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An Acceleration Method for the Power Series of 
Entire Functions of Order 1 

By B. Gabutti and J. N. Lyness* 

Abstract. When f(z) is given by a known power series expansion, it is possible to construct the 
power series expansion for f(z; p) = e-Pzf(z). We define to be the value of p for which 
the expansion for f(z; p) converges most rapidly. When f(z) is an entire function of order 1, 
we show that Popt is uniquely defined and may be characterized in terms of the set of 
singularities z,= I/a, of an associated function h(z). Specifically, it is the center of the 
smallest circle in the complex plane which contains all points a,. 

1. Introduction. In this paper we present a method for accelerating the conver- 
gence of a power series expansion. The method is designed for entire functions of 
order 1 and finite type. That is, the coefficients a1 in the expansion 

(1.1) f(z) = ?a, + a,z + a2Z2 + . .. 

decay sufficiently rapidly that the associated expansion 

(1.2) h(f; z) = ao + a1l!z + a22!Z2 + 

converges for small z and has a finite radius of convergence R. The method consists 
of choosing a parameterp and reexpressing1(z) in the form 

(1.3) f(z) = ePzf(z; P), 
where 

(1.4) f(z; p) = ao(p) + a1(p)z + a2(p)Z2 + 

On comparing the coefficient of zk in the identity f(z; p) e-Pzf(z), it follows 
immediately that the coefficients are given by 

(1.5) ak( P) =j a 

The question we deal with in this paper is that of choosing a value Popt of p which 
optimizes the ultimate rate of convergence of the series (1.4). 

In the remainder of this section, we state the criterion we shall use for deciding 
whether one series converges faster than another. 

In Section 2 we describe the theory as it applies to an entire function of order 1. 
We obtain a characterization of Popt as the center of the smallest circle containing a 
set of points a, in the complex plane, where 1/a, is the set of singularities of h( f; z). 
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We illustrate the theory with several examples. Some of the properties of Popt are 
merely stated in Section 2 and proved later in Section 3. In Section 4 we briefly 
discuss the use of this technique in cases where f(z) is not an entire function of order 
1 and show that it is unlikely to be effective. Finally in Section 5 we make some brief 
comments about determiningp,P, numerically. 

In this paper we employ the following criterion to compare rates of convergence 
of power series. We introduce a comparison sequence kj1 j 1, 2,..., having the 
following property 

(1.6) kj>O Vj>J; either O+ 1fj Vj > J, 
or kj+ k > >J, 

where J is finite. Thus oj is a sequence of positive terms which is ultimately either 
monotonic nonincreasing or monotonic nondecreasing. Then we may compare the 
rates of convergence of 

(1.7) f1(z) :a,2z' and f2(z) =f3,Bz' 

by comparing 

HI(z) (AnnanZn and H2(Z) = nn nAnZ 
n 

where oj are the elements of any comparison sequence. It is generally possible to 
choose the comparison sequence so that either one or both of H,(z) and H2(z) have 
finite nonzero radii of convergence 

1/R1 = lim supnI Illn- I /R IM SUp?pn I fn Il/n. 
n-oo n-oo 

It is well known that when two power series have different radii of convergence, the 
one having the higher radius of convergence converges more rapidly. Consequently 
we adopt the following partial definition: 

Criterion 1.8. If there exists a comparison sequence fj (satisfying (1.6) above) for 
which 

lim sup (n I an | / > lim supon I f n Il/n, 
n-0oo n- oo 

then the power series L fn3z n converges more rapidly than the power series L anzn. 
This somewhat crude criterion is sufficient for the theory covered in this paper. 

2. Theoretical Development for Entire Functions of Order 1. In this section we 
shall assume that f(z) is an entire function of order 1, given by (1.1), and describe a 
theoretical method for determining Popt. Corresponding to f(z) and f(z; p), we 
define associated functions 

00 

(2.1) hP(;z) = E aj(j + )!zj, I zj< R(f; 0)5 
j=O 

00 

(2.2) hf; z; p) = 2 aj(p)(j + v)!zJ, I z j< R(f; p). 
J=O 

Here v is any real number for which aj(j + v)! is finite for all j. It is shown in 
Section 4 that, under the assumption on f(z) mentioned above, the series in (2.1) and 
(2.2) converge for sufficiently small z and have finite radii of convergence as 
indicated. Moreover, these radii of convergence are independent of v. 
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The function h,(f; z; p) is defined by series (2.2) for values of z satisfying 
z < R( p). It is defined for other values of z by analytic continuation. When there 

are branch cuts they are to be located between the branch singularities at z = s1 and 
z = s2 in such a way that, when z is a point on the branch cut, 1/z is on a straight 
line connecting 1/sI to 1/S2- 

If we are given p1 I/=P2 and R(f; p1) > R(f; P2), it follows from Criterion 1.8 
with k1 ((j + v)!)I/j that the series (1.4) for f(z; p1) converges faster than the 
series for f(z; P2). Consequently, Popt, the value of p for which the series for f(z; p) 
converges most rapidly, may be characterized as the value of p which maximizes the 
radius of convergence R( f; p) of the series (2.2) for h,( f; z; p). 

Definition 2.3. When f(z) is an entire function of order 1, Popt and R0pt( f ) are the 
unique quantities which satisfy 

(2.3) Ropt(f ) = R(f; Popt) > R(f; p) Vp 7i4Popt- 

It is shown in Section 3 that these quantities are unique. 
The problem of determining the radius of convergence of h,( f; z; p) may at first 

sight seem difficult. However, in some trivial and nontrivial cases it may be 
accomplished if h,( f; z) is a function, the location of whose singularities is known. 
To show this we first establish the following 

THEOREM 2.4. 

(2.4) h,(f; Z; - ( + V(f; I+PZ) 

Proof. This is established by series manipulation. When Ipz < 1, we may use 
(2.1), together with the expansion 

(2.5) (1 pz)( 
+ (PZ- ) 

/=0 

to express the right-hand side of (2.4) successively in the forms 
00 00 00 . 

aj a(j + v)!zJ(l +pz)'- a 1(j + v)!z E (-pz 
j=0 1=O 1=0 

(2.6) 00 k 
- zk'(k + v)! E (-p)'ak_l/l!. 
k=O 1=0 

In view of (1.5) and (2.2), this is identical with the left-hand side of (2.4). The result 
follows for all p, z by analytic continuation. D 

This result allows us to specify the locations of the singularities of h,( f; z; p) in 
terms of locations 1/a, of the singularities of h,( f; z). To this end we define a set 
Y' = (all 2, - * * * - 

Definition 2.7. a, 7& 0 is an element of L if and only if 1/a, is a singularity of 

h,( f; z) in the finite part of the complex plane. 
al = 0 is an element of L if and only if z+l'h,(f; z) has a singularity at infinity. 
Note that since the radius of convergence of h,( f; z) is R( f; 0), 

(2.7) uI I/R(f;0) Vi. 

When hT ( f; z) has branch cuts, a may depend on i continuously. 
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THEOREM 2.8. For p :7 0, the singular points of h,(f; z; p) in the finite part of the 
complex plane are Zi = -l/(p - a) for all elements ai E E. 

Proof. In view of (2.4), corresponding to each singularity of h,(f; z) where 
c aI > 0, there is a singularity of h,( f; z; p) at z = zi where zi/(l + pzi) = 1/ai. 

This gives z= -1/(p - a). Moreover h,,( f; z; p) is regular at all other values of z 
in the finite part of the complex plane except possibly at z - 1/p. 

The situation at this point is clarified by rewriting (2.4) in the form 

(2.8) hv(f; Z; P) = (1 + )h(f 1f p 

Clearly h,(f; z; p) has a singularity at z = -1/p if and only if z1+7hg,(f; z) has 
singularity at infinity. Note that we used here the circumstance that p # 0. D1 

The radius of convergence R( f; p) of the series for h,( f; z; p) coincides with the 
distance of the nearest singularity of h,( f; z; p) to the origin. Thus 

(2.9) R(f; p) min 

Finally, Popt is defined according to (2.3) as the choice of p which maximizes 
R/(f; p). Thus 

(2.10) Ropt(f) R(f; pop) = maxR(f; p) = max min 
p p 7-~ p -a, 

This has an elegant geometric interpretation: We recall that hv( f; z) has a finite 
radius of convergence R( f; 0). Thus none of the singularities 1/ai of h,( f; z) has 
modulus less than R( f; 0), so 

(2.11) Ia,I< 1/R(f;0). 

The specification (2.1 1) may be written in dual form as 

(2.12) (Ropt(f)) (R(f; Popt))' min(R(f; p))1, 

-mminmax Ip - a, 
p z 

Clearly then Popt is the value of p which minimizes the function max p - a, . In 

other words we have: 

LEMMA 2.14. Popt is the center of the smallest circle in the complex plane whose 
closure includes all points a, contained in E. 

In Section 3, we shall determine several general properties of po,pt based on this 
geometric characterization. For example, we shall show that Popt is uniquely defined; 
that when the coefficients a1 of the expansion of f(z) are all real then P is also real. 
In addition, when f(z) is of definite parity, that is either f(z) = -f(- z) or f(z) = 
+f( -z ) for all z, then Popt = 0. 

We conclude this section by presenting some examples in which the set E is small 
enough to identify Popt by inspection. Thus, when E contains only one element al, 
Lemma 2.14 gives Popt a 1,, and when E contains only two elements a, and a2, popt, 
being the center of the smallest circle through these two points, is clearly equal to 

2(G1 + a2). 
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Some examples are listed in Table 2.13. There the series is indicated by its 
coefficients in column 2, and the functional form if known in column 1. The 
calculation of Popt depends on the choice of v, but the result, in column 6, is 
independent of v. In simple examples like these, it is often possible to find a simple 
functional form for h,( f; z) for some value of P even though no simple functional 
form forf(z) is available. 

TABLE 2.13 

I f(z) I ak I v ( hY(f;z) I Popt If Z'opt) 

F e F k I) T 2 F F 1 
_ _ .~~~~~~~~~~~~~~~1 Z 

(1 ) I z%eZ I IT 0 ? I 1 1 1 z 

ez- 1 al 
sin Z 

I I I -Q I z/(1-z)I 1 1 1 
I (-l)-T 

- 
(k(k! kI I I I I i 

(2) I e I 0 I? _zn(1-z)I a i i 

0 kVII even[0.1iz 

I I 1 

I I I 1 I T 
I 0,1 I I 

I I I Ii I I 

6 I 1 1 T 

13) k(k!) k > 1 I 0 F -Kn(K-z) > 0,1 I 2 

the h(F Z -Kh(f Iz and 

1 1 1 1 F 1 1 f1 

Someofthese examples ill e g l r . Tu E (l-z) 0,1 

themethodwoksasexpee . l I . I 
I k+l I I I I I 

(-1) /(k(k!)) k odd I Qn+:) -,lO O I 

I ~ ~ ~ ~ ~ ~ ~~I I I i I 

(6) 1 _ 1 _s (kl n/4 I 0 | l-z l+i, l-i I 
I (/2 k1 kI I I 

(z-l) +1 1 1__ 
_ _ 

1__ 
_ _ _ _ _ 

This list can be extended by simple scaling. For example when 

F(z) =Kf(Xz), c, A> 0, 

then hr(F; z)-Kh>(ft; Az) and 

Care should be taken in other linear processes. For example, when 

F(z) =f z J() and hr(F; z) = h^(t; z), 

p0p1( F) is not linearly related to p0p1( J). It is however simple to show that 

(2.15) Ppt~(F) eminPpt~(Ji)- 

Some of these examples illustrate general results. Thus Example (1) verifies that 
the method works as expected for a polynomial. In Example (2) we see that 
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f(z; ptw) is an even function of z. There is a simple theorem to the effect that if the 
set f(z; p) includes an even function or an odd function, then this is the member of 
the set which has the most rapid rate of convergence. This theorem follows 
immediately from another, illustrated in (5), to the effect that when f(x) is even or 
odd, Popt = 0. This is proved in Section 3. 

Example (6) is one which arose in the practical calculation (Gabutti [2]) of 
integrals of the form 

(2.16) I(O; w) e 
- 
-JO (Wt)O(t2)t dt 

0 

for various values of X and various functions 0. Using known properties of the 
Bessel function, one may expand 0(t2) in a Laguerre series expansion. Setting 
z = co2/4, we find 

1 00 

(2.17) I(O; 2v/) = eZ a z, 
k=O 

where ak is the Laguerre expansion coefficient 

(2.18) ak =k! etLk()(t) dt. 

The entry in Example (6) is the value of this coefficient when 0(t) = sin t. 

3. Further Results. In Section 2, we showed that Popt could be determined as the 
minimizer of a function R( f; p)- 1 

(3.1) R(f; pY)l max I - oil 

where L includes all values ai for which the function h,( f; z) has singularities at 
z = 1/al, together with ai = 0 when zv+ lh,(f; z) has a singularity at infinity. This 
section is devoted entirely to a discussion of the nature of R( f; p)- 1 in terms of a 
given set E. The principal results of this section are Theorems 3.8, 3.11, and 3.12 
below. 

First we recall that hv( f; z) has a finite nonzero radius of convergence R( f; 0). 
Thus all elements ai satisfy 

(3.2) la, 1< I/R(f; 0) 

and so lie in a finite region of the complex plane. Next we recall that h,( f; z) may 
have branch singularities. However, we stated in Section 2 that any branch cut 
should be located so that, when z = 1/a' lies on the branch cut, a' should lie on a 
straight line connecting the corresponding branch singularities z = 1/al, z = 1/a2. 
With the branch cut arranged in this way, it is clear that, for all a', Ip - a' 
max I P-a I, Ip P-2 1 . So when evaluating R( f; p)<-l given by (3.1) above, only 
branch singularities and poles need be included. Thus 

(3.3) R(f; p)-1 lax -a, 

where E' is a finite subset of E which omits singularities on branch cuts other than 
the ones at the terminations of the branch cuts, i.e., the branch singularities. 

Theorems 3.4 and 3.9 below are geometric in nature. Let the elements of E' be 
represented in the complex plane by S1, S2,... and p by P. Then R( f; p)- 1 is the 
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radius of the smallest circle having center at P which passes through or contains all 
the points S,. 

THEOREM 3.4. Let 1 be any line in the complex plane and P a point on this line, 
parametrized by its distance t from an origin 0 on this line. Let 

F(t) max PS. 

Then F(t) is a convex downward continuous function of z whose right-hand derivative is 
a piecewise continuous monotonic increasing function of t. 

Proof. Let Di be the foot of the perpendicular from SI onto 1, and let SI DI = d, and 
ODI = li,. Clearly 

(3.4) (PS,)- = d + (1-t)2 

and F(t) = maxi I(t), where 

(3.5) (A (t) = Vd 2 + (11 - . 

First we note that oi(t) is convex downward; that is, f<(t) is monotonic increasing 
in t. Moreover, when SI and Sj refer to two distinct points, k1(t) and kj(t) are distinct 
curves which intersect either once (when li 7& lJ) or not at all (when 11 - lIJ). If they 
do intersect say at tij, then 0k(t,1) 7t,1). Thus the curve 

(3.6) F(t) = max i(t) 

is continuous and its derivative is piecewise continuous. At points between these 
discontinuities F(t) coincides with some pi(t) and so, between the discontinuities 
F'(t), the right-hand derivative is monotonic increasing. 

Let t be a point on F(t) where there is a discontinuity. Since F(x) = max, +1(t) 
clearly in some E neighborhood of t, 

F(t) = kR(t) > kL(t), t E (t, t+ c), 

F(t) = (AL(t) > (AR(t)' t E (t -tot) 

Since 4L(t) intersects OR(t) at t = t, it follows that k'(t) > 0j(t), and since the 
derivatives of both OR(t) and OL(t) are monotonic increasing, we have 

F'(t - e) = O (t - -) < f'(0) < f'(0) = F'(t) < fR(f + c) = F'(t + c) 

This establishes the conclusion of Theorem 3.4, namely that F(t) is a convex 
downward function as its right-hand derivative is monotonic increasing for all t. a 

COROLLARY 3.7. The function F(t) of Theorem 3.4 has a unique minimum. 

COROLLARY 3.8. The function R - 1( f; p) has a unique minimum and no maxima nor 
saddle points. 

If this were not true, one could construct a line (either through two distinct 
minimum points or through a saddle point) which violated the result of Theorem 3.4. 

This minimum value of p is denoted by Popt. 

THEOREM 3.9. If the points SI are located in such a way that there is an axis of 
symmetry, then pt_ lies on this axis of symmetry. 
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Proof. Let l+ be the axis of symmetry and P be a point not on this axis. Let / be a 
line perpendicular to l+ which intersects l+ at 0. Then the function F(t) of Theorem 

3.4 for / is clearly symmetric about 0. However, a symmetric convex downward 
function has its minimum at the point of symmetry. Thus, on the line 1, F(t) has its 
minimum at 0 and so, for t 7& 0, F(t) > F(O). This establishes that Popt cannot be off 
the axis of symmetry. D 

THEOREM 3.10. If the points S, are located in such a way that there is a point of 
symmetry 0, then Popt is the point of symmetry. 

Proof. Let p be any point other than the point of symmetry 0, and let / be the line 
containing P and 0. The function F(t) of Theorem 3.4 for / is clearly symmetric 
about 0. Since F(t) is convex downward, and symmetric, it has its minimum at 0. 
Thus F(t) > F(O) giving R(f; p)-1 > R(f; p(O))-1, and it follows that p(O), the 
value of p at the point of symmetry, is Popt. a 

We now relate these results to the original function f(z). 

THEOREM 3.1 1. Vhen the coefficients aj are all real, then Popt is real. 

Proof. When the coefficients aj are all real, the singular points of h,( f; z) are 
either real or occur in complex conjugate points. Thus the point configuration S1, 
S2,... is symmetric about the real axis. In this case, it follows from Theorem 3.9 that 

Popt lies on the real axis and so is real. 

THEOREM 3.12. When the function f(z) is symmetric or antisymmetric, i.e., f(z) 
?f(z) for all z, then is zero. 

Proof. In this case the function h,( f; z) is symmetric or antisymmetric and so its 
singularities are symmetrically located with respect to the origin. This theorem is 
then a direct consequence of Theorem 3.10. 

The following is a direct corollary. 

COROLLARY 3.13. Jhen f(z) = e qzg(z ) and g(z) is symmetric or antisymmetric 
then Popt = q. 

4. Remarks about Functions not Entire of Order 1. In this section, we discuss the 
reasons why the series acceleration technique is not likely to be effective unless f(z) 
is an entire function of order 1. We shall also show that the radius of convergence 
R( f; p) of h,( f; z; p) defined in (2.2) is independent of P. The discussion is based 
on the order-type classification of entire functions discussed in Hille [1, pp. 182-233]. 
In terms of 

(4.1) M(r; f) max If(z) l 
lzl= r 

the entire function f(z) is of order IL if 

(4.2) lim sup log log M 
r o log r 

and if 0 < IL < oo, it is of type T if 

(4.3) lim sup r- log M T. 
00o 
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When t is a positive integer and p(z) is a polynomial, the function f(z) = 
p(z)exp(Tz') is of order A and type T. We shall not discuss cases where y is infinite, 
or T is zero or infinite. The results we shall require are the following. 

When both y and T are finite and nonzero, the rate of increase of the derivatives 

ajj! of f(z) is given by 

(4.4) lim sup n j an K"= e,uT. 
nf 00 

When f(z) is not entire 

(4.5) lim sup j an il/n - l/Rf, 
n - oo 

where Rf is the radius of convergence of the power series expansion of f(z). 
When fJ(z) and f2(z) are entire functions of order y and A2, respectively, and 

I-2 > ,, then the productf1(z)f2(z) is an entire function of order A2. 
A very simple argument, based on (4.4), (4.5), and Criterion 1.8, establishes a 

familiar hierarchy for the ordering of series in terms of rapidity of convergence of 
the power series. Briefly, an entire function converges more rapidly than one which 
is not entire. Of two entire functions, the one having lowest order y converges faster, 
and, when they have the same finite nonzero order, the one having lowest type T 

converges faster. 

THEOREM 4.6. Let f(z) - ok Oa Zk, and 
00 

(4.6) h^(f; z) = E PkZ, 
k=O 

where 
(4.7) Pk (k + P)!ak 

and v is arbitrary. Then h,( f; z) has a finite nonzero radius of convergence R if and 
only if f(z) is an entire function of order 1 and type T. In this case R = 1/T. 

Proof. The limiting form of Stirling's formula for the factorial function is 

lim e (n !)Iln= 
nf--oo n 

From this it is trivial to establish that 

(4.8) lim -e((n+v)!)ll/n I forallfinitev. 
n- o n 

Using this, together with (4.5) and (4.7) above, it follows that, when h,( f; z) has a 
finite nonzero radius of convergence R, 

(4.9) R = lim sup IIBnl /= 
lim sup(n + lan lim sup 

nin i/ R " e 

Now, when f(z) is not an entire function, it has a finite radius of convergence 

(4.10) - = lim suplani 
Rf 

and if this limit exists, the limit in (4.9) is infinite. When f(z) is an entire function of 
order y and type T, we may employ (4.4) to put (4.9) in the form 

(4.11) 1 I-(lim supn| in\a / = =-(eT)1/limn' 
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This leads to an infinite value for R when IL < 1 and a zero value for R when I > 1. 
When IL = Ithis gives R = 1/, establishing the theorem. D 

Naturally we now identify f(z) and hv( f; z) in Theorem 4.6 with the functions of 
the same name in (1.1) and (2.1), an so identify R with R( f; 0) of (2.2). This theorem 
establishes that R( f; 0) is independent of v. 

Moreover, if we replace f(z) by f(z; p) and ak by ak(p) in the statement of this 
theorem, it becomes necessary to replace h,( f; z) by h,( f; z; p). The result of this 
modified theorem includes the corollary that R( f; p) of (2.2) is independent of v. 

The technique, described in Section 1, could be applied to any series. However, 
the theory of Section 2 requires a nonzero finite value of R( f; 0). Theorem 4.6 above 
shows that the theory of Section 2 applies only when f(z) is an entire function of 
order 1. 

It is clearly not advantageous to use the technique when f(z) is an entire function 
of order IL < 1. In this case, unless p = 0, f(z; p) = e-Pzf(z) is an entire function of 
order 1 and so its series converges more slowly than that of the original series f(z). 

When f(z) is an entire function of order I > 1 and type T or is analytic with 
radius of convergence Rf, f(z; p) has the same characteristic, and Criterion 1.8 
above yields an identical rate of convergence for f(z) as for f(z; p). 

5. Remarks About Numerical Calculation. In practice one can envision at least two 
different types of application. On one hand there is a situation where one is 
investigating properties of special functions. For example, the sum z k/kk! occurs 
in one formulation of the special function Ei(z). It may well be of intellectual 
interest to reexpress this sum. On the other hand is a situation in which the 
coefficients a1 are expensive or difficult to compute. In the problem which motivated 
this investigation ai is a Laguerre expansion coefficient 

0r 

aj = e-tLj(t)0(t) dt, 

which has to be determined numerically, the calculation becoming significantly more 
difficult as j is increased. In a calculation of this sort, after the values a J, j 
0, 1,2,... ,N, have been calculated, the work involved in calculating aj(p), j 
0, 1,... , N, for several values of p may be much less than that of calculating the 
single further coefficient aN+ I. In this case we may seek to calculate a numerical 
approximation to pt- 

We have used two approaches. One involves minimizing functions like (aN(p))2 
or (aN(p))2 + (aN- i(p))2 numerically. One may take advantage of the circum- 
stance that aaN( P P)/- = -aN- 1( p) in such a calculation. The other involves taking 
advantage of the fact that ptP is independent of z, taking z = z0 where z0 is small 
enough so that f(z) may be approximated to sufficient accuracy with N terms of its 
expansion and minimizing either the square of 

M 

(5.1) EM(zo, p) = ePZo E aj(p)zJ -_ (zo) 
p0 J =O 

or a sum such as 
N 

(5.2) z (Ej(z05P)) l 
U= 
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The reader should note that the value of p which minimizes these functionals is not 

Popt( f ) but is a function depending on N and M and zo. However, it may be close to 

PoptI 
In some cases these methods worked well. In others, in which the theoretical result 

was available, they provided only crude approximations to Popt. But in some cases of 
practical interest we found that a value of p determined by these means was more 
useful than the theoretical value. That is, what we actually required was to attain as 
accurate an approximation as possible using only N terms. For given finite N, the 
value of p required is close to the minimum of (5.2), but need not be particularly 
close to Popt. 
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