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A Note on Haselgrove's Method for 
Numerical Integration 

By Masaaki Sugihara and Kazuo Murota 

Abstract. An alternative set of weights is proposed for Niederreiter's generalization of 
Haselgrove's method for numerical integration. 

1. In 1961, C. B. Haselgrove [1] introduced effective d-dimensional cubature 
formulas for a certain class of integrand functions over Gd (= [0, I]d) which were 
generalized by H. Niederreiter [2], [3]. But the generalized cubatures are not 
necessarily easy to handle. Here we shall propose new cubature formulas which are 
more convenient to use and have the same order of accuracy as Niederreiter's. 

2. First, to make the above statements exact, we introduce the definition and 
notation. 

Let Pk( C) denote the family of real valued functions defined over Gd, and 
periodically extended over Rd, which satisfy the following two conditions: 

Condition 1. Function f(x) can be expanded into an absolutely convergent multiple 
Fourier series 

(1) f(x) = ch exp(27Tih, x)), 
h 

where K, ) is the inner product, and Eh denotes the summation of h over Zd (Z: 

integers). 
Condition 2. All the Fourier coefficients ch of f(x) with h =# 0 satisfy the inequali- 

ties 

(2) IChI |<C(r(h)) 

where r(h) designates fljd_ Imax(1, h hi). 
Now with this preparation, we quote the theorem by H. Niederreiter [2]. 

THEOREM 1. Let k be a positive integer, and let a 1,...'gad (d > 1) be algebraic 
numbers such that 1, a 1,- ... ,ad are linearly independent over the rationals. Let weights 
a(k) be determined from the polynomial identity: 

N-1 k k(N- 1) 
i a(k)z (3) z ZJ 2 aN,jz N 

J=O j=0 
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Then we have 
k(N-1) 

(4) |f(x) dx - N -k 
af k) f( jal,.* *,jaf ) -Ok) 

d~ ~ ~~~~, dj =O 

for every f E Pdk+x(C) with arbitrary X > 0. 

Moreover, H. Niederreiter gave a way to evaluate the summation in the left-hand 
side of (4) without direct computation of a(k). However, his method requires a huge 
number, O(Nk), of additions. Hence it is evident that his method is not suitable for 
practical computation. On the other hand, direct computation of a(k) must be 
performed by the formula 

[J/N] ( k j - Nm + kJ- I 

which is not convenient for practical use, either. Here we will propose an alternative 
set of weights which is easily computable from a simple function as below. Precisely 
speaking, we have the next theorem. 

THEOREM 2. Let 

(6) w((x) = (k !X( )k, 

where (2k + 1)!/(k!k!) is a normalizing constant so that JO W(k)(x) dx 1. Then 
under the same assumptions as in Theorem 1, we have 

N1 

(7) |f(x) dx - N_ 1 w ( - 
f(jatl .. ,jad) =O(N ) 

for every f E Pdk+X(C) with arbitrary X > 0. 

Proof. In the first place, the absolute value of the error is estimated in terms of the 
Fourier coefficients of f(x). Noting the identity 

(8) c0=f f(x)dx, 
Gd 

we have from (1) 

N- 1 

Error N' 1:jEO W(k) ( f(jal ...I9jad) ff(x)dx 

N-I w(k)( ( chexp(2uijKa,h))) -cO 

(9) j=O h 

<cl N l w(k)(kJ) - 1 
j=O 

+ z Ch N l W( exp(27Ti(a,h))), 

where a (a,,... ,ad), and Eh,O denotes the summation of h over Zd except 0. For 
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brevity, we define here the function 
N-I 

Kk)(G) N-' z w(k)( Jjexp(2uijG). 

Then the expression (9) is simply rewritten as 

(10) | Error I< Ic0o I K(k)(0) - 1 + K chK( )(Ka,h)) 
h#O 

This inequality for the error indicates that it is essential to estimate this function 
K (k)() for 6 = 0 and 6 irrational. 

Next we proceed to evaluate K(k)(6). Poisson's summation formula [8] yields the 
identity 

(11) K( )(8) = lim 2 N | exp(27TiOx-27TA) dx 

- lim z f'w(k) (y)exp(2f iNy(O 6- )) dy. 
v ?? 1X =-V 

On the other hand, repeated partial integration leads to 

f|w(k)(y)exp(2 giNy(O - 1)) dy 

< 
I II D DkW(k)(y) I dy for 8 7 1, 

I27.TN (6O lI-f(Y) fo #/ 

where Dk = dk/dxk. Here we notice that Dkw(k)(x) is equal to 

((2k + 1)!/k!)Pk(2x - 1), 

where Pk is the Legendre polynomial over [-1, 1] of degree k. By the property that 
SUp_ - I x I IPk(x) I < 1, we obtain 

(12) l (k)w(y)exp(27iNy(O - 1)) dy < (2k + )! for 1 1l k ! 127TN(O-l) Ik fo #/ 

The combination of (11) with (12) gives the estimate for K (k)(): 

I (k )(o) I < (2k + 1)! 1 ( 2 + 2 
1, 

I) N ~~k! ( k7 ollk k 
(13) 

2fN II 

(2k + 1)! 2(1 + t(k)) 1 
k! (2J )k NkIIIk for| irrational, 

(14) IK(k)(0) - II < (2k + 1)! 2D(k) 1 for6=0, 

where D is Riemann's zeta function and II x I is the distance from x to the nearest 
integer. 

Consequently, substituting these inequalities (13), (14) into (10), we reach 

ErrorI<- 2k (2k+ 1)! ( co (k) + (1 + '(k)) :E 1 
' N k (2T) kk ! h# IIKa,0 

Ch 
h) Ik 
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The rest of the proof is the same as that of Niederreiter's theorem. Q.E.D. 
Remark. The particular form (6) of the weight function is not essential for 

Theorem 2 to hold. In effect, it is sufficient that the weight function w(k)(x) satisfies 
the following conditions: 

(1) J I W(k)(X) dx 1, 
(2) w(k)(x) is k times continuously differentiable and w(k)(0) - w(k)(1), Dw(k)(0) 

Dw(k)(l) Dk-lw(k)() =Dk-lw(k)(l), whereDk dk/dXk. 

Remark. The restriction of the integrand function in Theorem 2 is not serious 
from the practical point of view; an appropriate polynomial transformation of the 
integration variables x1 - 

(tj) (j = 1,... ,d), where 

(t) = cft (s(I - s)) ds 
0 

usually brings the integrand function into the class Pk+X(C) [3] as will be done in 
the numerical experiment in Section 3. Moreover, for a certain class of integrations, 
the IMT-type transformation of integration variables [4], [5], [6] transforms the 
integrand function into the one with Fourier coefficients Ch satisfying 

d 

ch C exp -A(8) I hi' withA(3) > O and arbitrary 8 > O. 
j=l 

Hence, considering the fact that the transformed integrand function belongs to 

Pd(C(X)) for all A, we may expect that we can do much better by choosing a 
suitable weight function. In fact, with the weight function of 

(i) Gaussian-type 

WN(X) = exp(-BNa(x-2 ) ) ( d a 1 B )> 

or 
(ii) IMT-type [4], [5], [6], 

w(x) =d(2tanh(2 sinh 
'T 

+ 1-)) 

the asymptotic accuracy of 

O(exp(-A'(e)N 1/(d+ I)e)) with A'(,E) > 0 and arbitrary E > 0, 

is attained for the transformed integrand function. The result will not be obtained 
until the weight function as in Theorem 2 is introduced from a viewpoint different 
from Niederreiter's Theorem 1. 

3. In Section 2, we have proved that the theoretical order of accuracy of the 
proposed cubature with w(k)(x) is equal to that of Niederreiter's with a(k) . To 
compare the actual performances, we present in this part the numerical results for a 
4-dimensional problem. To be specific, the two methods are applied to the numerical 
evaluation of 

4 
0.11 

ff(x) dx(= 1),9 f(x) fin 
i=I (0.lI+ X1 )2' 



HASELGROVE S METHOD FOR NUMERICAL INTEGRATION 553 

which was used in [7] as an example illustrating that the original Haselgrove's 
method does not always give a significant solution. We transform the integrand 
function f into 

4 

f(p(X1),... JX4)) f 0'(Xj), O(x) f 2772t5(1 - t)5dt, 
j=l 

in order that the transformed integrand function may belong to P45(C). We adopt 

2cos 2-, 2cos , 2cos , 2cos , 
11 I11 I11 I11I 

for a,, a2, a3, a4, following the recommendation by many authors. 
Among the numerical experiments with various weights, we give only the result for 

Niederreiter's method with a(4) and for the proposed one with w(4)(x) (Figure 1). 
Note that these two methods have the same order of accuracy and that when the 
same number of points are used in (4) and (7), the N in (2) is k times the N in (4). 
The graph in Figure 1 indicates that there may be nothing to choose between the 
two. Also in other cases, not shown here, the proposed method competes with 
Niederreiter's. 
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FIGURE 1 

Comparison of the proposed method (with W(4)) with 

Niederreiter 's method (with a(4) ) for a 4-dimensional problem 
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4. It may be concluded that the theoretical order of accuracy of the proposed 
cubatures is the same as that of Niederreiter's, and that in actual experiments there 
is little difference between the two. Therefore in view of the ease in practice, the 
proposed method is recommended rather than Niederreiter's. 
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