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Evaluation of Fourier Integrals Using B-Splines 

By M. Lax and G. P. Agrawal 

Abstract. Finite Fourier integrals of functions possessing jumps in value, in the first or in the 
second derivative, are shown to be evaluated more efficiently, and more accurately, using a 
continuous Fourier transform (CFT) method than the discrete transform method used by the 
fast Fourier transform (FFT) algorithm. A B-spline fit is made to the input function, and the 
Fourier transform of the set of B-splines is performed analytically for a possibly nonuniform 
mesh. Several applications of the CFT method are made to compare its performance with the 
FFT method. The use of a 256- point FFT yields errors of order 10-2, whereas the same 
information used by the CFT algorithm yields errors of order 10-7-the machine accuracy 
available in single precision. Comparable accuracy is obtainable from the FFT over the 
limited original domain if more than 20,000 points are used. 

I. Introduction. An accurate fast evaluation of the Fourier integral is of consider- 
able interest because of the application of the Fourier transform techniques to a 
wide variety of problems. In the physics literature, applications have been made to 
the solution of nonlinear partial differential equations, and it is customary to 
evaluate the Fourier integral using some version of the fast Fourier transform (FFT) 
algorithm [10]-[12], [15], [22], [25]. The FFT procedure is applied with "guard 
bands" (extra points) even when sharp edges, such as mirror edges, produce 
discontinuities in the function. The purpose of this paper is to demonstrate that if 
the function or one of its derivatives is discontinuous, reasonable accuracy can be 
obtained using the FFT only if an extraordinary number of sample points are used. 
This point will be demonstrated by considering several examples and reporting (a) 
exact results, (b) FFT results and (c) CFT results, both as to accuracy and as to CPU 
time. The CFT (continuous Fourier transform) algorithm is an algorithm we have 
applied to the calculation of electromagnetic fields in a three-dimensional loaded 
(nonlinear) laser resonator with sharp mirror edges [14]. This algorithm is based on 
making a B-spline fit to the original function with the help of PORT, the Bell 
Laboratories Mathematical Subroutine Library. An analytic integration of the 
Fourier transform of the B-splines for arbitrary nonuniform spacing permits the 
construction of an algorithm that takes advantage of uniform interior spacing 
(permitting the internal use of FFT on the spline coefficients) yet handles end 
regions that require nonuniformly spaced mesh points correctly. 

II. Historical Perspective. Although the primary aim of this paper is to indicate 
and overcome the limitations of the FFT, we shall comment briefly here on other 
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algorithms that may be used to accomplish a similar purpose. We have not made 
numerical comparisons because in most cases the algorithms are not specifically 
suited to the solution of partial differential equations. The latter problem supplies its 
input in the form of an array of values at regularly spaced points, and values at other 
points are, in general, unavailable. Moreover, the input is not analytic so that 
derivatives are not directly available. 

Elementary approaches, such as a trapezoidal [1] FFT or an algorithm such as 
Filon's [9] based on a parabolic fit, suffer from the presence of kinks (jumps in 
slope) in the fitting function. Such kinks, by Tauberian arguments, generate incor- 
rect high frequency tails in the Fourier transform. A higher order procedure, such as 
the Chebyshev fitting procedure of Piessens and Branders [18], has the advantage of 
being adaptive and automatic, although it does not completely avoid the kink 
problem. The Piessens-Branders automatic Chebyshev algorithm, moreover, is ap- 
propriate when the function f(x), whose Fourier integral is desired, is available 
analytically, or at least numerically at points chosen by the program rather than 
specified in advance. Similar restrictions also apply to the Piessens-Haegemans 
Gaussian quadrature procedure [19]. 

Numerical evaluation of Fourier integrals with the help of cubic splines was 
proposed by Einarsson [7], [8] and by Silliman [23]. These methods can be combined 
with Richardson's extrapolation, and the FFT may be used to sum the resulting 
series. This procedure, in common with ours, avoids kinks. The only disadvantage of 
the Einarsson-Silliman procedure is that it requires a knowledge of the second 
derivative at the end points. Although these derivatives can be computed from a 
table of values f(xj), we found it more convenient to use the PORT library to make 
a spline fit to the sample values f(x1): 

1. The PORT spline program uses the first- and last interior points to provide 
information equivalent to derivative information at the boundaries. 

2. The order k of the spline fit is not restricted to k = 4. 
3. Discontinuities at the end points are handled easily using multiple mesh points 

at the ends. 
The package of spline programs due to de Boor [6] could equally well have been 

used since the PORT subroutines are based on de Boor's original algorithms [5]. 
Most directly related to our work is Marti's algorithm [ 17] for recursively 

computing the Fourier coefficients of B-splines with nonequidistant knots. Our 
paper differs from his in having supplied (1) an analytic formula for the B-spline 
Fourier coefficients, (2) an algorithm for combining these coefficients to obtain a 
Fourier integral, (3) a simplification of the Fourier coefficients for the uniformly 
spaced case that permits internal use of the FFT and (4) explicit determination of 
end corrections to supplement (3) above since the end mesh points will be multiple 
points. Marti's procedure does not have end corrections because he does not take 
advantage of uniformity in the interior, but treats all cases by a general formula. 
This is logically simpler, but produces a slower code that takes no advantage of the 
FFT. We have not proposed a specific algorithm for evaluating our analytic 
expression for the general nonequidistant case, and Marti's algorithm is probably 
excellent for this case. 
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Marsden and Taylor [16] derive a quadrature formula for a Fourier integral whose 
form is similar to the Euler-Maclaurin relation between sums and integrals with end 
corrections involving derivatives of f(x) at the end points. Splines are involved only 
indirectly in that the coefficients are chosen to make the error vanish if f(x) is a 
spline of degree k. In principle, their procedure is equivalent to an integration over 
the B-spline fit to the integral, and their results should agree with ours. In practice, 
however, the conditions they impose to determine the integral do not uniquely 
specify the interpolating spline for k > 3. Moreover, their algorithm involves the 
evaluation of derivatives at the end points. For our purposes, the derivatives must be 
replaced by appropriate finite difference formulas, and the algorithm for doing so is 
not specified by them. Thus their algorithm and ours should be exact for polynomi- 
als of degree k, but the errors will be different. The Marsden-Taylor work is quite 
interesting and deserves further analysis. Since we were made aware of this work by 
one of the referees and an explicit code is not available, we shall not attempt at this 
time to make a numerical comparison between their algorithm and ours. 

III. B-Spline Fit. Consider the Fourier integral over the finite domain [a, b] 

(1) g(fL) = bf(x)etL"x dx, 

where the input function f(x) may have a discontinuity in itself or in one of its 
derivatives at certain points in its domain. Consider a nonuniform mesh xj, j = 1 to 
N; a = xi < * * * < XN = b. Two neighboring mesh points may coincide. We assume 
that f(x) has an expansion in terms of basis splines (B-splines) [5], [6], [20], [21] 

N-k 

(2) f(x) =E aJB,k(X), 
J=1 

where the kth order B-spline BJ k(X) is a polynomial of degree (k - 1) in the 
nonempty interval (X., xJ+k) and can be obtained from the recurrence relation [5], 
[6] 

(3) Bj,k(X) Bj,k- (X) + - Bj+,k-(x), XJ+k-1I Xi Xj+k j+1 

where XJ X < Xj+k and BJ 1(x) = 1 if xJ < X < X J+ and zero otherwise. It follows 
from (3) that 0 < BJ,k(X) < 1; BJ k(X) is zero outside the interval [X., X1+k] and 
possesses only one maximum inside it. 

To represent a function f(x) with a discontinuity in its value (or its s th derivative) 
at xl, we must choose the multiplicity ml of the mesh point xi to be k (or k - s). The 
expansion coefficients aj in (2) are obtained by a least-squares fitting procedure. 

IV. Fourier Integral. On substituting (2) in (1) we obtain 
N-k X+ 

(4) g(L) E Iaf k ie/ BjxB (X) dx, 
j=1 Xx 

where we have used the property that BJ k(X) = 0 outside the interval [xj, XJ+k]. The 
integral in (4) is evaluated using the identity [21] 

[,1x1?1 ... x1?k]F(x) (k - 1! (xj?k -x JXJ) 
dx, 
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which can be obtained using Peano's theorem (for example, see Section 3.7 of [4]). 
Here [xjxj+ I ... Xj+k]F(x) and F(k)(x) are, respectively, the k th divided difference 
and the k th derivative of the function F(x). By choosing F(x) = exp(ipx) and using 
the result in (4), we obtain 

N-k 

() g(p ) = E aJe'y,qxjDjk( ) 
j=1 

where 

(6a) 
(k - )! (xj+k 

-XJ) [XjXj+ I 
... 

Xi+k] e 
(j) kexp(iYx;) 

(6b) 
_ (k 1)!h (6b) -~~~~G (.k hj?k[O hjI?..hjk 

and hj+i = (xj+ - xi). In the following and in (6b) it is implicitly assumed that all 
divided differences refer to the exponential function elIx. 

The apparent similarity of (5) with the discrete Fourier transform is striking. The 
expansion coefficient aj, obtained through a B-spline fit, is multiplied by a p- and 
k-dependent correction factor (Dj,k(M), and the product is to be used in place of the 
function value f(xj). In effect, the FFT sum acquires a separate "window factor" at 
each mesh point. 

Equation (5) is derived for a mesh of arbitrary spacing. However, the case of a 
uniform mesh is of practical importance: The window factors except for end 
corrections become uniform; the sum, in (5) acquires the form of a discrete Fourier 
transform, and FFT algorithms can be used to perform this sum efficiently. To take 
advantage of the simplifications of a uniform mesh, it is convenient to break up the 
Fourier integral, (1), into regions connecting points of discontinuity. In this way, 
code corrections associated with nonuniform spacing of knots need only be applied 
as end corrections. The end points are chosen to have multiplicity k. A uniform 
mesh of N points in the interval [a, b] with end-point multiplicity k is given by 

Xi = Xx2 = ... = Xk =a, xN-k+ 1 = XN-1 XN b, 
(7) 

~(xj+ - xj) =h, j = k, k + 1,...,N -k. 

The evaluation of the correction factor (Dj,k(M) is readily carried out using (6) and we 
find 

(8) (j,kGO -(y() = h( itLh ) j =kto (N+ I -2k)- 

At the left-hand end point 1jk forj =1 to (k - 1) and at the right-hand end point 

(j,k for j = N - 2(k - 1) to (N - k) are to be evaluated separately because in 
evaluating the divided difference in (6) one or more points coincide. The procedure 
is however straightforward, and we give the details in the Appendix. It should be 
remarked that evaluation of these end corrections requires a number of steps 
proportional to the spline order k independent of the total number of mesh points N 
(for the case of a uniform mesh) for each p. 

We have developed a continuous Fourier transform (CFT) algorithm based on (5) 
with proper end corrections. The FFT is used to sum the series in (5). For each A the 
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correction factor j, k0') is applied to obtain the Fourier integral g(M). In the next 
section we compare the performance of the CFT and the FFT for three test 
problems. 

V. Applications. As we have mentioned in the introduction, the FFT does not yield 
accurate results, unless extraordinarily large values of N are used, for an input 
function with discontinuous behavior or with rapid oscillations. In this section we 
illustrate the performance of the CFT and compare it with the FFT for three test 
functions. All calculations are done on a DEC-10 machine in single precision. 

Case 1-Square Pulse. The input function f(x) is assumed to be 

(9) f( f) 
1 iflxl?1, 
O otherwise. 

From (1) the Fourier transform of f(x) is readily obtained, 

(10) g(p) = (2 sin t)/4. 
In using the FFT, f(x) is supplied on the interval [-8, 8] to provide the necessary 
"guard band", and the resulting g(yI) is compared with exact values given by (10). 
The calculations are done with NF = 64, 256, and 1024 FFT points. In general the 

TABLE 1 

Comparison of CFT and FFT for a square pulse 

FFT CFT EXACT 

NF g(6) N-10 

r/8 64 1.9474251 

256 1.9488929 1.9489906 1.9489907 

1024 1.9489846 

7X/8 64 0.2673821 

256 0.2777420 0.2784273 0.2784273 

1024 0.2783844 

17X/8 64 0.0086711 

256 0.1129784 0.1146465 0.1146465 

1024 0.1145425 

15X/4 64 -0.0174109 

256 -0.1145691 -0.1200422 -0.1200422 

1024 -0.1197030 
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accuracy is poor at high frequencies. While using CFT, a uniform mesh with 
multiplicity k = 3 (spline-order) at the end points (- 1 and 1) (which are also the 
points of discontinuity) is chosen. Since f(x) is constant inside [- 1, 1], only 10 mesh 
points (including multiplicities) are chosen. In Table 1 we have compared the CFT 
and FFT results at some frequencies. It is evident from Table 1 that the CFT with 10 
points gives considerably more accurate results than the FFT method with 1024 
points. 

Case 2-Exponential Function e-PIXl. This case is interesting because, unlike Case 
1, the input function f(x) is continuous at all points with a kink at the origin, i.e., its 
first derivative has a jump at x = 0. Substituting f(x) = exp[-p I x 1] in (1) and 
taking a = -b, we obtain 

(11) ?(y) = 2eP+ 2 (sinMjb-pcosjb). g 
2-hO 2 p2 +/ 

For the calculations we chose p = 1, b 16. In using the FFT, f(x) is supplied 
inside the interval [- 16, 16] with NF = 256. For the CFT the integral was performed 
only over the range [0, 16]. A mesh point with multiplicity k must be assigned at the 
point of discontinuity x = 0. Since f(x) = exp[-p I x II is an even function of x, the 
value of the Fourier integral g(M) is obtained by doubling the numerical value. By 
choosing the number of sample points Ns = 128, f(x) in the CFT is supplied at the 
same points as in the FFT. This ensures that the information about f(x) is given to 
the same extent to both programs. The CFT calculations were done with N = 107 
mesh points and k = 4 ("cubic splines"). In Table 2 we compare the CFT and FFT 
outputs with the exact values of g(y) obtained from (11). It is evident that the CFT 
is superior to the FFT. At y = 27T the FFT yields only one significant digit, while the 
CFT is accurate up to six significant digits. It is to be noted that at y = 47T the 
relative error in the FFT value is 24%, and the situation gets worse at higher values 
of y. 

TABLE 2 

Comparison of CFT and FFT for an exponential function e-Il 

FFT CFT EXACT 

NF=256 NF=1024 N=107 

0 2.0026033 2.0001625 1.9999999 1.9999998 

7/2 0.5794093 0.5769636 0.5768016 0.5768006 

X 0.1866230 0.1841621 0.1839995 0.1839993 

2x 0.0520947 0.0495721 0.0494090 0.0494090 

4w 0.0155441 0.0127495 0.0125852 0.0125854 

7 i 0.0081098 0.0042937 0.0041270 0.0041270 
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In order to see how the FFT performance improves as NF increases, we made a 
4-fold increase in the number of points, NF = 1024, and the corresponding values of 
g(,i) are also shown in Table 2. We find that only one significant digit is gained by 
increasing NF from 256 to 1024. The convergence of the FFT values to the exact 
values appears to be slow. 

Case 3-Truncated Cornu Spiral. This example is chosen to illustrate the useful- 
ness of our CFT algorithm in unstable resonator problems of optics [14]. The finite 
size of the output mirror produces sharp discontinuities in the field distribution at 
the position of the mirror edges whenever the optical field is reflected at the output 
mirror. If we assume that initially the field distribution is uniform, on first reflection 
the field distribution f(x) is zero outside the mirror dimensions. If we consider only 
one transverse dimension, f(x) is given by (9), and we have compared the perfor- 
mance of the CFT and the FFT in Case 1. On second reflection at the output mirror 
the optical field f(x) is a truncated Cornu spiral. The following analytic expressions 
for the Fourier transform pair f(x) and g(ti) are obtained [3] after solving the 
paraxial wave equation: 

1r(+ x \ 1_x\ 
(12) f(x) - [F ( ) F 2pJJ] 

for I x I < 1 and zero otherwise, and 

g(13) 2in { F(I + 2i, [2F(pfi)cos i + e' 1 -p 

(13) ~ 2 i{I' P e l pF 

where F(t) = CI(t) + iSj(t) is the complex Fresnel integral [2] 

(14) F(t) 4 2 Ueu2du. 

In the numerical results reported below the parameter p was chosen to be 0.158114. 

TABLE 3 

Comparison of CFT and FFT for a truncated Cornu spiral 

FFT CFT EXACT 

Re g(0) Im (gl) Re g(p) Im g(lV) Re g(A) Im (gz) 

0 1.8735905 -0.1282492 1.8736377 -0.1283733 1.8736373 -0.1283736 

r/2 1.2719076 -0.0392334 1.2719424 -0.0392336 1.2719421 -0.0392337 

r 0.1449800 0.1056147 0.1449329 0.1057388 0.1449329 0.1057390 

2r -0.1697461 -0.0233831 -0.1696989 -0.0235073 -0.1696986 -0.0235074 

6ir -0.0344188 -0.0501655 -0.0343715 0.0500408 -0.0343712 0.0500407 
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In Table 3 we compare g(ji) obtained by the CFT and FFT methods with the 
exact value from (13). To use the FFT the input function f(x) was provided over an 
interval [-8, 8] with NF 1024. For the CFT algorithm, f(x) is supplied within the 
interval [-1, 1], and NS NFj8 = 128 sample points describe the input function 
f(x) with the same accuracy. Calculations were done using k = 4 and N = 107. It is 
evident from Table 3 that, while the CFT method yields six significant digits, the 
FFT is accurate only up to four significant digits near y = 0 and the accuracy gets 
worse at high ,i; for example, at yI = 67T only two significant digits are obtained. 

VI. Discussion of Accuracy. It is clear from Tables 1-3 that the accuracy of the 
CFT program is uniformly good for all values of yI. However, the errors associated 
with the FFT increase with yI. This conclusion is displayed in Figure 1, for (1) the 
square pulse, (2) the exponential function, and (3) the truncated Cornu spiral. Figure 
1 plots the absolute error in the FFT value of g(p) versus IL= 2Tn/(L\x), with n 

displayed as the abscissa. Here /\x is the uniform interval between sample positions 

xj where j = 1,2,. . ., NF and NF = 256. In cases (1) and (3), the error oscillates 
periodically. We have therefore plotted the envelope of successive maximum errors 
as the conservative measure of validity of the FFT. In both of these cases, which are 
characterized by a jump in f(x), the error is a strong superlinear function of n. For 
the square pulse, the error at the first maximum is 1.18 X IO-3, whereas that at the 
last maximum is 3.80 X 10-2, an increase of a factor of 32. For the truncated Cornu 
spiral, the corresponding numbers are 1.75 X 10-3 and 2.31 X 10-2 for an increase 
of a factor of 13. For the exponential function the increase is much less: from 
2.60 X i0-' to 4.60 X 10-3 with a ratio of 1.76. The errors in the imaginary part of 
g( I) for the Cornu spiral case are similar to those for the exponential function case 
and are therefore not plotted. 

The improved performance of the exponential function is caused by the fact that 
the discontinuity is in the first derivative rather than the function. The improved 
performance for the imaginary part of g(,i) for the Cornu spiral case is caused by 
the smaller jump in the imaginary part of f(x). 

In all cases, however, the errors associated with the FFT are of the order of 10-2 

for NF = 256, whereas the corresponding errors in the CFT program are not plotted 
because they are of the order of 10-7 (which is limited by round-off error in these 
single precision calculations). A comparable accuracy can be achieved over the 
limited region of yI plotted in Figure 1 using the FFT, but only if more than 20,000 
points are used. Of course, g(,i) is then evaluated over a large range, and its values 
over that larger range are less reliable. 

VII. Discussion of CPU Time. As mentioned previously, it is difficult to make a 
simple comparison between CPU times for the FFT and the CFT programs because 
they serve different purposes. To evaluate a single Fourier integral, the CFT will win 
"hands down". To compute precisely the N Fourier transforms yielded by the FFT 
when there are N input points, the FFT will win "hands down" if the input function 
is smooth enough. The question that we can resolve, here, is which algorithm will 
take less time if a given accuracy is desired, and a given fixed number of output 
points is required when discontinuities or kinks are present. In general, one only 
needs enough points in the transform space to adequately characterize the output 
function. 
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FIGURE 1 

Variation of the absolute error in the FFT values of g(,u), ,. 2,rn/(zx) at 
various points in its domain for three cases considered in Section 4. A 256 
point FFT is used to obtain the Fourier transform. As g(,u) is an even 
function in all three cases, only the region ,u 2 0 is shown. The curves are 
plotted for (a) the square pulse, (b) the exponential function, and (c) the 
truncated Cornu spiral. In the last case the absolute error occuring in the real 
part of g(,u) are similar to those for case (b) and are therefore not plotted. In 
all three cases the absolute errors associated with the CFT are of the order of 
10-7, and on this scale the plot is indistinguishable from the abscissa-axis. 

To make the required comparison we shall use the truncated Cornu spiral, Case 3 
of Section 4. Calculations were done with the minimum number of points required 
to achieve an accuracy of 0 -' for each program, and an accuracy of 5 X 10 -3 for 
each program. The results are summarized in Table 4. This table demonstrates that 
the time taken for the FFT sum scales with the number of sample points Ns as 

N, log Ns for both the FFT method and the FFT portion of the CFT method. Three 
CFT runs are included in this table to demonstrate this point from a large number of 
auxiliary runs. 

The table indicates that, to achieve machine accuracy (10' in single precision), 
the FFT program required 20,000 points and took longer than the CFT program to 
execute. On the other hand, for low accuracy, 5 X 10-3, the FFT program was 7 
times faster than the CFT program. 

We should mention that the FFT program used was the Singleton [24] algorithm 
as incorporated in the PORT library. This is the fastest of the programs among those 
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available to us. The spline fit also came from the PORT library. No attempt has 
been made to optimize our end corrections or the spline fitting program. 

TABLE 4 

Comparison of CPU time for CFT and FFT algorithms 

CPU time in seconds for different parts of the program 

Absolute Sample Core 
Program 

accuracy points Ns Kwords FFT Spline End 
Total 

sum fit corrections 

FFT lX10-7 20,000 46 37.918 37.918 

FF'T 5X103 256 7 0.250 - - 0.250 

CF'T X10-7 510 19 0.667 18.990 11.539 31.196 

CFT 1X1o-7 240 17 0.233 8.840 4.671 13.744 

CFT 5X10-3 32 16 0.033 1.251 0.578 1.862 

VIII. Conclusions. We have presented an algorithm to calculate the finite Fourier 
integral g(y) of an input function f(x) based on a spline fit to f(x) and an analytic 
integration of the spline functions. This program is particularly useful as a Fourier 
transform when f(x) has jumps in value, kinks (umps in slope), or jumps in higher 
derivatives. In all these cases, f(x) is not band limited, and the performance of the 
FFT is poor. For low desired accuracy, the FFT program with enough points to 
achieve this accuracy will run faster than the CFT program. For high accuracy, 
especially close to machine accuracy (10-7), the CFT program will provide the 
required accuracy with shorter CPU time and a significantly lower core requirement. 
See column 4 of Table 4. 

Because of the large space taken up by the compiled portion of the PORT library, 
the FFT program would appear to use less core when 5000 or fewer points are 
needed. However, in solving wave-propagation equations in three dimensions [14], 
two-dimensional Fourier transforms are needed, and the core requirements are 
proportional to N2. Thus, even when the desired accuracy can be achieved using the 
FFT algorithm, this may not be feasible for several reasons: (i) the amount of core 
needed may not be available, (ii) f(x) is measured only at certain values of x in a 
given experiment, (iii) f(x) is calculated at discrete values of x numerically, and it 
may be expensive to compute it at a larger number of points. 

It should be remembered that the CFT and the FFT do not in fact perform the 
same function. The FFT provides a discrete Fourier series representation of a 
function f(x) based on requiring f(x) to be periodic over an extended domain. The 
CFT, on the other hand, actually computes the Fourier integral of f(x) over a finite 
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domain. The latter is often what the user wants. Our program satisfies this need, and 
for poorly band limited functions it certainly saves space and sometimes saves CPU 
time. 
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Appendix-End Corrections for Uniform Mesh. In this appendix we evaluate 

(Al) hJ? k hk (k -1) [Oh, ... hJ?k], 

forj = 1, k - 1 and j = N - 2(k - 1), (N - k). At these values of j two or more 
mesh points coincide and care should be exercised in evaluating the divided 
difference in (A1). For the case of 1 k' there are k points which coincide, and we 
have 

(A2) 01,k(10 = h (k 
k) [??0.. (k- times) h]. 

(0)k 

Using the definition of divided differences [13], [0 h] = (el/h - 1)/h. The second 
divided difference is given by 

(A3) [00h] = [Oh] -[00] I [(etAh-I) _ (eitE-I)] 

=I[ijh -(I +i,uh)]. 
h 

One can continue similarly using the fact that for a general function f(x) the ith 
divided difference when all points coincide is given by f ('- )(x)/(i - 1)!. We then 
obtain 

(A4) (1kO) = h ( - 1)! (ei -h 1 + i,ih + + (ih )k1 
I 

(itLh )k (k - 1)! j 

(A5) = (k -1)! k 
i 

where the latter form is to be used for small values of y. 
The procedure outlined above can be carried out to obtain (D2 k D3 k- , etc., in a 

similar way. The algebra is lengthy but straightforward. We obtain 

(A6) D2,k(P1) = 2h(k - 1)! E (2P+l-k 1) (ih) 

(A7) D3,k(P) = 3h(k - 1)![ ( 3; 2! + 
) ( p 
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Further calculations are needed to obtain the end corrections at the other end 
point. For instance 

DN-k,k0) 
(k k)! [ hh ..hO0] 

(A8) ( 1! [1 e I- ipih + +( k h) !} 
(i,mh)k L= (k -i)! 

h(k - 1)!eih P ( !)P = eih 'k(-[L). 
p=k 

Similar algebra shows that the right-hand end corrections are related to the left-hand 
end corrections by the formula 

(A9) DN-k-(j-I) k(P)= eiijhII (D j = I to (k- 1). 

We now present an explicit form of the left-hand end corrections 'Dk() ji = 1 to 
k - 1 for the spline orders k = 2, 3 and 4. The end corrections at the right-hand side 
are readily obtained from the following expressions by using the relation given by 
(A9). The series (A5)-(A7) can be summed to obtain an analytic form for j,k([). 
Fork = 2, 

(AIO) D1,2 [ex(1 ? ( )]. 

Fork = 3, 

(All) 413= 2h[eA-(l +x+ 1X2)], 

(A12) D2,3 e 4e + 3 + 2X]. 

Fork = 4, 

(A 13) Del4 3 h + + + 

(A 14) (D2,4 = h2A4 [e2X -8eX + 7 + 6A + 22], 

(A15) 34 = e3[ - 9 
e2A + 9eX 2- 3X] 

where X = i,uh. Care must be exercised to avoid computing errors when implement- 
ing the end corrections, (AIO)-(A15), for small values of I yh I . In this case the 
exponentials in (A1O)-(A15) are expanded in a power series which is terminated to 
achieve required accuracy. For the sake of completeness we give the expressions for 

j,k to be used in the CFT code for small I h . For k = 2, 

(Al16) ( (A16) ~~~1,2 (2 6 24 120 720 ) 

Fork = 3, 

(A17) D h( 360 2 + 20+ ) ' 



EVALUATION OF FOURIER INTEGRALS USING B-SPLINES 547 

(Al8) 23 (4??3 2 30 12 1260 ) 

Fork = 4, 

(Al9) 1,4 4 20 120 840 6720+ 

(A20) (I 3A 7A2 A3 3l04 ) 

3 9A 5A? 9%? 301A4 
(A21) 4 +10 + 8 + 28 + 2240 + ' 

where X A iih. 
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