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Class Number Computations of Real Abelian 
Number Fields 

By F. J. van der Linden 

Abstract. In this paper we describe the calculation of the class numbers of most real abelian 
number fields of conductor ? 200. The technique is due to J. M. Masley and makes use of 
discriminant bounds of A. M. Odlyzko. In several cases we have to assume the generalized 
Riemann hypothesis. 

Introduction. It is well known that the class number h of an abelian number field 
can be written as h = h h -, where h ? is the class number of the maximal real 
subfield K? of K and h - is an integer. We can determine the relative class number h - 
in a straightforward way, using the complex analytic class number formula (see [7, 
Kap. III], or [9, Chapter 3, Section 3]). For the full cyclotomic fields Q(n), with 

4O(n) < 256, and their subfields, one can deduce h- from the tables of G. Schrutka 
von Rechtenstamm [15]; here Dn denotes a primitive nth root of unity, and 40 is the 
Euler function. 

For the class number factor h + the complex analytic class number formula is less 
useful, since it requires that the units of K? be known. Alternative techniques have 
been developed by J. M. Masley [13], who computed the class number of almost all 
real cyclic number fields of conductor < 100; here the conductor of K is the least f 
for which K C Q(tf ). 

In this paper we apply Masley's techniques, with a few additions, to determine the 
class numbers of a large collection of real abelian fields of conductor < 200; see 
Section 1 for a precise statement of our results, some of which assume the 
generalized Riemann hypothesis. 

An important ingredient of Masley's method is the use of discriminant lower 
bounds proved by A. M. Odlyzko [14]. These lead to an upper bound for the class 
number of a real abelian number field, provided that its conductor, or more precisely 
its root discriminant (see [13, Section 1]), is sufficiently small. It follows that this 
method can only be used for a finite number of real abelian number fields. The 
existence of infinite class field towers shows that this remains true after any future 
improvement of Odlyzko's bounds. In fact, examples of J. Martinet [12] show that 
the method will never apply to fields whose root discriminant is larger than five 
times the present bound, under assumption of the generalized Riemann hypothesis. 

The structure of this paper is as follows. Section 1 contains our results and Section 
2 lists the theorems used in the proofs. The proofs themselves are largely suppressed. 
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Instead we present, in Section 3, a recipe which any reader can use to check our 
results for any given conductor. In Section 4 we illustrate this for the conductors 
111, 136, 145, 163, 183; the last four of these are the only conductors for which we 
found class numbers greater than the genus factors; see Section 1. Finally, in an 
appendix we give an extract from unpublished tables of discriminant lower bounds 
due to A. M. Odlyzko [14]. We are grateful for his permisssion to reproduce these 
tables. 

We denote the end of a proof by EL. 

1. Main Results. Let K be a real abelian number field with class number h(K). 
The conductor f( K) of K is the least m for which K C Q(tm), with Dm a primitive m th 
root of unity. By GRH we denote the generalized Riemann hypothesis for the 
zeta-function of the Hilbert class field of QGf(K))- 

THEOREM 1. Suppose that f(K) = q is a prime power. Then h(K) = 1 if +O(q) < 66. 

THEOREM 2. Suppose that f(K) = q is a prime power, and assume GRH. Then 

h(K) =4 if q =163, 

h(K) = 1 for all other Kfor which4(q) < 162. 

In order to state results for fields with a non prime power conductor we need 
some definitions. Let G(K) be the genus field of K, i.e., the maximal totally 
unramified extension of K which is abelian over Q. It is contained in Q(Df(K)), and it 
can be determined as follows. Let G*(K) be the smallest field containing K which is 
a composite of abelian extensions of Q of prime power conductors. Then G(K) = 
G*(K) n R; see [13, Section 2]. It is clear that K= G*(K) = G(K) if f(K) is a 
prime power. The equality K = G(K) is true for many other fields as well. We write 

g(K) = [G(K): K]. 
By H(K) we denote the Hilbert class field of K, i.e., the maximal totally 

unramified abelian extension of K. By class field theory,we have h( K) = [ H( K): K]. 
Clearly H(K) contains G(K), so h(K) is divisible by the genus factor g(K). 

THEOREM 3. Suppose that f(K) = f is not a prime power. Then 

h(K) = 2 - g(K) = 2 forK= Q(t136)+ 

h(K) =g(K) forallotherKforwhichf<200,4(f)<72,f 148,f #? 152, 

h(K) = g(K) forf = 165. 

THEOREM 4. Suppose that f(K) = f is not a prime power, and assume GRH. Then 

h(K) = 2* g(K) = 2 forK= Q(D136) 
+ 

h(K) = 2 g(K) iff = 145 and X145 K, 

h(K) = 4 g(K) = 4 iff = 183 and 121 [K: Q], 

h(K) = g(K) for all other K with f < 200. 

If we do not assume GRH in Theorems 2 and 4, then h(K) is at least divisible by 
the value it is claimed to be, and there is a lower bound on the prime powers 
occurring in their quotient. This lower bound is found in the course of the proof. 

2. Auxiliary Theorems. In this section we state some theorems used in the proofs 
of Theorems 1-4. 
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Let K be an algebraic number field with [K: Q] < 00. We denote by C(K) its 
rings of integers, and by O(K)* the unit group of C(K). The discriminant of K over 
Q is denoted by AK' The notations h(K) and H(K) have the same meaning as in 
Section 1. If LIK is a Galois extension we denote its Galois group by Gal(LIK). 

The following theorem provides us with a good upper bound for the class number; 
for Tables 1 and 2, see the appendix. 

THEOREM 5. Let (A, E) be a pair appearing in Table 1, and K a totally real number 
field of degree n over Q for which j / n < A. Then we have 

h(K) <El (n log A - log A)- 

If the zeta-function of H(K) satisfies the generalized Riemann hypothesis, then the 
same is true for pairs (A, E) appearing in Table 2. 

Usually the best results are not obtained by taking A to be the smallest value such 
that A > Al' n. 

Proof. Tables 1 and 2 are abstracted from tables computed by A. M. Odlyzko [14]. 
He proved that lower bound AK > An - e-E for any totally real number field K and 
any pair (A, E) from these tables, assuming GRH in case of Table 2. Applying the 
bound to H(K), we find 

A(K) >An-h(K) . e-E. 

The theorem follows by taking logarithms. C] 
Let LIK be a cyclic extension of number fields with [L: K] = n. Denote by a a 

generator of Gal(LIK). For a prime number p not dividing n, let Clp(L) be the 
p-primary part of the class group of L, and 

Cl1(LIK) = {ta Clp(L): aDn(a) = 1), 

where O?n is the nth cyclotomic polynomial. It can be shown, using [20, Theorem 1], 
that Clp(L/K) consists of all elements of Clp(L) with norm 1 to all intermediate 
fields L' # L of LIK. 

THEOREM 6. Let MIK be an abelian extension of number fields, and p a prime 
number not dividing [M: K ]. Then we have 

Clp((M) c E Cl (LIK), 

where the direct sum is over all intermediate fields L of MIK for which LIK is cyclic. 

Proof. See Frohlich [3, Theorem 3.1]. C] 

COROLLARY 7. If M, K, and p are as in Theorem 6, then: p I h(M) - 3LIK cyclic 
(possibly K = L) with L C M and p I h(L). El 

THEOREM 8 (Rank). Let LIK be a cyclic extension of number fields, and p a prime 
number not dividing n [L: K]. Then #Clp(L/K) is a power of pf, where f is the 
smallest positive integer for which p f =1 mod n. 

Proof. Let a be as above, and a E Clp(L/K), a =# 1. Suppose that ad(a) = a, 
where d divides n, d # n. Denote by L' the intermediate field of LIK with 
[L': K] = d. Then on the one hand the norm NL/L'(a) equals an/d, and on the 
other hand NL/L'(a) = 1. From p t nld it now follows that a = 1, a contradiction. 
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This proves that the stabilizer of a in Gal(LIK) is {1), so the orbit of a under 

Gal(LIK) contains n elements. This is true for all a =# 1, so # Clp L/K) 1 mod n, 
and the theorem follows. D 

Theorem 8 is a more precise version of the rank corollary of J. Masley [13, (2.15)]. 
It is a very useful theorem because for many primes, pf exceeds the class number 
bound from Theorem 5. 

THEOREM 9 (Reflection). Let p be a prime number, and m a positive integer. If 
M =l.c.m.(p, m) we have 

p I h+ (Q(tm)) > P I h(Q(M))- 

Proof. See Masley [13, (2.22)]. E] 

THEOREM 10. If p is a prime number with p < 125000, then p t h+(Q(tp)). 

Proof. See Wagstaff [19]. E] 

THEOREM 11. Let LIK be a p-extension, i.e., a Galois extension with Gal(LIK) a 
p-group. Let P be a set of (finte or infinite) primes of K and q a prime of K. Suppose 
that LIK is unramified outside P U {q}. If pI h(L), then there exists a cyclic 
extension MIK of degree p that is unramified outside P. 

Proof. See Masley [ 13, (2.6)]. E] 
If we take P = 0, we deduce 

COROLLARY 12 (Pushing Down). Let LIK be a p-extension with at most one 
ramifying prime. Thenpj h(L) =pj h(K). D 

THEOREM 13 (Pushing Up). Let LIK be an extension of number fields. Then we 
have h(K) I h(L) - [L: K]. If no intermediate field M # K of L/K is unramified over 
K, then h(K) I h(L). 

Proof. See Masley [13, (2.3)]. D 

THEOREM 14. Let L/K be an abelian extension. Suppose that M is a field with 
L C M C H(L) for which MIK is an abelian extension. Then for the relative 
conductors we have 

fM/K LIK- 

Proof. Immediate from the definition of relative conductors, see for example [8, 
IV, Section 7.3], and the fact that the conductor f M/L = 1. 

For the next two theorems we need a definition. Let K # Q be a real, abelian 
number field of conductor f. One can show that 7 = (2f - )/(Da - ) is a 
unit in Q(tf)+ if (a,2f) = 1. The group CK = (-1, N(-qa): (a,2f) = 1) where 
N: Q(f )+ -* K is the relative norm, is called the group of cyclotomic units of K. It is 
a subgroup of C(K)*. We denote by Ck the subgroup of C(K)* generated by the 
group CL, with L ranging over all subfields L # Q of K (notice that different 
subfields can have different conductors). 

Hasse has proved the following two theorems: 

THEOREM 15. Let K be a real abelian extension of degree n of Q. Suppose that all 
primes that ramify in K/Qfactorize as p @(K) - Vnp in P(K). Then 
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h (K) = Index [ ' (K)*: CK] 11 n 
p np 

where the product is taken over all primes that ramify in K/Q. 

Proof. See Hasse [7, II, Section 1 1, Satz 3]. C] 

THEOREM 16. Let KIQ be a real cyclic extension of degree n. Then 

h(K) = Index['(K)*: CK] 

Proof. See Hasse [7, II, Section 19, Satz 9]. C 
There are more ways to define "cyclotomic units" and to get information about 

the class number from them. See, for example, Leopoldt [10], Lang [9] or Sinnott 

[17], [18]. 

3. The Proofs. In this section we describe a method by which Theorems 1, 2, 3, and 
4 can be proved. 

Let a positive integer f be given. We wish to determine the class numbers of the 
subfields K of Q(f )+ . 

Step 1. We use Galois theory to get a diagram of all subfields of Q(tf ) .. In [7] 
one can find diagrams that occur often. We use existing tables to find the class 
number of some fields occurring in this diagram. For fields of degree 2 and 3 we use 
tables from [1] and [5]. For fields of degree 4 and 6 one can use tables from [6] and 
[1 1]. The latter two tables were not actually used in the proofs because they were not 
yet available. For fields with small conductors one uses the tables from [ 13]. 

For the remaining fields one determines the genus factors (see Section 1). Now, by 
using Theorem 13 (Pushing Up) we can get additional class number factors. Let us 
denote by g'(K) the resulting class number factor. 

Step 2. We calculate A K for each K C Q(Df )+, e.g., by using the conductor 
discriminant product formula [8, Theorem 7.3]. We use Theorem 5 to get an 
upperbound B(K) for h(K), assuming GRH or not (only Q(G128)+ is an exceptional 
case: see appendix). 

In this stage the only possible prime divisors of h(K)/g'(K) are the primes 
p < B(K)/g'(K). Let such a prime p be fixed. In the following steps we determine 
whether p divides h(K)/g'(K), and if so, to which power. 

Step 3. For most primes p not dividing [K: Q] we can use Theorems 6 and 8 
(Rank) and Corollary 7 to prove that p does not occur in h(K)/g'(K). If p does 
divide [K: Q], it may be possible to apply these theorems to a base field different 
from Q. In the case K= Q(f ) ? we can, for some primes, use Theorem 9 (Reflec- 
tion) in combination with [15], or Theorem 10. for subfields of Q(1f)? we can then 
apply Theorem 13 (Pushing Up). 

Now we are left with only a few primes p. Typically these are primes p dividing 
n = [ K: Q], or primes p of which a small power is 1 mod n. 

Step 4. This step is only applicable if p I n. First use Corollary 12 (Pushing Down), 
when possible. In other cases, select a subfield Ko of K for which K/Ko is a 
p-extension. Using Theorem 11 or other group-theoretic arguments (cf. Section 4), 
we can prove that p I h(K)/g'(K) implies the existence of an abelian extension 
M/Ko with prescribed degree and ramification properties; here Theorem 14 is 
sometimes useful. Class field theory tells us that the existence of M as above is 
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equivalent to the existence of a quotient group of a ray class group of Ko having 
certain specified properties; cf. [2, Chapter XI] or [8, Appendix 2, Section 2]. In 
many cases it is easy to disprove the existence of this group by calculations with 
units of KO; for this it is convenient to choose Ko as small as possible. 

In a few cases, cf. Section 4, we find that such an M does exist. Then we may get 
an unramified extension of K, and a new class number factor. In this cases we 
update g'(K), and we redo the previous steps, when necessary. 

Step 5. In this step we use Theorems 15 and 16. This is the only step for which we 
use an electronic computer. 

Let G = Gal(K/Q), n = [K: Q], and let p be a prime number not dividing 2n. 
We know from Theorem 15 or 16 that h(K) = m ? (E C), where E = 6(K)* and 
C C E is generated by cyclotomic units. Here m is a constant that is easy to 
determine, and that is built up from prime factors of n. Hence p t m, and p I h(K) if 
and only if pI #(E C). So to prove that pt h(K), it suffices to prove that 
Ep n C= CP. 

To prove this we make use of the known structure of CICP as a Z[G]-module. It 
follows from standard facts of representation theory of finite groups, cf. [16, III, 
Section 2], that CICP as a Z[G]-module is isomorphic to Fp[G]/Fp . Tr, where 
Tr = EaeG a. This makes it easy to determine the minimal submodules of CICP; cf. 
the example in Section 4. Let them be C1CP ,..., CI CP; then t < n-1. We choose 
a Ic C, - CP for1 r i ? t. 

If Ep n c # cP, then Ci C EP for some i, so ai C EP. To obtain a contradition 
from this, it suffices to find, for each ai, a prime q of @(K) for which p Nq - 1 and 
aNq-)/p E 1 mod q. To simplify the computations, we choose q to be a prime lying 
over a prime number q that is 1 mod l.c.m.(p, 2f). If the test fails for some i and 
many choices of q, it is likely that ai is in fact a pth power, and this can then be 
verified by other means. This, however, did not occur for the cases needed in the 
proofs of Theorems 1, 2, 3, or 4. 

4. Examples. In this section we give some examples of class number computations. 
These examples include all fields we found with class number greater than g(K). We 
will also consider the fields with conductor 111 to illustrate step 5. For most fields 
the computations are analogous to this last example. 

In the following we denote fields by capitals K, L, M, N, with an index indicating 
the degree of the field over Q. The same letter is used for fields with the same 
conductor. A double index will be used if the degree and the conductor do not 
uniquely determine the field. 

f = 163. There are four real fields with conductor 163: 

Q C K3 C K9 C K27 C K81. 

We have K3 = Q(w), where X is a zero of x3 + x2 - 54x - 169. Let a be a zero of 
x2 + (1 + c)x + 4 + o, and let a' be a zero of x2 + (1 + w')x + 4 + c', where 
W/ = 37 + 3X - 2 is a conjugate of w. 

PROPOSITION 17. Suppose that GRH holds. If K C Q(G163)+ and K # Q, then 
h(K) = 4 and H(K) = K(a, a'). 
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Proof. M. N. Gras [5] gives h(K3) = 4. Since the discriminant of x2 + (1 + w)x 
+ 4 + X is a totally positive element, which generates the square of an ideal of norm 
85, the extension K3(a)/K must be unramified. The same argument shows that 
K3(a')/K3 is unramified. Since K3(a) =# K3(a') we see that H(K3) = K3(a, a'). 
Because 163 is prime we have g(K) = 1 for all fields of conductor 163. By Theorem 
13 (Pushing Up) we have 41 h(K) for these fields. 

We get the following class number bounds using Theorem 5 (assuming GRH): 

h(Kg) < 51 for A = 112.863, 

h(K27) ? 223 for A - 147.266, 

h(K81) ? 386 for A = 162.826. 

We use Theorem 8 (Rank) for 2 and all primes from 5 up to 89, and we use 
Theorem 12 (Pushing Down) for 3. So we find h(K) = 4 for all these fields. Because 
K(a, a')VK is unramified we have H(K) = K(a, a'). C] 

f = 183. For the following proposition we need some notation. Let L3 be the cubic 
field of conductor 61. Then L3 = Q(w), where X is a zero of x3 + X2 - 20x - 9. 
Let a be a zero of x2 + cx + co, and a' be a zero of x2 + o'x + co', where ' = 
7(12 - 2X - co2) is a conjugate of w. 

PROPOSITION 18. Assume GRH. Let K be a real abelian field of conductor 183. Then 

(a) h(K) g(K) = if[K: Q] e {4,20), 
(b) h(K) 4, H(K) = K(a, a') if [K: Q] E (12, 60). 

Proof. We have the following diagram (Figure 1) of subfields of Q('183)+ = K60- 
Here The Ki are of conductor 183 and the Li are of conductor 61. Masley [13] gives 

h(L,) = 1. All g(Ki) are 1. 

6 
\60 

'30 K20 12 

L L L 

5 L3 2 

FIGURE 1 

In L3 we have 3 primes p, q, r over 3. We choose them such that 

_ 0mod p, c'_ =modp, 
=lImodq, c'-l modq, 

X-1 mod r, '= _ mod r. 
Then L3(a)IL3 ramifies only at q, r, and L3(a')IL3 ramifies only at p, q. Since the 
ideals over , q, and r are ramified in K12IL6, the extensions K12(a, a')IK12 and 
K60(a, a')IK60 are unramified, and 4 divides h(K12) and h(K60). The class number 
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upper bound for K60, assuming GRH, gives h(K60) < 10. So h(K60) E {4, 8). We 
use Theorem 13 (Pushing Up) for all odd primes to see that each h(K,) is a 2-power. 
If 21 h(K4), then, by using Theorem 11 for K41Q, we get an extension of Q of 
degree 2 in which only 3 ramifies. This is impossible, so h(K4)= 1. Now we use 
Theorem 6, with K= K4, to get h(K60) = h*(K60) * h(K20) - h(K12). From Theo- 
rem 8 with K= K4 we know that h(K12) is a power of 4 greater than 1, and that 
h(K20) and h*(K60) are powers of 16. This leaves only one possibility: h(K12) = 4, 
h(K20) = 1, h(K60) = 4. ] 

f = 136. 

PROPOSITION 19. Let K be a real abelian field of conductor 136, then 

(a) h(K) g(K) if K #Q136) I 
(b) h(K) 2 - g(K) 2, H(K) = K(V5_ + 2V2) if K = Q(136)+ 

Proof. We have the following diagram (Figure 2) of subfields of K32 Q(G136)+: 

K32 

L1 6 16,1 K 16,2 

\8 K81 8 2 

M4 
K 

K N 

M2 K2 N2 

FIGURE 2 

The K1 are of conductor 136, the field L16 is of conductor 68, the Ml are of 
conductor 17 and N2= Q(2) is of conductor 8. A double bar indicates an 
unramified extension. 

Masley [13] gives h(K) = 1 for the fields with conductor < 136. The table of 
Borewicz-Safarevic [1] gives h(K2) 2. For the remaining fields we have the 
following list: 

K h(K) g(K) G(K) 

K4,1 5 2 K8,2 
K4,2 2 1 K4,2 

K8j 6 2 K16,2 
K8,2 2 1 K8,2 

K16,1 5 1 K16,1 
K16,2 3 1 K16,2 
K32 44 1 K32 
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Using Theorem 8 (Rank) for the odd primes, we see that each h(K,) is a 2-power. 
Consider the extension K16,2/N2. In this extension only the two primes over 17 

ramify. If 21 h(K162), we can use Theorem 11 to get a quadratic extension of N2 in 
which the only ramifying prime is a prime 4 over 17. Class field theory then gives 

2 1 Index[(O(N)/p)* : C(N2)* mod t], 

because h(N2) = 1. But 1 + F2 E ((N2)* has order 16 mod ~, so this index is 1 and 
2 1 h(K16,2). Now we can use Theorem 13 (Pushing Up) to get h(K4,2) = h(K8,2) - 1, 

h(K4,1) = h(K8,2) = 2. 
It is known that K2 has strict class number equal to 4. This means that K42 

has a quadratic extension in which precisely the infinite primes ramify: 

K4,2(V-5 - 2i2). So also K32(V/-5 + 2=V2 )/K32 ramifies precisely at the infinite 
primes. Since the same is true for K32( 1 )/K32, we find that K32( 5 + 2V/2 )/K32 is 
totally unramified. So H64 K32(V5 + 2i2) satisfies H64 C H = H(K32). 

The group A Gal(H/K32) is isomorphic to the class group of K32, and it is a 
module over G Gal(K32/N2). Let a generate G. Let H' C H be the fixed field of 
A?2 -I, and let H" C H be the fixed field of A"-I. Then H" is the maximal subfield 
of H which is abelian over N2, and H' is the maximal subfield of H which is abelian 
over K4,2. Hence H64 C H" C H' C H. 

The primes ramifying in H'/K42 are two primes 2' q2 lying over 2 and two 
primes t17, q 7 lying over 17. Theorem 14 tells us that f= fH'IK42 

= K32/K42' Using 
the conductor-discriminant theorem [8, Chapter IV, Section 7.3, Theorem 7.3] we 
obtain 2 

q2p 17q 17. Class field theory then gives 

[H': K4,2] I Index[(e (K4,2)/ )*:6 ((K4,2) *modfl. 

Using that 

(-1,1 + 2,4+ 17,32 + 7 )C (K42)*, 

we calculate that this index is < 16. But we know H' D H64, so this index is > 16 
and H' H64. Then also H" H adiA.2l AU- , i (AGl)U?I A?-. But 

AU-I is a 2-group, and a has 2-power order, so (AU-')(G+?) - 1 for some N. We 
conclude that A?- 1 and H = H64. 

If now 21 h(K161), then h(K161) = 2 by Theorem 13 (Pushing Up). Then 

H(K16,1)/Q is abelian which is impossible because g(K6,l) 1. D 

f- 145. 

PROPOSITION 20. Assume GRH. Let K be a real abelian field of conductor 145. Then 
(a) h(K) =g(K) = I if v/1-45 24 K, 
(b) h(K) 2 g(K), H(K) = G(K)(a) if 145 E K, 

whereaisazeroofX2+OX-1,with = '(1 +V ). 

Proof. We have the following diagram (Figure 3) of subfields of Q(145)+ -K56: 
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K56 

K8 K28- 1 K28 2 28 3 

K Kx K K 4 1 4,2 4 3 4 14, 2 

FIGURE 3 

The Ki have conductor 145, the Li have conductor 29 and M2 Q(5) has 
conductor 5. Unramified extensions are indicated by a double bar. 

Borewicz and Safarevic [1] give h(K2) = 4, h(M2) = h(L2) = 1. Masley [13] gives 
h(Li) 1. For the other fields we have the following list, using GRH: 

K h(K) ? g(K) g'(K) G(K) 
K4,1 11 2 4 K8 
K4,2 11 2 4 K8 
K4,3 2 1 2 K4,3 
K8 5 1 2 K8 
K14,1 5 2 4 K28,3 
K14,2 3 1 1 K14,2 
K28,1 1 1 2 4 K56 
K28,2 1 1 2 4 K56 
K28,3 2 1 2 K28,3 
K56 5 1 2 K56 

By Theorem 8 (Rank) we find that h(K142) 1. By the above table, all other class 
numbers are 2-powers, and h(K43) = h(K28,3) 2. 

The extension M2(a)/M2 is only ramified at one prime over 29. The extension 
M2(a')/M2 is only ramified at the other prime over 29, where a' is a zero of 
X2 + (1 - O)X - 1. Because K43(a) = K43(a'), the extension K43(a)/K43 is un- 
ramified, and for all fields K containing K2 we get K(a) C H(K). 

Let H = H(K8). The group A = Gal(H/K8) is isomorphic to the class group of 
K8, and it is a module over G = Gal(K8/M2). Let a be a generator of G. We denote 
the fixed field of A?2 - by H' and the fixed field of A'-' by H". Then H" is the 
maximal subfield of H which is abelian over M2 and H' is the maximal subfield of H 
which is abelian over K43. Hence H16 = K8(a) C H" C H' C H. The primes ramify- 
ing in H'/K43 are two primes 4 5 and q5 lying over 5 and two primes t 29 and q29 
lying over 29. By Theorem 14 we get fH'/K43 = 5q5 29q29- 
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Let F C H' be the field corresponding to the inertia group of 4 5 in Gal(H'/K43). 
Then f F/K43 I q 5 29q 29, and [H': F] = 2. Class field theory gives: [F: K4,3]1 2 - 
Index[(((K4,3)/q 5 29q 29)*: ((K4,3)* mod q 5 29q 29], because h(K4,3) = 2. Using 
that (-1, (I + F5 ), (5 + 29), 1(13 + 7 F5 + 3 29 + 145 ) C 6(K43)*, we find 
that this index is odd, so [F: K43] = 2 and [H': K43] = 4. But then we have 
H' = H" = H16 and A'-I = A' -l. An argument as in the proof of Proposition 19 
then shows that A-I = 1. So H = H16 = K8(a), and h(K8) = 2. 

Now we can use Theorem 13 (Pushing Up) to find b(K41) = h(K42) = 4, and 
Theorem 8 (Rank) plus Theorem 6 to find h(K28j) = h(K28,2) = 4 and h(K56) = 2. 

f 

PROPOSITION 21. Let K be a real abelian field of conductor 11 1. Then h(K) 1. 

Proof. We have the following diagram (Figure 4) of subfields of Q(t'1II)' K36: 

K 6 

9 1 1 8 6 K12 

L\L K K 

L3 L2 

FIGURE 4 

The K1 are of conductor 111 and the Li are of conductor 37. From the tables of 
Masley [13] we see that h(L,) = 1. Upper bounds for the remaining class numbers 
are: 

K h(K) < 

K4 6 
K12 15 

K36 63 

Since 2- 3 - 371 h-(Q(t 1 l)), we cannot apply Theorem 9 (Reflection) for 2, 3, or 
37 (presumably a refinement of Theorem 9 can be used for 37); and for the other 
primes the tables of Schrutka von Rechtenstamm [15] do not extend far enough. 
Using Theorem 8 (Rank) we see that the only possible primes dividing h(K4) are 2 
and 5, the only possible primes dividing h(K12) are 2,3,5, and 13 and the only 
possible primes dividing h(K36) are 2, 3, 5, 13, and 37. Now we can use Corollary 12 
(Pushing Down) to get 3 1 h(K12) and 3 1 h(K36). 

The extension K12/L3 is only ramified at the prime 4 over 37 and the prime q over 
3. If 21 h(K12), we can use Theorem 11 to show that there is a quadratic extension 
M/L3 in which only q ramifies. This must be a tame ramification, so f M/L, = q. By 
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class field theory this implies 21 Index[(C((L3)/q)*: C((L3)* mod q ]. But Nq = 27 
3mod4, and -1 E ((L3)*. So this index is odd, and 2t h(K12). Now we can use 
Theorem 13 (Pushing Up) and Theorem 8 (Rank) to find that 21 h(K4) and 
2t h(K36). 

We use step 5 to get 37 1 h(K36) as follows. Let a be the automorphism of Q(G222) 
defined by t2?2 = 5222* We denote the restriction of a to K36 again by a. This is a 
generator of Gal(K36/Q)- 

We use Theorem 16. The group C = CK36 is generated as a Z[G]-module by 

a ( -1)/ (5- and 3= (-1 )/(5 -5), 

with D = 222 and =74 = t3. 

We have al'?U8= 8fi1-2 
There is a Z[G]-module isomorphism between C/C37 and F37[G]/F37 Tr, with 

Tr = 235 a'. Let Fi E Z[G] be defined by 

36 

F,i=f (a- j) forj =2,...,36. 
j=2 
ji+ 

We can calculate Fi (mod 37) by a "polynomial"-division Tr/(a - i). Put 

C 
- 

CF . C37 (2 z i - 36). 

Then the minimal submodules of C/C37 are precisely the modules 

Ci/C37 (2 - i ? 36). 

The submodule B of C generated by /B is equal to the group CL for L = L18. Since 
h(L) = 1, we know that ((L)*37 n B = B37 from Theorem 15. Using that K *37 n 
L* = L*37, we deduce that 

(*) E37 n (B. C37) = C37. 

To prove that 371 h(K36), we must show that E 37n Ci = C37 for 2 ? i ? 36. If 
(i/37) 1, then 1 + a18 S1 so Ci C B * C37, and we can apply (*). If (i/37) = -1, 
then 1 - a18 Fi, and Ci = (aF)- C37. For these i we can show that a1f is not a 37th 
power in the following way. Let 4 be a prime over 223. It is easy to compute 
a mod 4 using that, for example, 5 is a primitive 222th root of unity mod 223. Now 
we can compute aFt mod t. We know that aF, is a 37th power mod p if and only if 
a 6 F, =1 mod t. It turns out that a 6F, ZE1 mod p for (i/37) -1, 2 ? i - 36. This 
proves that 37 1 h(K36). 

For the primes 5 and 13 we can proceed in an analogous way: for 5 we work with 
cyclotomic units in K4, and we reduce modulo a prime lying over 2221; for 13 we 
work with cyclotomic units in K12, reducing modulo a prime lying over 2887. 
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Appendix. In this appendix we give an abstract from the tables of Odlyzko [14], 
which we use when we compute class number bounds. 

Table 1. Let K be a totally real field. For the discriminant we then have 

AK > A'e-E for the following pairs: 

A E A E 
18.916 5.3334 54.333 26.667 
21.512 6.0001 55.335 29.334 
24.016 6.6667 56.129 32.001 
26.406 7.3334 56.767 34.667 
28.668 8.0001 57.286 37.334 
32.780 9.3334 57.714 40.001 
36.347 10.667 58.070 42.667 
39.407 12.001 58.370 45.334 
42.018 13.334 58.624 48.001 
46.138 16.001 59.028 53.334 
49.145 18.667 59.456 61.334 
51.371 21.334 59.896 74.667 
53.047 24.001 60.704 200.01 

Recently Diaz y Diaz [21] published a table of discriminant lower bounds, not 
assuming GRH. He computed this table with techniques analogous to those of 
Odlyzko. In all cases where we derived upper bounds from Table 1, we can also get 
this upper bound or a slightly better one using the tables of Diaz y Diaz, except for 
K = Q(t11)+ . In the latter case we derive h(K) s 62 from formula (1) of [21]. 

For the class field H of Q(G128)+ of degree [H: Q] = 32h, we derive from the 
paper of Poitou [22] the following formula (not assuming GRH). 

191 7~'(3) + 4~'(2) b F7T 
32 log 2 ,> -y + log 4<T + I _-D3 4()_b 32 lo2ylg~+- 8b 8h 

+ 16h E 1 lNp F(logNtm) for all b >0, 

where the outer summation is over all primes 4 of H, and 

-x2/4b 

F(x) cosh(x/2) 

If we sum only over the primes over 2 and only for 1 s m s 8, we obtain h s 112, 
where we use the fact that the prime over 2 splits completely in H/Q('128)+, 
because it is principal. Using Theorem 8 and Corollary 12, we derive h= 1 or 
h = 97. If, however, we use the formula of Odlyzko, we could derive h s 37, which 
implies h = 1. 
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Table 2. Let K be a totally real field, for which GRH is true for the T-function of 
K. Then A K > AnEne for the following pairs: 

A E A E 
29.298 7.8187 84.656 36.044 
31.386 8.3664 94.761 48.840 
33.511 8.9400 104.174 66.559 
35.667 9.5414 112.863 91.287 
37.853 10.173 120.834 126.05 
40.063 10.837 128.112 175.22 
42.295 11.535 133.464 229.13 
44.543 12.270 138.423 300.88 
46.806 13.045 143.015 396.69 
49.079 13.863 147.266 525.04 
51.359 14.726 151.201 697.52 
55.928 16.603 154.845 929.98 
60.490 18.706 158.220 1244.2 
65.024 21.066 162.826 1937.1 
69.513 23.723 213.626 5.7672 X 1026 
73.940 26.719 

We can also obtain upper bounds, assuming GRH, by using formula (10) of [23]. 
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