[0, 1]. Since, by (3.1), we have f C N+[O, 1] C W,1[O, 1], it follows, by the 
Fredholm Alternative, that y C W,'[0, 1]. Consequently, by (3.3), we have Ky C 

N '[0, 1] and hence, since y f + Ky, the result follows. 
Some spline approximation properties of the Nikol'skii spaces are given in 

Theorem 4 below. A proof may be obtained by a trivial modification of the proof of 
Theorem 4.4 of [17]. 

THEOREM 4. Let r E N, v E No be fixed with v < r. 
(i) Let Al be satisfied. Then, for each t E [0, 1], there exists a spline u, F SrV(fl) 

such that 

J Im(t, s)k(t - s) - u,(s)l ds < Cha, 

with C independent of t and h. 
(ii) Let 4 E NQ4[O, 1] n C[O, 1] for some 1 > 7 > 0. Then there exists a spline 

v E Sr,(Hn) such that 

Ik - vI ? Ch" 

and C is independent of h. 

Discussion. The class of equations considered here is more general than that of [17, 
Chapter 41. In the latter work we treated equations satisfying Al with m 1, and 
with k F Nf 1-, 1) for any a > 0. The inclusion of a smooth factor m(t, s) into the 
kernel increases greatly the relevance of the theory to the type of weakly singular 

equations that arise in practice (see [17] and [25] for some examples). The fact that 
here we consider only 0 < a < 1 represents no restriction over [17] (since NC,+-[O, 1] 
C N[, 1] for - > 0), but does allow us to prove simpler orders of convergence for 
our numerical methods (cf. [171 where complicated logarithmic factors occur when 
a G N). 

4. Order of Convergence Estimates. In this section we derive global order of 

convergence estimates for the Galerkin and iterated Galerkin approximants to the 
solution of (1.1), when the kernel satisfies Al and A2. The first step in proving the 
required estimates is given in Theorem 5 below, and consists of transforming the 
original convergence theory (Theorem 1, and its sequel), from its L2 [0, 1 ] setting into 
a C[0, 1] setting. 
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As in Theorem 2, we shall assume that, as n varies, the partitions HL used in the 
definitions of the splines, remain quasiuniform, i.e., there exists a constant C with the 
property that 

(4.1) maxi=1,...n (xi-Xi-,) 
(4.1) 

~~minj= n(xi - xi _)I 

for each partition Hn. We note that condition (4.1) implies that h -O 0 as n -o, 
where h is the maximum mesh spacing. It also follows from (4.1), [6], [14], that Pn is 
bounded when considered as an operator on LJO[0, 1], and, in fact, there exists a 
constant C, independent of n, such that 

(4.2) IIPnjI C, n EN. 

Hence Pn is then bounded as an operator from C[O, 1] to LOe[O, 1], with norm also 
satisfying (4.2). 

Remarks. 1. It has recently been shown by Gusmann [ 18] that (4.2) will hold under 
substantially weaker (but more complicated) assumptions than (4.1). The treatment 
here omits this extra generality in the interests of simplicity. 

2. If we restrict attention to splines in Sr'(Hn) with r = 1 and v = 0 or r > 2 and 
v E {O, 1}, then (4.2) and the results of this section hold, irrespective of any 
conditions on I-n. This fact is discussed in more detail in Section 5. 

3. Chatelin and Lebbar [12] have shown how to obtain superconvergence results, 
without the requirement (4.1) for the numerical solution of equations with smooth 
(or Green's function) kernels using piecewise polynomial (i.e., S( TI,)) approxima- 
tion. 

THEOREM 5. Let Al, A2 be satisfied, let f E C[O, 1], and suppose that 

(4.3) IIK-KPnjIc[ro,I1-O,O asn-- s>o. 

Then, for sufficiently large n, ynI, yn" are well defined, yn, E L,JO, 1], yn,( E C[O, 1]. 

(4.4) Cilly - PnY,lv ?SIIY - Yn,l C211Y - PnYl 

and 

(4.5) ~IIY -YnI loo CIIKy - KPnYIo, 

with Cl, C2, and C independent of n. 

Proof. We first consider yn'i and apply the collectively compact operator approxi- 
mation theory of Anselone [1, Theorem 1.6]. 

Note first that it follows from [ 15] that K is compact from Lo,[O, I] to C[0, 1], and 
so KPn is compact on C[O, 1]. We also know, directly from (4.3), that KPn - K 
pointwise on C[0, 1]. It is straightforward to show [17], that the set 

{ KPno: n E N, 0 E C [O, 1 ], Iloll X 1 } 

has compact closure in C[O, 1], and hence the set {KPn: n E N} is a collectively 
compact set of operators on C[0, 1]. Then, since by Theorem 3(i), (I - K)- 1 exists 
on C[0, 1], it follows [ 1] that (I - KPn )- 1 also exists on C[0, 1], for sufficiently large 
n, and is uniformly bounded in n. Using (2.4), it then follows that yn'i exists for large 
enough n, with 

YnI= ( - KPn)1f, 
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and, by Theorem 3(i), 

(4.6) y - yn' - [(I - K)1 - (I - KPn)1] f = (I - KPn)(K - KPj)y 

from which (4.5) follows. 
Now return to yn,, the existence of which is guaranteed, for sufficiently large n, by 

(2.3). To obtain (4.4), we first use (2.3) and (4.6) to write 

y - Yn Y- PY n n = (y - Pny) + pn(y - yII) 

(Y PnY) + Pn(I - KP )1(K - KP,)y, 

and, on using the known properties of Pn, (I - KPn )- 1 and K, we have 

IlY- yn,lloK 1 + IlPnIl || (I -KPJ)1|| IIKII] IIY - Pn yjj, 
and the right-hand inequality in (4.4) follows. Also, in view of (2.1), we may write 

(I - PnK)(y -yn,) =y - PnKy - Pnf = Y- Pny 

from which, using the known properties of Pn and K, we obtain 

IIY - PnYIlo [I + CIIKII] IlY -ynK|1OO 
with C independent of n, and the left-hand inequality in (4.4) follows, completing 
the proof. 

It is clear that, in order to satisfy (4.3) and to estimate the order of the right-hand 
side of (4.5), we must estimate IIKk - KPnp I I, for any + E C[O, 1]. This is the 
purpose of the next theorem. In fact, it turns out that (4.3) is a redundant 
assumption, being automatically satisfied by A1. From now on, when proving 
convergence results, we shall let C denote a generic constant. 

THEOREM 6. Let Al be satisfied. Then, for + E C[O, 1], we have 

11(K - KPn)jj00 ? Ch$llk - Pn,kIK 
Proof. For t E [0, 1], n E N, and + E C[O, 1], we have, using Theorem 4(i) and the 

duality arguments of Chandler [7], 

I(K - KPn)0(t)j f'm(t, s)k(t - s)(p(s) - Pn((s)) ds 

f (m(t, s)k(t - s) - u,(s))(O(s) - Pno(s)) ds 

If |m(t, s)k(t - s) - u,(s)l dsIlk - PnkILjoo 

where we have used Holder's inequality. The required estimate then follows from 
Theorem 4(i). 

COROLLARY 7. Let Al, A2 be satisfied, and let f E C[O, 1]. Then, for sufficiently 
large n, ynI and yn,I are well defined, (4.4) holds, and 

IIY -yIII|| ChaIIy - PnYII (. 
Proof. It follows by Theorem 6 and (4.2) that, for + E C[O, 1], 

11(K - KPJ0)11oo ? Challlloo- 
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Hence (4.3) holds, and the estimates (4.4) and (4.5) follow. The required estimate for 
yI" follows on application of Theorem 6 to (4.5). 

The main theorem of this section (Theorem 8 below) estimates the rates of 
convergence of Yn' and yn" to y, assuming the conditions of Corollary 7 and allowing f 
to be continuous (but with possibly singular derivatives). The results are obtained by 
estimating II y - Pn y II and using Corollary 7. 

We remark that the assumption 

(4.7) f C N+ ' [O, I], for some I > 8 > O, 
leads via (3.1) to the conclusion that f E WI' [0, 1], and hence f is equivalent (i.e., 
equal almost everywhere) to an absolutely continuous function. In the following 
theorem the assumption (4.7) will be taken implicitly to mean that 

(4.8) f E wli[o,I] n C[o,1I]- 
THEOREM 8. Let Al, A2 and (4.7) be satisfied. Then the conclusions of Corollary 7 

hold and 

IIY - Yn'l =0 0(hY), IlY -Yn Ill =0 0(h-'c), 
where y = min{a, 81}. 

Proof. Using (4.8) we deduce that the conclusions of Corollary 7 hold. By 
Theorem 3(ii) and (3.2), we have 

y E N1min{a?li,?ll[O, 1] C NIin{'a,f [0, 1], 

and by (4.8) and Theorem 3(i) it follows that y is also in C[0, 1]. Hence, using (4.2) 
we have, for any (n E Sr (11n) 

IIY - PnYIloo -I(' Pn)YIIoo I(i - Pn)(Y - )lloo (1 + C)IIy -nlloo 
and thus, by Theorem 4(ii), II y - Pn,y II ? Ch , with y - min{a, 81}. The required 
estimates follow via Corollary 7. 

5. A Graded Mesh. The results of Section 4 demonstrate that Galerkin methods 
for equations with singularities may sometimes possess rather poor rates of conver- 
gence. It may be remarked, however, that these poor rates arise partly as a result of 
our (rather naive) approach of using splines defined on arbitrary (quasiuniform) 
meshes, and that much better results may be obtained by using meshes which are 
specially graded to take account of the singularities in the solution. 

In order to apply some known results concerning the use of graded meshes, we 
make the following more specific assumption on the integral operator K. 

Al'. For some 0 < a 1, ji C N, we have 

k(t, s) = m(t, s)k(t -s), 

with m& CC+ ([0, ] X [0, 1]) and 

k,.(x) =xl- O < a < 1 

kl(x) = lnIxI . 
Clearly any kernel which satisfies Al' for 0 < a < 1 will also satisfy Al for that 
value of a. In addition, any kernel which satisfies Al' with a =1 will also satisfy Al 
for any a in the range 0 < a < 1. (This last fact follows from (3.1) since ln t C 

Ni [O, 1]; see [ 17].) 
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The reason for introducing Al' is that we may use a regularity result of Schneider 
24] (Theorem 9 below), which is formulated specifically with applications to graded 
meshes in mind. Schneider's result utilizes the following concept, first introduced by 
Rice [21]. 

Definition. For 0 < / < 1, ,t E N, we say that a function 0 E C[O, 1] is of type 

(/3, i, {O, l}) if 
W I OM t- (t') < C, I t- tl, t, t' E [0, 1], 
(ii) 0 has ,L continuous derivatives on (0, 1) which satisfy, for i = 1,. . . , 

C 1 2 2Iti-, 2t1 f t t'< 

where C, and C2 are independent of t and t'. 
Then the following theorem follows from the arguments of [24]. 

THEOREM 9 (SCHNEIDER). Let A ' and A2 be satisfied, and let f be of type 
(f, t, {0, 1}) for some 1 > 3 > 0, It E N. Then y is of type (y, ,[{O,} 1), where 
y = min{a, /}. 

A similar result has been proved by Bechlars [5]. 
Now, consider the numerical solution of (1.1) under the conditions of Theorem 9. 

From now on our choice of approximating subspace Un is further restricted than that 
given by (2.5). In fact we choose 

(5.1) Un = Sr ( 1 

with r = 1 and v - 0, or r > 2 and v E {O, 1}. So from now on our splines will 
either be piecewise continuous or (at the smoothest) elements of C[O, 1]. The mesh 

nn is no longer chosen to be arbitrary quasiuniform but rather is given (see Rice 
[21]) by 

(5.2) [x = (2i/n)q, 0 i n/2, 
xi I -xn, n/2 ? i ? n, 

where q = r/y, with y = min{a,,/}. (Here we have corrected an error in [17, p. 92] 
where the wrong expression for the graded mesh (5.2) was given.) Note that the 
knots of this mesh are "bunched up" near the end points 0 and 1 (where y behaves 
badly), and "spread out" in the interior of the interval' [0, 1] (where y is well- 
behaved). 

Then, with Un given by (5.1), (5.2), and provided the conditions of Theorem 9 are 
satisfied for ,L > r, it follows [21 ] that there exists (n E Un with the property that 

(5.3) IIY 00 0(1/n r). 

The mesh (5.2) does not satisfy the quasiuniformity requirement (4.1). However, in 
the case when Un is given by (5.1), the uniform boundedness condition (4.2) still 
holds regardless of how we choose our meshes. The case v = 1, r > 2 (a result of 
Dupont) has been proved by de Boor in [6]. The case v = 0, r > 1 can be proved as 
follows. Let u E Lo,AO, 1]. Then, for i = 1, . . ,n, we have 

(5.4) IIPnuIll - max jjP(i)UjjjL.[x,-I,'x, 
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where u1 is the restriction of u to [x,_, xJ], and p(i) is the orthogonal projection 
onto the space of polynomials of degree less than r defined on [x -1' x,]. Then from 
[30, p. 236], we have for i = 1,..., n, 

(5.5) IP(i)UlJL [X,-lX] ? C(XU - X, 1 )x 

with C dependent only on r. Since P(') is an orthogonal projection, we have 

(5.6) IIP(UJJL2)Xu-X Xl ?IIUJIIL2[X1- Xl] (X, - IXi I)21IIU1IIL.[x,-IXl] 
and the result follows on combination of (5.4), (5.5) and (5.6). 

We remark also that it has recently been shown by Gusmann [18] that the result 
(4.2) holds for splines of any order and continuity defined on the graded mesh (5.2). 

Thus we have the final result: 

THEOREM 10. Let the conditions of Theorem 9 be satisfied with , > r. Then, with UL 
given by (5.1) and (5.2), we have 

IIY - Y"'11 = 001/nr), IlY - yn" 11 oc = O(l/In r+). 

Proof. The assumptions imply that the estimates of Corollary 7 hold. For the 
meshes (5.2) it can be shown that there exists C independent of n such that 

(5.7) -< h s C-. 
n n 

Also, in view of (5.3) and the fact that (4.2) holds, we have, for (n E Un, 

(5.8) IIY - PnYILo 1(I - Pn)(Y - )lloo CIIy - nloo < C r. nr 

Combining this and (5.7) with the estimates given in Corollary 7 completes the 
proof. 

The estimates (1.6) and (1.7) are a particular case of this theorem. 

6. Numerical Examples. In each of the following examples splines in S?(1nn) (i.e., 
piecewise constant functions) were used as approximating subspaces. In Examples 1 
and 2 a uniform mesh was used while in Example 3 a graded mesh was used. In 
order to get an accurate assessment of the experimental error, in each example we 
choose f so that y has a particularly simple closed form. To obtain theoretical 
convergence rates for Examples 1, 2, and 3 we use the known regularity and 
approximation properties of y along with Corollary 7. For these examples we cannot 
use Theorems 8 and 10 to estimate theoretical rates of convergence. This is because 
these theorems employ the natural singularities that arise in y when f is given 
arbitrarily, and hence are not applicable when f is specially chosen. However, in 
Examples 2 and 3 we do solve an equation with a nonsmooth solution, and so these 
examples, although specially chosen, are realistic indicators of how the experimental 
results would compare with the theory in more general cases. In Tables 1, 2, and 3 
the estimated order of convergence, EOC, of the quantity en, say, was calculated 
using the formula 

EOC = ln( en/e2n) 
In 2 
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Example 1. 

y(t) =f(t) + it - si -1/2 y(s)ds, t C [0,1], 

where f was chosen so that y(t) = t. Note that Al is satisfied with a =. Since the 
solution is contrived to be smooth, and since the mesh is uniform, we have 

Ijy - Pnyloo= 0(1/n), 

and so Corollary 7 gives 

IIY -Yn|| oo =0 0(I/n), 

and 

IIY -Y ynIIo || O (1 n 3, 2 ) 

The results are shown in Table 1. 

TABLE I 

n. lIy-Y EOC lly-Y"IL EOC nnIl -n llOO 
(Theory 

n 
(Theory 

predicts 1.0) preducts 1.5) 

2 0.47 0.32 

1.31 1.54 

4 0.19 0.11 

1.27 1.78 

8 0.79(-1) 0.32(-1) 

1.13 1.71 

16 0.36(-1) 0.98(-2) 

1.08 1.71 

32 0.17(-1) 0.30(-2) 

Example 2. 

y(t) =f(t) +?X It - sl y(s) ds, t C [0,1], 

where X, f were chosen (see [25], [29]) so that y(t) 2V2[t( - t)]3/4. This problem 
has been considered by several other authors [4], [25], [29], [33] and was also solved 

in [17] using its equivalent formulation as an equation on the interval [- 1, 1]. Al is 

satisfied with a - 2. The solution is not smooth, and in fact y C N17/4 [0, 11 C 

N3/4[O, 1] n C[0, 1], and so Theorem 4(ii) implies that 

IIY- PJI - = (l/n3/4) 
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Thus Corollary 7 predicts 

IIy-Y-I = O(l /n3/'4) and Ily-YI y1 o = 0(1/n7/4). 

The results are shown in Table 2. 

TABLE 2 

Jo 
^ 11 IIY I (Theory 

n IL 
(Theory 

predicts 0.75) predicts 1.25) 

2 0.75 0.40 

0.35 0.57 

4 0.59 0.27 

0.71 1.17 

8 0.36 0.12 

0.78 1.29 

16 0.21 0.49(-1) 

0.81 1.29 

32 0.12 0. 20(-1) 

Example 3. We consider the same equation as in Example 2, but this time we use a 
graded mesh as described in Section 5. Since y is of type ( 3, i, {O, 1 }) for any ti E N, 
and we are using splines of order 1, we set the grading exponent q 4. Thus (5.8) 
holds with r = 1, and, combining this with the estimates of Corollary 7, we obtain 

IIY-YnvlOO = 0(1/n) and Ily-yII|I,O = 0(1in3/2). 
The results are shown in Table 3. 

TABLE 3 

0 n t1 IlY-YI I I EOC || 11ZY-Y 11 I ( EOC n 
~~(Theory n(Theory 
predicts 1.0) predicts 1.5) 

2 0.75 0.40 

0.50 0.80 

4 0.53 0.23 

0.92 1.31 

8 0.28 0.93(-1) 

1.00 1.54 

16 0.14 0.32(-1) 

1.11 1.68 

32 0.65(-1) 0.10(-1) 
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