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On the Speed of Convergence of the Nearest 
Integer Continued Fraction 

By H. Jager 

Abstract. Let pn/q, and A1/B, denote the convergents of, respectively, the regular and the 
nearest integer continued fraction expansion of the irrational number x. There exists a 
function k(n) such that An/Bn Pk(n)/qk(n). Adams proved that for almost all x one has 
lim k(n)/n = log 2/log G, G = 2(1 + r/ ). Here we present a shorter proof of this result, 
based on a simple expression for k(n) and the ergodicity of the shift operator, connected with 
the nearest integer continued fraction. 

Every real irrational number x has a unique representation as a regular continued 
fraction: 

(1) x = aO + + + + * *,- an E Z, n ?O ; an > I , n - I. 

One has ao = 0 if and only if x E (0, 1). For such an x define 

Tx:=+g 1- TX + +.. 
a2 a3 

A central result in the metric theory of the regular continued fraction states that the 
operator T, working on the space (0, 1)\Q, is ergodic if this space is provided with 
Gauss's measure t, which is defined by 

log 2 IE1 + t 
see, e.g., [2, Section 4]. 

The algorithm for calculating the partial quotients an in (1) relies heavily on the 
integer function, since 

a=0,I l '= _ x], nv1 

If one replaces the integer function in this algorithm by the nearest integer function, 
one is led to the following half regular continued fraction expansion for a real 
irrational number x: 

x=bo + +2+ , bn E Z, n 0; bn 2,n 1; 

(2) b1 b2 

En { I,} n ?, 1; bn + 8 n? + 2, n ~ 1. 
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This expansion is also unique, see [3, Section 38]. Here bo= 0 if and only if 
X E (- 2, 2), and for such an x the - is the signature of x. Let S be the operator 
working on the space (-2, 4) Q, defined by 

Sx + + *- 

Recently, Rieger [4] proved that S is ergodic if the space is provided with the 
measure v defined as follows 

v(E) =lg |p(t) dt, 

where 

G (I + 5) and p(t) {(G + t)l for O < t < 0, 

see also [5]. 
Denote by pn/qn the convergents of (1) and by An/Bn those of (2), n 2 0. For 

every n - 0 there exists a unique k(n) such that An/Bn = Pk(n)/qk(n)' and then one 
has 

An + I Pk(n)+ ? An+ I Pk(n)+2 

(3) ~~~~~~~~or Bn+ 1 qk(n)+ I Bn+ l qk(n)+2 

the latter case occurring if and only if ak(n)+2 = 1. For a simple proof of these facts 
we refer to [6, Theorem 2]. This criterion was used by Adams [1] to express k(n) in 
terms of the occurrence of strings of l's in the sequence an, n 2 1, of partial 
quotients of (1). He then applied in an ingenious way the individual ergodic theorem 
with the operator T and obtained the following remarkable result: 

THEOREM (ADAMS). For almost all x one has 

lim k(n) _ log2 = 1.4404... 
n -oc n logG 

The purpose of this note is to give a shorter proof of this theorem, based on a 
simpler expression for k(n) and on the ergodicity of the operator S. 

LEMMA. Let s( n) denote the number of negative elements in the sequence -, v2v ... v ?n. 

Then k(n) = n + s(n + 1). 

Proof. It suffices to show that the latter case in (3) occurs if and only if 8n+2 
We recall the well-known alternating character of the sequence of convergents of a 
regular continued fraction 

(4) Po P2 < p3 < < -- p1 

qo q2 q3 q1 

and the relation 

(5) AnBn+ - -An+ lBn = (-1 )n 1'61 62 *'**n+ I 

see [3, p. 14]. Suppose that the latter case of (3) occurs together with 8n+2 = 1. Then, 
if k is even, we have in view of (4) 

An Pk <Pk+2 gn+l 

D =- - D or AnBn - A+B 
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Then (5) and -n+2 =1 would give 

An+ lBn+21-An+2Bn+1 

i.e., for some 1 > k + 2 we would have 

An+__ Pk+2 p, An+2 

Bn+1 qk+2 q, Bn+2 

which contradicts (4). The case that k is odd is treated similarly. In the same way 
one shows that the first case of (3) is incompatible with -n+2 -1. This finishes the 
proof of the lemma. 

To prove the theorem we determine limn-o s(n)/n. Letf denote the characteristic 
function of the interval (- 2, 0). Then 

n-i 

s(n) = f(SkX,), x' x - bo. 
k=O 

From the above quoted result of Rieger and the individual ergodic theorem, we find 

n- (o n logG 111/2 1 + G + t logG' 

see also [5, Corollary 3]. From this and the lemma, Adams' theorem follows at once. 
One of the beautiful results in the metric theory of the regular continued fraction 

is Paul Levy's theorem which states that for almost all x 

1 _ I 2_ _ 

lim -log q - n lo n n 12 log 2 

Since 

1k(n) 1 
-log Bn k( ) log qk(n), 

Adams' theorem immediately transforms Levy's theorem into the corresponding one 
for the nearest integer continued fraction: For almost all x one has 

lim I-log Bn = K, 
n - oo n 

with 

(6) K l2loG. 

Both Rieger in [4] and Rockett in [5] find K in the form 

K -f p(t)logItI dt. 
-1/2 

Rockett leaves this integral for what it is, whereas Rieger has to use a functional 
equation for the dilogarithm to prove that its value is given by (6). 

Mathematisch Instituut 
Universiteit van Amsterdam 
Roetersstraat 15 
1018 WB Amsterdam, The Netherlands 



558 H. JAGER 

1. WILLIAM W. ADAMS, "On a relationship between the convergents of the nearest integer and regular 
continued fractions," Math. Comp., v. 33, 1979, pp. 1321-133 1. 

2. P. BILLINGSLEY, Ergodic Theory and Information, Wiley, New York, 1965. 
3. 0. PERRON, Die Lehre von den Kettenbriuchen, Vol. I, 3rd ed., Teubner, Leipzig, 1954. 
4. G. J. RIEGER, "Mischung und Ergodizitat bei Kettenbruichen nach nachsten Ganzen," J. Reine 

Angew. Math., v. 310, 1979, pp. 171-181. 
5. A. M. ROCKETT, "The metrical theory of continued fractions to the nearer integer," A cta A rith., 

v. 38, 1980, pp. 97-103. 
6. H. G. WILLIAMS, "Some results concerning the nearest integer continued fraction expansion of ," 

J. Reine A ngew. Math., v. 315, 1980, pp. 1- 15. 


