
MATHEMATICS OF COMPUTATION 
VOLUME 39, NUMBER 160 
OCTOBER 1982, PAGES 571-585 

On the Uniqueness of Best L2 [0, 1] Approximation by 
Piecewise Polynomials With Variable Breakpoints* 

By Jeff Chow 

Abstract. In this paper a sufficient condition for the uniqueness of best L2 [0, 1] approximation 
by piecewise polynomials of order k with variable breakpoints is generalized from that of 
order 2. Other extensions included here are nonuniqueness and eventual uniqueness results. 

1. Introduction. Let Pk denote the manifold of all piecewise polynomials of order k 
with N arbitrary but distinct breakpoints in (0, 1). In other words, for each p E Pk, 

there exists a mesh rN = (a . .. ON), with 

O = CFo < al1 < ... <aN < GN+I = 1 

such that the restriction of p to (ai, a+ ?1) is a polynomial of order k. 
Recently, the authors in [1] found a fairly large class of strictly convex functions 

such that each member in the class admits one and only one best L2[0, 1] approxima- 
tion from SN, the continuous submanifold of PN. They also discovered that a 
sufficiently smooth strictly convex function eventually, that is for all large N, has 
unique best L2[0, 1] approximation from SN. To demonstrate the sharpness of these 
two results, they actually constructed, for each positive integer N, an infinitely 
differentiable strictly convex function which does have more than one best L2[0, 1] 
approximation from SN. 

The main purpose of this paper is to extend the above three results in [1] for PN. 
However, it is important to point out here that when k is even the extensions hold 
for the continuous submanifold of PN. In particular, when k equals 2 the continuous 
submanifold SN of PN turns out to be a spline manifold. 

Let EN C RN be the closed simplex 

{oN= (GII a. 
) 

0=aN)a: 
< 

=--<aN<aN 
= 1}- 

We denote the linear manifold of all piecewise polynomials of order k on a given 
mesh oN E EN by pk(rN). Let pk(>EN) be the union of pk(rN) for all oN c N. 

Clearly, PN C pk(>fN) consists of all Pk(aN) where gNc int zN If f EP(aN) 

happens to be a best L2[0, 1] approximation tof from pk(>fN) then oN = (.. rN. , 'N) 

is said to be an optimal mesh (with respect to f and k) in EN. It is also clear that the 
restriction of f to each nontrivial interval (d , 6 + 1) has to be the unique best L2 
polynomial of order k to approximate f on (6k, 6 +? ). Since f (k) is required to be 
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continuous and of one sign, say positive, on [0, 1] throughout this paper, 'N being 
optimal (with respect to f and k) cannot occur on the boundary of EN, and hence a 
best L2 [0, 1 ] approximationf from Pk(>2N) to f always lies in PN. 

In Section 2, certain properties of best L2 approximation by polynomials are 
studied, and various formulae for evaluations of an error function at the endpoints 
of a finite interval are derived. When applied to a function with the kth derivative of 
one sign on [0, 1], the formulae become extremely useful. 

Section 3 contains the uniqueness and nonuniqueness results for best L2[0, 1] 
approximation from PNk. In order to establish the uniqueness result, we need to 
construct a map F, which depends onf and k, from EN into RN, such that F vanishes 
at every optimal mesh oN (with respect to f and k) in EN. The formulae derived in 
Section 2 are crucial for this construction. Let J(1rN; F) be the Jacobian matrix of F 
at rN, where rN solves F(.) = 0 = (0,...,0). A sufficient condition for the unique- 
ness result to hold is that if F(rN) = 0, then the determinant of J(rN; F) is always 
positive. With this, we can count the number of solutions of F(.) = 0, which is given 
by the topological degree of F. The magic number is one. 

The eventual uniqueness result for best L2[0, 1] approximation from PNk is dis- 
cussed in Section 4. Since the hypothesis on f (k) in this result is considerably weaker 
than that in the uniqueness result, we have to work somehow harder to establish that 
for N sufficiently large the determinant of J(rN; F) is positive whenever oN solves 
F() =0. 

In Section 5, we give some numerical results which indicate that the optimal 
meshes are indeed better than the balanced ones [2], even though they behave quite 
the same asymptotically. 

2. Preliminaries. Let k be a positive integer and pk the set of all polynomials of 
order k. Throughout this paper, we always use T(.; f, k, [a, b]) to denote the unique 
best L2 approximation from pk tof on [a, b]. For each bounded functionf on [a, b], 
we define 

X(f; k, [a, b]) = f(a) - g(a; f, k, [a, b]) 

and 

p(f; k, [a, b]) = f(b) - 7T(b; f, k, [a, b]). 

Clearly, X and p are well defined. First, we would like to find out how they act on 

(.-t)k1-I for t E [a, b]. 

LEMMA2.1. Ift E [a,b],then 

(2.1) x((. -t)k+1; k, [a, b]) = ()k (b - t) k(t - a)k1/ (b - a)k 

and 

(2.2) P((' -t)k+ ; k, [a, b]) = (b - t)k l(t - a) / (b - a)k. 

Proof. Let ao(t) + al(t)(x - a) + * +ak_l(t)(X - a)k-1 represent the best L2 
approximant ?T(X; ( t)k -I, k, [a, b]). It is well known that the k-tuple 
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(ao, a1,... ,ak-1) is the unique solution of the following system of linear equations 

(b-a) (b-a)2/2 (b-a)k/k 

(b - a)2/2 (b - a)3/3 (b - a)k+l/(k + 1) 

(2.3) (b - a)k/k (b - a)k /(k + 1) ... (b - a) /(2k - 1) 

aO rO 
al1r 

x= 

where 

ri J(x-a)i(x -t) dx, i0, 1,...,k- 1. 

Let Hk denote the coefficient matrix of (2.3) and H,i the matrix obtained from Hk 

with its (j + l)st column replaced by the right side of (2.3). By Cramer's rule, we 
have 

ai = det HkJldet Hk, j = 0, 1,.., -, k 1. 

Since for each i = 0, 1,.. .,k - 1, ri = (b - t)kpi(t), where p e pk iS a polynomials 
of order k in t, we obtain, after expanding det Hk by minors of the (j+ l)st 
column, that 

(2.4) a1 = (b - t)kqj(t), qj e pk 

Consequently, 

(2.5) X((_ -t)k' I; k, [a, b]) = -a0(t) 

and 

p((_-t)k' 1; k, [a, b]) 

= (b - t)kI - [aO(t) + (b - a)al(t) + + (b -a) ak (t)] 

both are polynomials of order 2k in t. 
Since T(-; af + fig, k, [a, b]) = aoT(; f, k, [a, b]) + pg(-; g, k, [a, b]) and 

( -t)k-I = [I *-t Ik-I + (.-t)k 1]/2, we have 

(-)+ - rT- (-t+ ,k, [a, b]) 

(2.7) = [I _.-t Ik-I I _ -t Ik- , k, [a, b])]/2 

=(t _ .)k+ _1 r- (t-_ *)k+ , k, [a, b]). 

A similar result like (2.5) and (2.6) for (t- -_)k- Ileads us to 

X((. -t)k- ; k, [a, b]) = C(b - t)k(t- a) 

and 

p((. -t)k+ ; k, [a, b]) = C2(b - t)kl(t - a) k. 



574 JEFF CHOW 

If we differentiate the above equations k - 1 times with respect to t and then take 
appropriate limits, we conclude that C1 = (_1)k/(b - a)k and C2 = l/(b - a)k. 

The next result is a consequence of the Peano Kernel Theorem [3]. 

THEOREM 2.2. Letf e Ck[a, b]. Then 

(2.8) X(f; k, [a, b]) - )(1 b j1(l - T)k kIf(k)(T(b - a) + a) dT 
(k - ! 

and 

(2.9) p(f; k, [a, b]) = (b- a)k f( -T)klTkf (k)(T(b -a) + a) d. 

Proof. Since the linear functionals X and p annihilate every element in pk, a simple 
application of the Peano Kernel Theorem [3] shows that 

(2.10) X(f; k, [a, b])= (k I)! fbX((_ -t)k I; k, [a, b])f (k)(t) dt 

and 

(2.11) p(f; k, [a, b]) (k 1)! _a -t)k+I; k, [a, b])f (k)(t) dt. 

Subsituting (2.1) and (2.2) in (2.10) and (2.1 1), respectively, one gets 

(2.12) X(f; k, [a, b])= (1) f b(b- t)k(t - a)k If(k)(t)dt 
(b - a)k(k -1)a 

and 

(b-a)k(k-1) b l(bt)k (t- )kf (k)(t) dt. 
(2.13) p (f; k, [ a, b] 1J(b - t)1t- a)k()t t 

(b - a )k (k - 1)!a 

Finally, (2.8) follows from (2.12) by a change of variable and so does (2.9) from 
(2.13). 

3. Unique Best L2[0, 1] Approximation From PNk. Let EN c RN be the closed 
simplex as defined in Section 1. To be consistent, we like to use 7T(-; f, k, oN) to 
denote the unique best L2[0, 1] approximation from the linear manifold pk(gN) to 
f. We now consider the problem of minimizing Ilf- T(-; f, k, rN)112 over all 
oN E EN Since EN C RN is closed and bounded, there exists a mesh oN, depending 
on f and k, in EN such that 

11 f -7T(-; f, k,a f )112= inf X11 f -g( ; f, k, 11 ll2 
gNC 

Every such oN is called an optimal mesh (with respect to f and k) in 2N. 

Since f p'(2 N), it is not difficult to see that an optimal mesh oN (with respect 
to f and k) has to lie in the interior of EN. Based on this fact, the following lemma 
says 7T(-, f, k, 6N) is continuous at 6i if k is even and discontinuous at 6,, but 
symmetric with respect to f(6,) if k is odd. 
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LEMMA 3.1. Suppose f (k) is continuous and positive on [0, 1]. Then 

{ T(6-;f,k,[ 6?I,if keven, 
( 2f( - 7T(6d, f, k, [6k, 6j+ ]), if k odd, 

where oN = (d5,. ,6N) eit zNis an optimal mesh (with respect to f and k). 

Proof. For i = 1,. . . , N, define 

Ei (t) = If | f-g(; f, k, [d_, 1) 12 

+ J,ilf 
- ?T(.; f, k, [d + d1+) 12, t c il,d+) 

where a natural extension of T(-; f, k,[6 1,d ]) or T(- f, k,[ , 6I?]) has been 
built in to make the corresponding integral meaningful. 

Since f(k) > 0 on [0, 1], 6i is a local minimum of Ei(t) and hence E/(t) vanishes at 
6i. Consequently, 

(3.2) If(a ) - T(6; f, k, l f(]) I=If(6i) -T(6; f, k, [6k, 6j?l]) 

Using Theorem 2.2 and the definitions of X and p, we have 

f( ) - T(6-; f, k, [d-_-, 
- 

]) = p(f; k, [O- , -6]) 

(3.3) - (k- )! J (i - I) kkf(k)((6 - 6i-) + di ) dr>0 

and 

f( f),- r(6; f, k, [ki, ?i+l]) = X(f; k, [6k, 6j?l]) 

(34) - ( 1)( 1 6I) (j1 T )kTk-If(k)(T(6 - 6 )) + ) ddT 

> 0 if k is even, 
< 0 if kis odd. 

If we substitute (3.3) and (3.4) in (3.2), then we obtain (3.1). 
This lemma is the key to allowing us to construct a mapping F, depending on f 

and k, from zN into RN so that F vanishes at every optimal mesh oN (with respect to 
f and k) in EN. To do so, consider F: EN RN such that 

F(g; f, k) = (F1(gN; f, k), NF(N; f k)) 

where for i = 1,. N, 

Fi(N; f, k) 

(3.5) _fT(ai; f, k, [a1, aj?1])- 7(a1; f, k, [ai1, aoil), if k is even, 

l2f(ai) - r(a1; f, k, [ai, ai+]) - r(aj; f, k, [ai_1, ai]), if k is odd. 
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As we mentioned earlier, F(rN; f, k) 0 = (O,.. o,O) if &N e mt EN is optimal 
(with respect tof and k). Letting Aaj j = aI+ - aj, we claim that (3.5) becomes 

Fi(arN;f k) (1Ayi 
) 

I 
Tr)k ITkf (k) (TAai _+ a11) dTr 

(3.6) kk 

- (k-i)! f'(I -Tr)k kIf (k)(Trai + a1) dr, 1 ? i ? N, 

no matter what k is. To verify this, one simply rewrites (3.5) and uses Theorem 2.2. 

Suppose that f satisfies the hypotheses of Lemma 3.1. The mapping F: N RN 

defined by (3.6) via (3.5) thus has the following properties: 
(a) F is continuous on EN and differentiable in the interior of N; 

(b) F does not vanish on the boundary of EN; 

(c) F(&N) = 0 if fN iS optimal (with respect tof and k) in zN; 

(d) F has at least one such zero in N. 

Let J(0.N; F) denote the Jacobian matrix [aFJJaaj] of F(.; f, k) at CvN C int EN. 

With an additional restriction on f, the following lemma guarantees that the 
determinant of J(aN; F) is positive whenever CuN is a solution of F(-; f, k) = 0. 

LEMMA 3.2. Let f E Ck [0, 1] with f (k) > 0 on [0, 1]. Suppose that log j (k) is concave 
in (0, 1). Then det j(rN; F) > 0 if F(rN; f, k) = 0. 

Proof. Since F does not vanish on the boundary of EN, we only have to consider 
orN e int EN. Moreover, the Jacobian matrix J(-; F) = [aFj/aaj] of F is tridiagonal, 
and its nonzero entries are 

ar -i k(Aai-i)kI I )k- Ikfk)(Ti 
(k - 1T) j(I -) Tkf(k)( T5ajI + a,_-1) dT 

(3.7) (ka)k f'(1 - )kkf (k?I)(L j + a1)) dr, 2 T i < N, 

a ( k ) ! | T) T k )(Ta_ I + a,_- l) dT, 
(38 

- k(AciI )k ('(1 - 
T)kIkf (k)(T Ai_ I + a; I1) dT 

8ao (k - 1)! 

+_ 
_ 

__ri_ I -I( Tk- ITk?If (k?1)(TAri + 
aii-I dT 

+ k ( ,ai) kI )k k- If (k)(Tari + a ) dr 
+(k -1)! 

T Joi)d 

( ACri ) kl (1 k- I)T f (k ( i ) I N, 
(k-i)! f T( T 

rkIkfk)(T~A + ai) dT, 1?i?N 

and 

____ k(Aai)k-I 
a_ - f( -kr)krk- f (k) ( TAai + a)d 

(3.9) dai+I (k -1)! o 

(k i)! f(i -T) Tkf (k?)(rAa. + aj) dT, 1 < i N - 1. 
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Note that Jlaa,1- and aFJaa1i+I are negative since (3.7) and (3.9) can be written 
as 

aFi =k(A- *)-I I 
|k (1 -) kf (k)( T U,_ I + ari_ 1 ) dT 

aai1 (k - 1)!j(i?a) 

_k( i-1 )TJ(1 - )k Tk I(l -2T )f (k)( TA,_I + ai- 1) dT 
(k -i)! o 

k(kai)()! 
J ( T - )kTkIf(k)(T a I + ai-1) dT, 2 N 

and 

aF k (ao,)kI 
I 

-T)k kIf (k)(TA ) +, 
(k -i)! f( 

+ k( a)k j ( -T)k ITk-I(l - 2T)f(k)(TiAi + a,) dT 

=-(k L1)! f(i - T)k Tkf (k)(TAai + ai) dT, 1 < i < N - 1. 

UNIQUENESS OF BEST L2 [0, I] APPROXIMATION 51 

(ao, a1,... ,ak-1) is the unique solution of the following system of linear equations 

(b-a) (b-a)2/2 (b-a)k/k 

(b - a)2/2 (b -a)3/3 .. (b - a)k+I (k + 1) 

(2.3) (b - a)k/k (b - a)k /(k + 1) ... (b - a)2k /(2k - 1) 
aO rO 
a,1r 

x 

where 

ri (x - a)'(x -t) dx, i = 0, 1,.. .,k - 1. 

Let Hk denote the coefficient matrix of (2.3) and HkJ the matrix obtained from hi 
with its (j + l)st column replaced by the right side of (2.3). By Cramer's rule, w 
have 

aj = det Hkjdet Hk, j = 0, 1,...,k-i. 

Since for each i 0,1,.. ,k - 1, r1 (b - t)kpi(t), where p E pk is a polynomial 
of order k in t, we obtain, after expanding det H1' by minors of the (]+ I)s 
column, that 
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Since f (k+l) -f (k)(f (k+1)/f(k)), the concavity of log f (k) does imply that 
N 

2 aFilaaj = di(ci Il- ci) >- o, 2 < i s- N-1I. 
j=1 

For i = 1 and N, we actually have EN= aFi/aa > 0, because one can argue as 
above after noticing that 3F,/3ao and aFN/aaN+? are well defined by the right-hand 
side of (3.7) and (3.9), respectively. Hence, J(rN; F) is diagonally dominant. Further- 
more, the first and last rows of J(rN; F) are strictly dominated by the corresponding 
diagonal elements. By Gerschgorin's Theorem [4], all eigenvalues of J(rN; F) lie in 
the open right half plane of the complex plane. Since J(rN; F) has only real entries, 
the complex eigenvalues come in conjugate pairs, so that the product of all 
eigenvalues of J(crN; F) is positive. This shows that det J(crN; F) > 0, whenever 
oN E int EN solves F(; f, k) =O. 

We are now ready to establish the uniqueness theorem. 

THEOREM 3.3. Let f E Ck[O, 1] with f(k) > 0 on [0, 1]. Suppose that log f(k) is 
concave in (0, 1). Then, for each positive integer N, f has a unique best L2[0, 1] 
approximation from PNk. 

Proof. Let g(x) = xk. Then there exists an optimal &N = (a, .. ,aN) E int EN 
such that T(*; g, k, fN) E Pk is a best L2[0, 1] approximation to g. Moreover, 
F(_&N; g, k) = 0. Since g(k) is constant, by (3.6) we conclude that di = i/(N + 1), 
1 < i < N, and that ?N is the only mesh in EN satisfying F(-; g, k) = 0. Thus, 
?T(-; g, k, &N) is the unique best L2[0, 1] approximant from Pk to g. Similarly, there 
exists an optimal oN E int EN such that ?T(-; f, k, oN) E PN is a best L2[0, 1] 
approximant to f. Also, F(rN; f, k) = 0. Now, if we can show that oN is the only 
solution of F(-; f, k) = 0 in EN then ?T(-; f, k, oN) would certainly be the unique 
best L2 [0, 1] approximant from PN to f. 

In [6], the topological degree of a smooth map G from a bounded open set 
D C RN into RN, where G is defined and continuous on the boundary of D, is given 
by 

det(p, G, D) sign det J(x; G), 
G(x) =p 

where the sum is taken over all solutions x E D of G(x) = p, as long as J(x; G), the 
Jacobian matrix of G at x, is nonsingular and p is not the image of a boundary point 
of D under G. It is known that the degree is invariant under homotopy provided that 
the functions in the homotopy do not introduce solutions on the boundary of D. 

Again, let g(x) = xk. For 0 <- a < 1, put 

Fa(-) = F(-; (1 - a)g + af, k). 

Clearly, a -( F" is a homotopy. Then by (3.6) it is easy to see that F" does not vanish 
on the boundary of EN. Since the degree is invariant under homotopy, we have that 

(3.10) deg(O, F', EN) = deg(O, F0, 'EN). 

From earlier discussion we know that F?(.) = F(.; g, k) = 0 has exactly one 
solution in EN. Therefore, deg(O, F?, EN) = 1 by Lemma 3.2. It then follows from 
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(3.10) that deg(O, F', 'N)= 1. Note that f satisfies the hypotheses of Lemma 3.2. 
Therefore, det J(orN; F') > 0 whenever rN is a solution of F'(.) = F(; f, k) = 0. 
Consequently, F1(.) = F(.; f, k) = 0 has one and only one solution in EN, because 
deg(0, F', EN) = 1 counts the number of solutions of Fl(.) = F(.; f, k) = 0 in EN. 

The condition that log f(k) is concave in (0, 1) is a technical one; but some 
concavity condition like this is necessary for the uniqueness result to hold in 
Theorem 3.3. In fact, for each positive integer N, there is a function f E C? [0, 1] 
with f (k) > 0 on [0, 1], such that f has more than one best L2[0, 1] approximation 
from PNk. To construct such an f, we need the following lemmas. 

LEMMA 3.4. Let p(x) = aO + alx + * +aklxk- E > 0 and b all be given. For 
each 1 > 0, let 

a0, + al1x + ... +ak-l,xk = T(x; fl, k, [0, + ]), 

where 

[p(x), if x e[O, 1), 
= ~~~k-2 

f,(x) |b(x - 1)k-1 + 2 p(i)(l)(x -_ )i/i!, if x E [1, 1 + ?] 

i=O 

Then, max 0 <j--k_ - I aj, /-aj l as 
I - ox. 

Proof. Suppose that the conclusion does not hold. Then for some j, 0 < j < k - 1, 
there is a subsequence {aj,1j} bounded away from aj, i.e., there exists a 8 > 0 such 
that for all li 

Iaj,,, - ajI>6. 

Then 

-lp T(. ; f, k, [O, li + ]) 12 

as li -x o. However, 

(b - ak/ (k - 1)!)2 x2(k- 1) = Jif+cli 
- p 12 

if0 i - 7T(.; f,, k, [0, 1 + ) 12 

= f0 
- 7T(.; fI, k, [O, li + e]) 12 

p- T(-; fI,, k, [0,i + _])12 2 

contradicting the fact that (b - ak 1/(k - 1)!)2J X2(k- 1) is finite. 

The next lemma shows how to construct a generalized convex spline function s of 
order k in Ck-2[0, ml + 1] with interior knots at jl, j = 1, 2,. . . m. Moreover, the 
error between s and its best L2 [0, ml + 1] approximation from the set of all 
piecewise polynomials of order k on [0, ml + 1] with arbitrary m - 1 breakpoints is 
bounded below by a constant independent of 1. 
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LEMMA 3.5. Let m be a positive integer, and let 0 < ao < a, < ... < am 1. 
Suppose 

s(x) I[Ol ) = aoxk-I/ (k - 1)! = so(x) 

and 
k-2 

s(x) 1[jl,(j+?)I)= aj(x _jl/)k I/ (k - 1)!+ 2 s()(jl)(x -jl)1/i! 
i=O 

s1(x), j= 1,2,...m. 

Then, s F Ck-2[0, ml + 1] and 
fl I 

.(X) 
- miX 2x (m-'~)f[ykI/( - dy 

Ml S = (0 - - 1)2 ( - )!]2 d 

Proof. The first part is clear. Since 
k-2 

sm_I(x) = am(x - ml)k /(k - )!+ 2 s(L) 1(ml)(x -ml)Ii!, 
i=O 

we have 

| ISM Sm-1 I =| I (aXm - a_1)(Xm ) l(k k-1) 
ml ml 

= (am - a,-)2f [ykI/ (k - 1)!]2 dy. 
0 

LEMMA 3.6. Let s be a continuous piecewise polynomial of order k on [a, b] with 
breakpoints at T,,. . . 'rn. Suppose 

(k-1)(T +) - S(k-)(T-) = aj - a,jI > 0. 

for j = 1,. . . ,n. Then, for each ? > 0, there exists an f F C?[a, b] such that f (k) > 0 

on [a, b] and Ils -f 11o<E. 

Proof. Let {hi} be a sequence of functions of the form 

hi(x) = ih(ix), i = 1,2,.... 

where h Co (- x, x), h - 0, and Jff h(x) dx = 1. From [5], we know that, for 
each i, s * hi F C'(-x, ox) and 

(s * hi)(k) 5(k) * h [5(k 1)(Tj +) S(k1 )(T )]6) * hi 

- S [5(k- (h ?) - s(kI)(j -)](6 * hi) 

j=l 

n 

- [aj-aj-l]hi( -Tj) >O on [a, b], 
j=1 

where 
'Ti 

is the Dirac measure at Tj. Since {s * hi} converges uniformly to s on every 
compact subset of (- o, ox), by choosing f = s * hi for i sufficiently large we can get 
Is -f <c 00 < -. 

Now we have all the tools to construct a smooth generalized convex function 
which has more than one best L2[0, 1] approximation from PN. 
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THEOREM 3.7. Let N be any positive integer. There exists a function f E C??[0, 1], 
with f (k) > 0 on [0, 1], such that f has more than one best L2 [0, 1] approximation from 

PN, where k is a positive integer greater than 1. 

The proof of Theorem 3.7 is almost exactly the same as the proof of Theorem 3 in 
[1] except for the construction of f,, when k is odd, on the left half of the interval in 
question. Hence we will not repeat it here. Nevertheless, we like to point out that 
Lemma 3.4 and Lemma 3.5 will lead to a contradiction for some f, if uniqueness is 
assumed, and Lemma 3.6 can be used to show the existence of a smooth generalized 
convex function which approximates f, arbitrarily close. 

4. Eventual Uniqueness Result. Let f (k) be continuous and positive on [0, 1]. We 
want to prove in this section that for N sufficiently large the uniqueness result for 
best L2[0, 1] approximation from PNk to f eventually holds for extra smooth f but 
without assuming the concavity of log f(k) in (0, 1). If we can show that, for N 
sufficiently large, 

(4.1) detJ(grN;F) >0 

whenever rN solves F(.; f, k) = 0, then the same topological degree argument used 
in the proof of Theorem 3.3 will lead us to the conclusion. Before we spend the rest 
of this section to establish (4.1), let us state the eventual uniqueness result first. 

THEOREM 4.1. Let f E Ck+3[0, 1] with f (k) > 0 on [0, 1]. Then there exists a positive 

No such that, for each integer N > No, f has a unique best L2 [0, 1] approximation from 
pk 
PN- 

The proposition we state below is independent of k, and its proof can be found in 
[1]. 

PROPOSITION 4.2. Let A = [a1j] be a tridiagonal N X N real matrix with positive 
diagonal entries. Suppose 

an,n- lan- 1,n < an,nan- 1,n- 1 (1 + ?T2/ (4N2))/4, 

for n = 2,. .. ,N. Then det A is positive. 

In the rest of this section, we will simply state some results which can be directly 
derived from those in [1]. Before we do that, the same notations used there have to 
be introduced. For rN E IN, let 

hi \AG, = Ai1-i 0=,...,N 

and let 

A\= max h, and 8= min h,. 
< i-< N 0 <-i ---N 

Now, we rewrite Eq. (3.6) in the following form 

Fi(gN; f, k) = hi- I w(T; k)g(a, - Th,1) dT 

(4.2) 
-hk W(T; k)g(aj + Th)/dT, 

- 1) an g 

where W(T; k) = (I1- T)kT k- '1(k -1)! and g = f (k). 
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LEMMA 4.2. Let f E Ck+l[0, I] with f(k) > O on [0, 1]. Then there is a constant 
c > 0, depending on f and k but not on N, such that if F(ar; f, k) = 0, A/8 ? c. 

COROLLARY 4.3. A < c/(N + 1) and 8 > 1/(c(N + 1)). 

LEMMA 4.4. Suppose that f E Ck3 [0, 1] with f (k) > 0 on [0, 1]. Let orN E EN solve 
F(.; f, k) = 0, and let [aij] = J(AN; F). Then, for N sufficiently large, 

(4.3) ai,,+Iai+a, = ai ,a1+1,i+,(l + 0(A3))/4, i= 1, ... ,N - 1. 

Proof. Let g, = g(ai), g' = g'(a,), and g7 = g"(a,). Set Fi = 0 in (4.2), and expand 
g about a, Then we obtain 

h(k hI(Ag, - h Bg' + h,2Cg7 + O(A3)) 

h. (Agi + hiBg' + hiCg7 + 0(A3)), 

where 

A =fIw(T; k)dT, B = Tw(T; k)dT and C= [2W(T; k)dT. 
o o o 

First, we want to show that 

(4.5) hi_ l hi + o(A2) 

independent of k. To see this, take the ratio form of (4.4) and obtain 

h,_l { Agi + h1Bg>' + h o2Cg,, + 0(2 ) ) 
lk 

hi Agi - h_ lBgi' + h,2_ 1Cg + 0( 5 

= hi+ hi IBgz + 0(2). k Ag1 

Hence, (4.5) follows. 
Next, we want to prove (4.3) by induction on even integers and on odd integers. 

For k = 2, (4.3) was proved in [1]. The case k -1 can be established the same way, 
or even easier, as in [1]. Suppose now the case k - m - 2 has been verified. We want 
to show (4.3) for the case k = m. Using (4.5) in (4.4), we have 

h 2 
1(Aig,- h lBlg' + h2 IC1gf' + 0(A3)) 

(A,g, + hiBig' + h Cigl, + 0(A3)), 

where A h2A, B, h2B, and Ci = h2C. Since the proof of (4.3) in [1] only 
involves hi_1 and hi, hence, by the induction hypothesis, (4.3) holds for k = m. 

5. Numerical Results. Let cN be a balanced mesh [2] in the following sense 

f' f |(k) Ir =(N + I)-1 | (k) , i 1,.. . ,N + 1, 
, , o~~~~~~ 
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where r = (k + 2-1)-'. It was shown in [2] that 

lim (N + 1)k If- _(_; f k ?X)|2 
N- oo 

= lXk Ik! -7( Xk 10, k, [O, 1]) 11 2 Ift(k) Ir) B2,k 

for all rN either balanced or optimal. 
In each of the following examples, we will compute two sets of asymptotic 

numbers, namely, 

C, - (N + )I-;f,(k,N )II2 

and 

C2 (N + l)k|| f 7(-; f, k, 
&N 

)l 12 

where oN iS optimal and &N is balanced, for k = 2,3, and 4. 
Example 5.1. Let f(x) = x5/5! on [0, 1]. Then 

B2,2 .00086522, B2,3 .00032375, andB2,4 .00008043, 

which are almost exact because jf(k)Ir has an antiderivative in [0,1]. For each 
k = 2,3, or 4 in this example, f (k) is also a polynomial, so that the integrals which 
form the entries of F and J(-; F) can be computed very accurately by using enough 
Gaussian points and weights. The numerical results of this example are contained in 
Table 1. 

TABLE 1 

Numerical results for Example 5.1 

f(x) = x5/5! 

N+ 1 C, C2 

k - 2 2 .00101827 .00104806 
r = 2/5 4 .00093866 .00096213 
f(k)(x) = x3/3! 8 .00090118 .00091526 

B2,k = .00086522 16 .00088301 .00089067 
32 .00087407 .00087806 
64 .00086963 .00087167 

k 3 2 .00038256 .00039306 
r = 2/7 4 .00035221 .00036059 
f (k)(x) = x2/2 8 .00033774 .0003428 

B2,k =.00032375 16 .00033069 .00033345 
32 .0003272 .00032864 
64 .00032547 .00032621 

k 4 2 .00008994 .00009096 
r 2/9 4 .00008514 .00008596 
f (k)(x) = x 8 .00008277 .00008326 

B2,k = .00008043 16 .00008159 .00008186 
32 .00008101 .00008115 
64 .00008072 .00008079 
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Example 5.2. Let f(x) = -4x1/2 on [0, 1]. Then 

B2,2 .36828478, B2,3 - .37896504, and B2,4 .64722762, 

which are almost exact by the same reason as in Example 5.1. For each k = 2,3, or 
4, f (k) is not only not a polynomial but also unbounded in (0, 1]. Fortunately, every 
integral over (a0, a,) is under control, since f (k) has to be multiplied by a weight 
function with a zero at least of order 1 at a0. To improve the accuracy of numerical 
integrations over (ai, ai+ +), we apply a fixed Gaussian quadrature formula re- 
peatedly on each equally divided subinterval (a,, ai+ 1). We give the numerical results 
of this example in Table 2. 

TABLE 2 

Numerical results for Example 5.2 

f(x) = -4x1/2 

N+ 1 Cl C2 

k 2 2 .25062068 .27659286 
r 2/5 4 .29904901 .32179519 
f (k)(X) = X-3/2 8 .33031606 .34487614 

B2,k = .36828478 16 .34833578 .35654119 
32 .35805037 .36240349 
64 .36310003 .36534181 

k 3 2 .14966696 .21896258 
r 2/7 4 .22567238 .2949939 
f (k)(X) = -(3/2)x 5/2 8 .28745951 .336062 

B2,k = .37896504 16 .32842602 .35730558 
32 .35232005 .36808667 
64 .36527248 .37351415 

k 4 2 .11282576 .26905235 
r 2/9 4 .24999202 .43665692 
f(k)(X) = (15/4)x 7/2 8 .38617489 .53724224 

B2,k = .64722762 16 .49385335 .59121773 
32 .56344529 .61899226 
64 .60334329 .63305554 

Theoretically we know that r(-; f, k, 0'r) is a better approximation than 
r(.; f, k, 6J1), although their errors become indistinguishable as n goes to oo. this 
fact has just been demonstrated numerically by the two examples. 
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