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Stability Theory of Difference Approximations for 
Multidimensional Initial-Boundary Value Problems 

By Daniel Michelson 

Abstract. A stability theory is developed for dissipative difference approximations to multidi- 
mensional initial-boundary value problems. The original differential problem should be 
strictly hyperbolic and the difference problem consistent with the differential one. An algebra 
of pseudo-difference operators is built and later used to prove the stability of the difference 
approximation with variable coefficients. In addition, stability of the Cauchy problem for 
weakly dissipative difference approximations with variable coefficients is proved. 

0. Introduction. In the last two decades the mixed initial-boundary value problems 
for hyperbolic systems of partial differential equations were extensively and thor- 
oughly studied. We should especially mention the classical work of Kreiss in [7] 
where he proved the basic a priori estimate for the strictly hyperbolic systems in the 
case of zero initial data, by constructing a pseudodifferential symmetrizer in the 
plane tangent to the boundary. This result was further generalized by Agranovich in 
[1] for a wider class of hyperbolic systems and extended by Rauch in [16] and 
Sarason in [17] to the case of nonzero initial data. Later Majda and Osher in [11] 
considered also characteristic boundaries. 

On the other hand an intelligent numerical solution of these problems requires a 
stability analysis of their difference approximation based on a suitable stability 
theory. Such a theory was, however, developed only in the one space dimensional 
case, first by Kreiss in [8] and Osher in [14] for some two-step dissipative schemes 
and nonzero initial conditions and then by Gustafsson, Kreiss and Sundstrbm in [5] 
for more general dissipative as well as strictly nondissipative schemes with zero 
initial conditions. An attempt to generalize these results for multidimensional 
problems encounters two main difficulties. One is that the Fourier symbol of the 
difference operator, though consistent with the original differential equations, may 
approximate a very complicated hyperbolic-parabolic system when the dual varia- 
bles of the symbol are not in a neighborhood of zero. Although such situations 
cannot be investigated in general, some difference schemes such as Lax-Friedrichs, 
modified Lax-Wendroff and Burstein schemes, for which the symbol is a polynomial 
of one matrix, could be analyzed completely. Analysis of that type is carried out in 
[13] for the Burstein scheme and characteristic boundary. The second difficulty 
occurs in the construction of the Kreiss symmetrizer for the difference problem when 
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the dual Fourier variables are near zero. One of the conditions used in [7] for the 
original construction required the corresponding Cauchy problem with the reverse 
time to be well posed. This is certainly not true for dissipative difference approxima- 
tions. In Section 3 we show instead that Kreiss' construction applies directly to the 
dissipative case, so that one does not need the reversibility of the time in the Cauchy 
problem. 

In this paper we consider only fully dissipative schemes, thus avoiding the 
described-above first difficulty. The boundary is noncharacteristic and the initial 
condition is zero. We believe that arguments similar to those in [17] could apply to 
the case of nonzero initial condition. One should, however, note that even for 
nonzero but sufficiently smooth initial data and smooth nonhomogeneity in the 
differential equations and boundary conditions, the solution of the difference 
problem converges to the solution of the differential one (e.g. see [6]). 

We summarize now the contents of this paper. In Section 1 the definition of 
stability is given and the main results are stated. In Section 2 the difference problem. 
is linearized and the stability estimate reformulated. In Section 3 the frozen 
coefficient problem is considered and the symmetrizer constructed. In Section 4 an 
algebra of pseudo-difference operators is introduced. In Section 5 the basic a priori 
estimate for the variable coefficients case is proven. In Section 6 the stability of the 
Cauchy problem for the weakly dissipative schemes and solvability of the initial 
boundary value problem are proven. 

1. Definitions, Statements of Results. We consider a first order hyperbolic system 
of partial differential equations 

(I.l) 3(, )+ E Aj(x, t) ( +C(X + t)u(x, t) = F(x, t). 

Here u(x, t) = (u'i)(x, t),... .u(k)(x, t< is a complex-valued vector function of the 
real variables (x, t) with x -(x0, xI..xn -) = (x(, x ) and A,, C are k X k 
matrix-valued functions depending smoothly on (x, t) which tend rapidly (i.e. faster 
than any power of (I x I + I 1) t to the constant matrices A_(Jo) and C(X) as 

I x I +I t I tends to infinity. We assume that Eq. (1.1) is strictly hyperbolic, i.e. lor all 
real co (w0, w1, ... ,Co--) = (coo o-) with j co # 0 the eigenivalues of the matrix 
E_j Aj(x, t)wj are real and distinct. Denote by R -+ the set of nonnegative real 
numbers. The system in (1.1) is solved in the domain (x, t) G R4 XR'7- l X R' with 
the boundary condition 

(1.2) S(X,- , t)u(0 x_. , t) g(x-- , t), (x - t) 
E 
R - X R +-4 

and initial condition 

(1.3) u(x0) =-f(x) forx G R +XR' XR 

We assume that the boundary is noCncharacteristic, i.e. A(.(x, t) is ilolnsilgular for 
0O-O anld S(x , t) is an [1 X k] smooth matrix-valued function, where I is the 

number of positivre eigenvalues of AJ,(0 x , t)t and S(x t tends rapidly to a 
constant matrix as I x + I t I - For f 0 the well-posedness of the problei m in 
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(1.1)-(1.3) follows from the a priori estimate 

(1.4) 'qIIu(x, t)e-t't 1 + 11 u(O, x , t)e-'t 112 

s K( I F(x, t)e-tq + 112 ?II g(x , t)e-t 112) 

which should hold for any rj > o 0 and some constant K independently of the 
function u(x, t). Here 11 11 denotes the L2 norm over domains indicated by the 
arguments. The problem in (1.1)-(1.3) was investigated by Kreiss in [7], where he 
showed that estimate (1.4) follows from the so-called uniform Kreiss condition 
(hereafter referred to as UKC) and in the case of constant coefficients is equivalent 
to this condition. 

In order to define a difference approximation to the problem in (1.1)-(1.3) we 
introduce uniform grids R' in Rn and R+ in R+ with the mesh size h and consider 
grid vector functions u(x, t) defined for (x, t) E Rh X Rh. We use the notation Ej, 
j 0 O, 1, . . . , n - 1, for the displacement operator in Xj direction 

(Eju)(x, t) = u(xo,...,xj + h....-t 

and En for the one in t direction. The differential operator in (1.1) is approximated 
by a multilevel difference operator 

00 'O 

(1.5) L(h, x, t,E E") = x E ELvo(h, x, 0EoPEA Ecn? 
0= v=O ,V 

where 
n-I 

Ex = (Eo, El,... ,En1) = (Eo, E_), E = J Ej'i, 
j=l 

LvJ, o(h, x, t) are matrix-valued functions of the order k X k depending smoothly on 
(h, x, t) E [0, h0] X R+ XR , the integers ao, Po are positive and the integer multi- 
index yt varies over a finite set. We also assume that the functions Lp 8, are of the 
form 

(1.6) Lv,,,,(h, x, t) = LV,t,,(O, x, t) + hLI pL0(h, x, t) 

where Lv> 11(h, x, t) are uniformly bounded and Lvp ,0(?, x, t) tend rapidly (i.e. 
faster than any power of (I x + I t I)- 1) to the constant matrices Lv a0(0, oo) when 

I x + I t ox. The boundary operator in (1.2) is replaced by a difference operator 

-00 vO-1 

(1.7) S(h, x_ , t, Ex,SEn Ej2 Sv ,, (h, x_, t)EoPEIL Ea? 
0=o v=O ,t 

where Svp,,a satisfy the same conditions as Lv ss, in (1.6). Note that we permit the 
matrices LVO and Svo- l 1 a to be zero. Finally, the differential problem in (1. 1)-(1.3) 
is approximated by the difference problem 

(A) Lu(x, t) hF(x, t), (x, t) E R+ X Rn-I X R+ t aoh, 

(1.8) (B) Su(O, x_ t) = g(x_, t), (x_ It) C Rn-IR XR t aoh, 

(C) u(x, ah) = f(x), x E RZ+ X Rnh-II, O s a S ao-1. 
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To give the definition of stability for the problem in (1.8) we introduce the scalar 
product 

(1.9) (U, v)X, (u(x, t), v(x, t)) -hn+ 
(x,t)CRZ XRn 

and the 12 norm 

(I. 10) IU 112 t= (U, U) X,t 

If the function u(x, t) is defined only for t > 0, we extend it to be zero for t < 0. 
Similarly the scalar products K )>xts ( K X ( >X_ and the corresponding norms 
are defined. We denote by 12(x, t) the space of grid functions u(x, t) defined for 
(x, t) C Rh X Rn with the scalar product in (1.9) and by 12(x), 12(x_) the corre- 
sponding Hilbert spaces of the grid functions u(x) and u(x_), respectively. In 
addition we introduce weighted norms 

(1.11) 11 u 1x,t,, = ll e-tl'u it 0 ?, 

with the corresponding Hilbert spaces e7tl2(x, t) and use the natural definitions for 
the norms I I11 I ,, and I I1 x_ , . Our definition of stability is the same as Definition 
3.3 in [5]. 

Definition 1.1. The problem in (1.8) with f = 0 is called stable if there exist h0 > 0 
and r1o 2 0 such that for any -q > r1o and h s ho and any grid functions F E 

ettl2(x, t), g E etl2(x- I t) there exists a unique solution u E e1tl2(x, t) which 
satisfies the estimate 

i' - 1 

(1.12) 1 + h ttu(x, 2 + S tlu(vh, x , t)11t24 
v=O 

s (1 I F(x,h t) 11 2,, + 11 g(x_,t)1 t ?K( ? 11 IF(x, t)I)112 Ig( 

As shown by Gustafsson in [6], such stability implies the convergence of the solution 
u(x, t) in (1.8) to the solution of (1.1)-(1.3) even in the case f =# 0 provided the 
problem in (1.8) is consistent with the one in (1. 1)-(1.3) and the functions F, g, f in 
(1. 1)-(1.3) belong to the Sobolev spaces of sufficiently high order. 

In order to solve problem (1.8) in time one should consider the operators 
vo 

(1.13) LP?)(h, x, t, Ej) E E LV ,,,O(h, x, t)EoPE,' 
v=O ,t 

and 
V0 - 1 

v=O yt 

and the related difference problem 

(A) L(0)(h, x, t, Ex)u(x) = F(x), x E Rh X Rn-I 

(1.15) (B) S(0)(h, x , t, E)u(O, x) g(x) x Ez R n-I 
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Assumption 1.1. The problem in (1.15) can be solved boundedly for u, i.e. for any 
F e 12(X), g E 12(x_ ) there exists a unique solution u E 12(x) satisfying the esti- 
mate 

(1.16) 11 u(x)II 2 < K(II F(x)II x + h 11 g(x_ )11 2) 

with the constant K independent of F, g, t and h s ho. 
In Section 6 we prove the following. 

THEOREM 1.1. Assumption 1.1 is equivalent to the next three conditions. 
(a) The operator L(?)(0, x, t, EX) is elliptic of order zero, i.e. for any (x, t) E R+ 

XRn-I X R+ U x and = (n, -,.. 1 ) E R n 

(1.17) det PO?)(0, x, t, eit 7 0 (where e't = eito I..I eitn-l) 

(b) The row dimension of the matrices is equal to the number of the roots K with 

I K I 1 of the characteristic equation 

(1.18) det L(0)(0, x, t, K, eit-) = 0. 

Due to condition (a) this number is independent of x, t and (_ and will be denoted by l 
(c) For any (x, t) with xo = Oand any _ E Rn-I the frozen coefficients problem 

(A) L(o)(0, x, t, Eo, ei_)u(xo) 0, x ER+ 

(B) S(?)(0, x_, t, Eo, e'- )u(O) 0, 

has only the trivial solution in 12(XO). 

The difference operator L in (1.5) has to be consistent with the differential one in 
(1.1). More precisely, we have the following 

Assumption 1.2. The Fourier-Laplace symbol L(0, x, t, e'~, es) of the difference 
operator L(0, x, t, Ex, E,) satisfies 

n-I 

(1.20) L(0, x, t, eit, es) = sI + i E Aj(x, t)(j + o(I I + I s 1). 
j=o 

Assumption 1.3. The Cauchy problem for the operator L(0, x, t, EX, Et) is well 
posed (provided the coefficients LA p 0(xI t) are defined for xo < 0), i.e. the solution 
of the initial value problem (1.8)(A), (C) with F = 0 and f0 # 0 satisfies the estimate 

(1.21) I u(x,t)II2sKe71t 
' 

IIf0(x)II 2 
0=0 

where the constants K > 0, rj ,> 0 are independent of t and f,. 
In Section 6 we also prove the following 

THEOREM 1.2. Suppose that. the difference operator L in (1.5) approximates the 
strictly hyperbolic operator in (1.1). If the symbol L(0, x, t, ei', es) is weakly dissipa- 
tive, i.e. 

for any (x, t) the equation det L(0, x, t, eit, es) = O 
(1.22) has in the domain ( E Rn, Re s > 0 the only solution 

(, is =0 (mod2g), 

and L(?) is elliptic in the sense of (1.17), then the Cauchy problem for the operator 
L(h, x, t, Ex, E) is well posed. 
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The well-known result of Kreiss in [9] refers, indeed, to general hyperbolic 
Hermitian systems but requires the difference approximation to be two-step explicit, 
with Hermitian coefficient matrices, dissipative of order 2r and accurate of order 
2r - 1 for some positive integer r. Parlett in [15] has relaxed the last condition in the 
case of strictly hyperbolic systems by assuming the order of accuracy to be 2r - 2. 

Consider the symbol L(0, x, t, e't, es) for small I+ I s . We shall introduce 
formal conical coordinates 

(1.23) s =(*r s'(0 { n=t )SS*r, 

where (', s' and r are free variables, and define a matrix function 

(1.24) L'(x, t, 5'I s', r) = L(O, x, t, eit r, eiS r)/r. 

Because of (1.20), L' depends analytically on (', s' and r, and 

(1.25) L'(x, t, (', s',0) = s'I + i Aj(x, t) j. 

We restrict {', s' and r to the domain 6D: 8 < I' < KI, Is' < K2, 0 s r < E with 
complex s' and real (' and r. Because of the strict hyperbolicity of the system in 
(1.1), for small E the eigenvalues Xi = f1(x, t, V', s', r) of L' are distinct and depend 
analytically on (s', s', r) E 6D. The equations fj(x, t, (s s r) 0 O could be solved in 
s' glving 

(1.26) s' = gj(x, t, , r), j 1, 2,. ..,k, 

where gj(x, t, (', r) is an analytic function of (', r for small / r / and (' as in 6D. 
Obviously g (x, t, (', 0), j 1, 2,. . . ,k, are the eigenvalues of the matrix 
i 2 Aj(x, t)(j, and therefore 

(1.27) Re gj(x, t, ',0) = 0 

and for small I r j the values gj(x, t, (', r), j =1 2,. . ., k, are distinct. 
Assumption 1.4. For (x, t) near the boundary x0 = 0 the symbol L(0, x, t, eit, es) 

satisfies 
(a) the condition in (1.22) 
(b) for any (t')o C Rn with (t' )o # 0 there exist a neighborhood Q C Rn X R+ 

of the point (4')O, r= 0, and positive constants 81 and 82 such that for any 
(',r) c we have 

(1.28) 41 .rr2mi-lI < Reg1(x, t, (', r) < 42r2mY-l, ]j 1,2,... 

where m1 is a positive integer independent of (t')O, x, t and the neighborhood U. 
The last assumption states that near the boundary the difference operator L is 

dissipative in the tangential direction. The order of dissipativity 2m1 may depend on 
the sequential numberj of the eigenvalue gj. 

In order to state our main result concerning the stability of the problem in (1.8) 
we have to formulate the uniform Kreiss condition (UKC) for the difference 
problem. To do that we freeze the coefficients of L and S in (1.8) at a point 
(x, t) = (0, x , t), h = 0, and apply to (1.8) a Fourier transform in x_ and 
Laplace-Fourier transform in t with dual variables (_ and s, respectively. We arrive 
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at the auxiliary homogeneous problem 

(A) L(O, x, t, Eo, eit-, es)u(xo) = 0, x0 E R+, 

(B) S(0, x t, Eo, ei ,es)u(0) = 0, 

with the parameters _ (4k, 42' ..n-1) and s itn + -q in the domain 

(1.30) -S j I 
T, j, 

excluding the point _ 0, s = 0. 

Consider the characteristic equation 

(1.31) det L(O, x, t, K, ei, I es) 0. 

Part (a) of Assumption 1.4 implies that for (_, s as in (1.30) the number of the roots 
K with I K I < 1 does not depend on s and, because of Assumption 1.1 (see condition 
(b) in Theorem 1.1), this number is l0. Thus Eq. (1.29)(A) has exactly io independent 
solutions in 12(xO) 

(1.32) qg,(xo, (,s), j =1,2,..., l. 

We may assume that these solutions are orthonormalized at the boundary points 
xo = vh, v = 0, 1 ..., vo -1. Substituting these solutions in the boundary condition 
(1.29)(B) we arrive at the matrix 

(1.33) N(x_,I t, _,s) 

= S(0, x_, t, Eo, ei', es)[pI(0, t_, s),. ..,0(0, _, s)]. 

Note that, according to condition (b) in Theorem 1.1, the matrix N is square of order 

10. Then the uniform Kreiss condition states: 

There exists a positive constant 8 such that for any 
(1.34) (x_, t) E R'- X R+ and any _ s in the domain (1.30) we 

have I det N(x_ It, (_, s) I > S. 

The matrix N(x , t, -, s) is continuous at any (x_, t) E R'- X R+ U x and 
(t_ s) as in (1.30) including the points with q = +00. The solvability assumption 
1.1 implies that the matrix N is nonsingular at j = +?x. Therefore apart from a 
neighborhood of the point _ 0, s = 0 (UKC) is equivalent to the inequality 

(1.35) det N(x_, t, 4_, s)) 0, 

where (x_, t) E R- X R+ U x and ((_, s) are as in (1.30). 

In the neighborhood of ((_, s) = 0 we introduce conical coordinates 

(1.36) -= 'r, s =s' r, wherer = vi-2+gl 

We shall show in Lemma 3.3 that the first / homogeneous solutions in (1.32) (recall 
that / is the number of positive eigenvalues of the matrix Ao(x, t) in (1.1)), which are 
associated with the eigenvalue K = 1, depend continuously on (' , s', r at any point 
with r = 0, (I E Rn- 1, Re s' 2 0 and I (' 12 + Is' 12 =1, and for r = 0 these solu- 
tions are independent of xo. Substituting these solutions in the boundary condition 
(1.29)(B), we get the I0 X / matrix 

(1.37) N1(x-, t, (', s', r) 

- S(0, x_, t, Eo, e'i-, es)[q1(O, (', s', r),...,l(0, (', s', r)] 
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such that at r = 0 it becomes 

(1.38) NI(x_,,- S,s',) 

S(O, x_ ,tI 1 1 )[p,(O, [, s',O),. ..,,(O,t , s',0)]. 

The remaining 4o - / solutions in (1.32) depend analytically on (f_, s) and define at 
= , s = 0 the matrix 

(1.39) N2(x, t,0,0) = S(O, x , t, Eo, 1 l)[,(0, 0, 0),...,q(0, 0, 0)]. 

Thus,in a small neighborhood of the point _ 0, s = 0 (UKC) is equivalent to the 
condition 

(1.40) det[NI(x , t, SI , s',0), N2(x , t,O, )] # O, 

where (x_, t) E R'- X R+ U oo, (r E Rn- 

Res' >0andI ?' s 12 + IS . 

So, we have proved 

LEMMA 1.1. (UKC) is satisfied if and only if both the determinant conditions (1.35) 
and (1.40) hold. 

Now assume that the boundary operator in (1.8)(B) is consistent with the one in 
(1.2). By this we mean that 

(1.41) S(h, x_I t, EX, Ej) =[S(h x_ t Ex, E 

where S, has the row dimension 1, and, when Ex, Et are replaced by 1, we have 

(1.42) SI(o, x , t, 1, 1) coincides with the matrix S(x , t) in (1.2) 

and S2(0, X_, t, 1 1) = O. 

So S1 approximates the original boundary condition (1.2) and S2 represents the 
artificial boundary condition. Due to the partition in (1.41) we have 

(1.43) NI(x_ It,S, ,S" O)=[ (_,,_,0 S 

and 

(1.44) N2(- S? 21(X- t, t 0,)] 2(X- 0, 0) N 
t,oo) 

We shall see again in Lemma 3.3 that the vectors qj(0, (', s', 0), j 1,... , 1, 
coincide with those arising in the differential problem (1.1)-(1.3) so that the matrix 

NI(X-,I t, -' Is',0) appears in the (UKC) for the problem in (1.1)-(1.3). Thus we 
got the following 

LEMMA 1.2. If the boundary condition in (1.8)(B) is consistent with the one in (1.2), 
then (UKC) for the difference problem is satisfied if and only if 

(a) the differentialproblem in (1.1)- (1.3) is wellposed, 
(b) det N22(x - t, 0,) 7# O, 
(c) condition (1.35) is satisfied. 
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Actually, condition (b) in the above lemma claims that for (, s) = 0 Eq. 
(1.29)(A) has no nontrivial solutions in 12(xO) satisfying the artificial boundary 
conditions in (1.29)(B), whereas condition (c) means that for (_ , is) =# 0 mod 2V7 

and Re s > 0 Eq. (1.28)(A) has no such solutions satisfying all the boundary 
conditions in (1.28)(B). 

The main result of this work is 

THEOREM 1.3. (UKC) is sufficient and, in the case of constant coefficients, necessary 
for the stability of the problem in (1.8). 

Our definition of stability allows for bounded exponential growths of the solution. 
However, if the operators L and S in (1.8) do not depend on x, t and h, the constant 

mqo in Definition 1.1 becomes zero so that there are no exponentially growing 
solutions for F E 12(X, t) and g E 12(X_, t). 

As in [5] (see Theorem 5.4), Theorem 1.3 may be easily generalized to the case 
with two boundaries. 

THEOREM 1.4. Consider the difference equation (1.8)(A) in the strip 0 s xo s 1, 
x_ E Rn- 1, t 0 0 with zero initial conditions and with boundary conditions of the type 
(1.8)(B) at xo 0 and xo = 1. The above difference problem is stable provided the 
corresponding left and right quarter-space problems (which we get by removing one 
boundary to infinity) are stable. 

Note that a solution of a stable problem in the strip may grow exponentially even 
if the coefficients of L and S are constant. 

Unfortunately, it is very hard to check whether (UKC), and, especially, condition 
(1.35) for (_ =# 0, is satisfied. Kreiss in [10] has suggested to add sufficient amount 
of dissipation in the tangential direction to make the multidimensional problem 
stable. Indeed, replace the problem in (1.8) by 

(A) L(h, x, t, Ex, En(I- Kp(xo)Ak))u(x, t) = h - F(x, t), 

(B) S(h, x, t, EX, En(I- KAk))u(O, x , t) = g(x_, t), 

with zero initial condition. Here A =iJi(E1 + EJ.- 2), T(x0) is a cut-off func- 
tion which is one near the boundary x0 = 0 and decreases to zero apart of it, k is a 
positive integer and K is a positive constant. 

THEOREM 1.5. Let the problem in (1.8) satisfy the conditions: 
(a) Assumptions 1.1-1.3 are valid; 
(b) problem (1.8) is consistent with a well-posed problem (1.1)-(1.3); 
(c) for (_ = 0 and (x, t) at the boundary, including (x, t) = x, condition (1.22) is 

satisfied with regard to (0 and s; 
(d) (UKC) is satisfied for (_ = 0 and 7 ,> 0. 
Then for any k there exists a constant K such that the problem in (1.45) is stable. 

The proof of the theorem is trivial. First, note that problem (1.45) satisfies the 
conditions of Theorem 1.3. Thus we have to check only (UKC) for problem (1.45). 
Let N(t, s) be the matrix defined in (1.33) for problem (1.8) and N((, s) the 
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corresponding matrix for problem (1.45). Then 

N _,s) =N ,s,wheres9 = s + In I + Kf 2 4 sin2-( (j/2))| 

Condition (d) means that det N(O, s) #& 0 for any q > 0. Also, because of Assump- 
tion 1.1, det N( -, s) #& 0 for q greater than some constant Ko and any _. In view 
of Lemma 1.2, condition (b) and the fact that det N(O, s) =# 0 imply that 
det N(- , s) # 0 also for < e and any rj ?0. Now we choose K big enough 
such that for e9 

1n41 + K( 4sin2(j/2)) ] 2Ko. Q.E.D. 

The scheme in (1.45) includes negative powers of the operator I - Kk if the 
forms (1.5) and (1.6) of the operators L and S are used. One could, of course, 
multiply L and S by Enoo to cancel the negative powers of En. In that case the scheme 
in (1.45) will become implicit. There is, however, no way of adding sufficient amount 
of dissipation in an explicit form without violating the stability of the scheme. 

2. Preliminaries. First, let us point out that the stability of the problem in (1.8) 
does not depend on the terms of order h in the operators L and S. To prove that one 
can use the same type of arguments as in [5, Theorem 4.3]. The same is true for the 
results in Theorems 1.1 and 1.2. Therefore we shall assume that L and S do not 
depend explicitly on the increment h and omit h from the list of variables in L and S. 

Next, we shall show that if Assumption 1.1 is satisfied, all we have to prove in the 
sufficiency part of Theorem 1.3 is the a priori estimate (1.12) for bounded values of 

,qh. Indeed, substitute in (1.8) 

u(x, t) = eqtu,(x, t), hF(x, t) - ehtF,(x, t), g(x , t) = e ,tg,(x- t). 

Then we get 

(A) L u~ Fn 
(2.1) (B) n 

where 

- a S - aO 
L = 2 e?hnL(?)Eo ~S = 2 e ch-qS(?r)Ec 

L(?F) = 2 2 LV I JU oEovy Ru s(?) = 2 2 SV , JU oEov R 
v tL v tL 

Estimate (1.12) in new variables takes the form 

(2.2) __ llu 112 +h 1 u,(xo=Ph)112 

1 K ,h 1IIFI,+hIIgl,) 
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Denote the pair of operators (LX,, Sq) by E.. We consider Et, as an operator which 
maps grid functions u,1 12(X, t) into pairs (FE, gq,), F1 E 12(X, t), gI E , t) 

with the norm 

llE uq 1 q = IFI2 + h IIg ql 

For large h q the operator En&, approximates the operator 

O) - (L(?), S(0)): 12(X, t) -* (12(X, t), 12(X , t)) 

which, according to Assumption 1.1, is an isomorphism with a bounded inverse 
II(PB(?y)-'II K. Therefore, for large h-q (say hq > Ko) &,, is an isomorphism too and 
11 1 11 < K. The last estimate is equivalent to (2.2) for large qh. Now suppose that 
the a priori estimate (2.2) holds for any q >o 11> 0 and h < ho. Fixing h and 
considering X in the domain7 >q > qowe get 

(2.3) Iiu , IiX t KI qu,, ,2 

where K1 depends on h and m but not on u,1 E 12(x, t). Since En is an isomorphism 
for large q, by continuity arguments we derive from (2.3) that E7 is an isomorphism 
for any q 2 m7 and therefore for any q > qo. Finally, let F E e71t12(x, t), g & 

e 1l2(X_, t), and define u E e"tl2(x, t) by 

u = e"T,_ 1 (e-8th - IF e-qtg) 

If F and g vanish for t < uoh, then u vanishes too, thus providing a solution for (1.8) 
with zero initial data. Indeed, we could replace the weight e-t in Definition 1.1 by 
e-71(t-,oh) without affecting estimate (1.12). Then, where u =# 0 for some t < coh 
estimate (1.12) would be violated as 7q -1 o. 

Finally, we shall linearize problem (1.8) in the direction xo. Introduce grid 
vector-functions 

(2.4) fi(x, t) = (u(x, t), Eou(x, t),...,Eoo-lu(x, t))' 

and 

(2.5) - (x, t)=(O, O,.., F(x, t )' 

and difference operators 

(2.6) (x- , t, E ,Ej) go, , .vo-I 

(2.7) L(x, t, Ex, Ej) A(x, t, E_ , EJ)Eo + B(x, t, E_ 9 EJ) 
where 

0 -I 0 ... 0 

0 0 -I 
(2.8) B . , A diag(I, I,...,I, Lo), 

Lo LI .. L. 

- aO 

(2.9) LV = 2 LVJu(X t)E Ena 
oT=O 
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and 
- a6 

(2.10) Sv =: :: ESV,A,O(X- , t)E-A En". 
a=0 ,u 

Then Eqs. (1.8)(A) and (1.8)(B) extended to t < uoh could be rewritten as 

(A) L(x, t, EX, E)fi(x, t) = hF(x, t), (x, t) E R+ X Rn, 

(B) S(x_, t, E_ F E)i(O x_ , t) = g(x_ , t), (x_, t) E Rn. ~~~~~~~~~~~~~~~~~~~~~~~~ 
The operator L is connected with L by the equivalence 

(2.12) D2(x, t, EX, Ej)L(x, t, EX, En)D1(EO) = [(x t,E, Ej) 0 

where 

(2.13) 

I 0 0 ... 0 
F0 I 0 0 '~~ ~~~~~~~1 Cj'2 ... 1, 

EV * E Eo I O * *V * I 
2 --I 0 0 0 

D1 EJ E0 I D 0 - I 

* 0 

LE~ov ... Eo F0 J 0LJ 

and 

(2.14) Cl - LVOEO + Lvo- I Cv+ I CvE0 + Lvo- -v for =1, 2,..., v-2. 

Note that DI and D2 are invertible operators with the inverses 

(2.15) 

I 0 ... 0 

-F0 J ~~ ~~ ~~ ~~0 -I 0 ... 0 
0 - 

0 -I 

0 ... -F0 I 

and the norms of the operators DI, D2, D1, and D-1 in the spaces e77t 2(x, t) are 
bounded uniformly in j ,> 0. If u1 and F are defined by (2.4) and (2.5) then estimate 
(1.12) is equivalent to the estimate 

+216 
'q 

11 u( x, t ) ll 2,t,7 + 11 r,(0, X_ t ) 11 2 

I 
K( qh 11 F~(x, t)jj 2,t,8 + 11 g(x, t)l x1 2,t,8) 

Now suppose that ui in (2.11) is an arbitrary grid function belonging to eQtl2(x, t), 
and F and g are given by Eqs. (2.1 1)(A) and (B). Define the grid vector-functions 
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where the unit and zero matrices are of order k. Then equivalence (2.12) implies 

(2.18) v = hG 

and 

(2.19) fJLu(X t) = hF(x, t), 
Su(0, x , t) = g - Dv(O, x , t) g - hSDG(0, x , t). 

Using (2.18), (2.19) and the boundedness of D, and D2 one can easily show that the 
a priori estimate (1.12) implies estimate (2.16). Thus we have proved 

LEMMA 2.1. Estimate (1.12) for problem (1.8) is equivalent to estimate (2.16) for 
problem (2.11) with the same constants qo and ho. 

An analogous result related to the solvability assumption 1.1 holds for problem 
(1.15) and its linearization. Namely, let 

(2.20) (A) L(0)(x, t, Ex)i(x) = F(x), 
(B) g(o)(x, t, E )iu(O, x_) = g(x_), 

be the linearization of problem (1.15) in the direction xo. 

LEMMA 2.2. Assumption 1.1 and conditions of Theorem 1.1 for problem (1.15) are 
equivalent to the same assumption and conditions for problem (2.20). 

Therefore, with regard to Theorems 1.1 and 1.3 we restrict ourselves to the 
linearized problems (2.11) and (2.20). For ease of notation we also remove the 
symbol from ui and F in (2.11), (2.16) and (2.20). 

3. The Case of Constant Coefficients. We consider problem (2.11) with the 
coefficients of L and S frozen at some boundary point (x, t) = (0, x , t). Apply to 
this problem the Fourier transform in x_ with the dual variable _ 

(11 .2, - n-) and Laplace-Fourier transform in t with the dual variable s =in 

+ -. We arrive at the difference problem in the direction xo depending on the 
parameters _ and s 

(3.1) (A) L (Eo, eit- , es) u-(xo, _ s) = hF'(xo, _,s), 

(B) ?(eit- , es)a(0, _ , s) = g(_, s), 

where 

(3.2) u(x0, (_, s) - u(xo, x_, t)e-(,"- +st)lh 

(x_ t)CRh 

and g and F are defined in a similar way. We shall use the notations 

(3-3) W = 09 n t=( 1 

and often identify D with the pair ((_, s). We shall also write L(E0, t), S(D) and 
L(E0, ') instead of the expressions in (3.1) and (1.29). Removing the sign from u', F 
and g, omitting the parameters _, s in these functions and replacing hF by F we 
rewrite (3.1) as 

(A) L(E0, t)u(xo) = (A(D)Eo + B(?))u(xo) F, 
(3.4) (B) 9(V)u(O) 

g 
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Then estimate (2.16) in the domain 0 < qh s Ko is equivalent to the estimate 

(3.5) 71 11 U(X0)lx 12+ h IU u(0) 12 S K(71 -'I11 F(x 0)II2 + hIJ g 12) 

in the domain 0 < s Ko with K independent on D and u. 
3.1. The Normal Form of the Operator L(Eo, t). As we have already pointed out, 

the matrix L,o(j) and therefore A(D) may be singular. Nevertheless, there exists an 
appropriate normal form for the operator L(Eo, t). Before we study this form it is 
worthwhile to present some facts concerning so-called regular pencils of matrices. By 
the last we mean a linear matrix polynomial C(K) = AK + B such that A and B are 
square matrices of order n and the characteristic equation 

(3.6) det C(K) = 0 

does not vanish identically in K. Let Ko be a solution of (3.6) and 9p(KO) C Ker C(KO). 
Then KO is called a finite eigenvalue and 9p(KO) the corresponding eigenvector of the 
pencil C(K). If the matrix A is singular, we call K = X the infinite eigenvalue and 
p(oo) E Ker A the corresponding eigenvector. Let F,, F2,...,1m be positive oriented 

disjoint Jordan contours in C and F. be a negative oriented one surrounding all the 
contours above. We assume that none of the eigenvalues of the pencil lie on the 
contours as well as in the exterior to Fj, j = 1, 2,. . ., m, and in the interior to rFO. 
Denote by FO the positive oriented contour obtained from F'. by mapping K K- K. 

Define linear operators 

(3.7) Pj = (27Ti) F#(AK + B) 'AdK, j1 ,...,m, 

P= (27Ti)-'#(A + BK) 'BdK. 

rO 

Using the resolvent equation 

C-'(K)AC-'(X) = (X - K) (C1'(K) - C-'(X)) 
one can prove by standard methods that Pj, j = 1,... ,m, are mutually orthogonal 
projectors. Applying the transformation K -1 /K we get 

PO -(2ri) (AK + B) BK- 1dK = I + (2ri) l(AK + B) 'A dK. 

Therefore P, + P2 + - +Pm + P. = I and P. is also a projector orthogonal to 
P,. . . ,Pm. Let gj be an open set including 1j and its interior. Denote by ?(D;j) the 
space of n-dimensional complex vector-functions 9p(K) analytic in ;j. Define an 
operator Qj: I(D)Qj) Cn by 

(3.8) Qj(cp) = (27Ti)' C C'(K)94K) dK. 

Obviously Qj(A9p) = Pjp for 9p(K) constant, so that Im Pj C Im Qj. On the other 
hand, applying the same standard method as in the proof of the equality p12 = pi 
one can show that PjQj(p) = Qj(q)). Therefore Im Qj C Im P1 and we get 

(3.9) Im Q = ImPj. 
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Let the dimension of Im Pj be dj. There is some n X dj matrix-function*j(K) 
analytic in Qj such that the columns of the matrix Xj= Qj(*j) form a basis in 
Im Pj. For any qp E &(Qj) the following identity holds: 

BQj(c) = (27i)1 (C(K) - AK)C1(K)9)(K) dK = -AQ1(K99). 

Therefore AQj(K*j)+ BXj = 0, and representing Qj(K*j) as 

(3.10) Qj(KIj) = XjMj, 

where Mj is a square matrix of order dj, we get 

(3.11) AXjMJ + BXj = 0, j = 1,2,...,m. 

Similarly, forj = x we get the equality 

(3.12) AXoo + BXoQMoo =O, 

where the columns of X. form a basis in Im PO.. Combining (3.11) and (3.12), we 
obtain as in [4] the main equivalence 

(3.13) (AK+ B)X= T diag(KI-M,M ..., KI-Mm, -KM, + I), 

where 

(3.14) X= (X,,..., Xm, X.) and T = (AXI,...,AXm, BXc,). 

Obviously, the matrix X is invertible and, due to (3.13) and the regularity of C(K), 
the matrix T is invertible too. Finally, we claim that the eigenvalues of Mj, 
j = 1, 2, ..., m, are located in the interior to Fj and coincide there with the eigenval- 
ues of C(K) (for j= x the similar result relates to the contour Fo and the 
eigenvalues of A + BK). Moreover, ifKj -is an eigenvalue of Mj, then 

(3.15) dim Ker(AAKj + B) = dim Ker(KjI - Mj). 

Indeed, if Kj is an eigenvalue of Mj with the eigenvector 4(Kj), then (3.11) implies 
that Kj is also an eigenvalue of C(K) with the eigenvector T(Kj) = X4(Kj). Suppose 
that Kj iS not in the interior to Fj. Then, integrating the identity 

cp(Kj)(K - Kj) = C'(K)A9)(Kj) 

along the contour Fi, we would get 

o = Pj(Xj#(Kj)) = Xj9( Kj). 

The remaining part of our claim follows immediately from equivalence (3.13). 
Now let us return to the operator L(Eo, t) and consider the characteristic 

equation 

(3.16) det L(K, D) det L(K, D) 0, 

where the first equality follows from equivalence (2.12). For D in the domain 

(3 .17) -q s (j1 s -::, j1 = I1, 2, ..., In, 71 '> ?, 

the characteristic equation, as it follows from part (a) of Assumption 1.4, is regular 
in K. Moreover, for nonzero D in (3.17) there is no eigenvalue K on the unit circle 

I K 1 =I and for D 0 the only such eigenvalue is K = 1. Assumption 1.2 implies 
(3.18) L(K,0)= AO(K - 1) + O(K - 1). 
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Therefore K =1 is an eigenvalue of multiplicity k of the pencil L(K, 0) with k 
independent eigenvectors spanning the space 

(3.19) KerL(l,0) = {(u, u,...,u)'I u E Rk}. 

Fix a point ;0 = ((()o, %) =# 0 belonging to the domain in (3.17) and denote by 

2(to) a small neighborhood of ~T in R"'. Let Jo be a positive oriented circle 

I K =I - E such that the eigenvalues K of L(go, K) are either inside Jo or outside the 
circle K K (1 - e)- . Then for small l2(o) the projectors 

(3.20) PO(D) = (2vi)1 (A(D)K + B(D)) 1A(t) dK, 

Poos(D) -_ (2i)1 o + (A(r) + B(D)K) B (D) dK, 

and the corresponding matrices X1(i), M1(i), j 0, 0, depend analytically on 
E E2(go) By choosing an appropriate Xj(') we may even assume that 

(3.21) M M;()M (D) < (1- )I, j = 0, xc. 

Equivalence (3.13) in our case becomes 

(3.22) L(K, )X(g) T(T)(0O(D) ] ) 

where 

x =(xo, xoo), T =(AXo,BXOO). 

Now consider the case t0 = 0. In addition to the above projectors and matrices Xj, 
Mj,j = 0, xo we also look at the projector 

(3.23) pg() = (2v7i) 19I (A(D)K + B(D)) 'A(D) dA, 

where F1 is a small positive oriented circle around K 1, and at the associated 
matrices Xl(D) and Ml(t). Due to (3.19) and (3.15) 

(3.24) X1(0) = (I, I,...,I)' and Ml(0) =I. 

Denote 

(3.25) XfX= (Xo, XI), X= (Xf, Xoc,), T= (AXf, BXj,), 

Mf = diag(M0, MI). 

Then instead of equivalence (3.22) we get 

(3.26) L(K, D)X(D) T(')diag(KI-Mf (t), -KM'(J) + I). 

In order to study the block form of the matrix Ml(D) in the neighborhood of the 
point '0 = 0, we introduce conical coordinates 

(3.27) rI='-, r, K 1 +K'r, 

where t' is identified with (s', ti') as well as with (t', s'), and define matrix- 
functions 

L'(K', D', r) = L(l + K'r, D'r)/r, M'(K', ID, r) = (MI(l + K'r, -'r) - I)/r. 
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Note that L'(K', D', r) and M'(K', t', r) depend analytically on K', t', r for bounded 
K' and D' and small r. Using the equivalence (2.12) we rewrite (3.1 1) forj = 1 as 

(3.28) ( k(I ) Dl (iK)Xj( ) 

= rD2(K, ')A(')X,(')(K'I - M'(t', r)). 

Comparing the first k rows in the above equality, and dividing them by r we get at 
r = 0: 

L (K, SD,o) =[CV_I + CV-2 + + C? + LVO](KI -MU ,0)). 

Then Assumption 1.2 implies that the matrix in the brackets is Ao and the matrix 
M'(t', 0) equals to 

n-I 

(3.29) Mf'(',O ) = -A - 
l ls'I + i 2 ?,jAj) 

3.2. Construction of the Symmetrizer for the Matrix Ml(t). We fix a point 
to = (((')o, 710) with I to I 1 and q1 > 0, and study the matrix M'(t', r) in a 
neighborhood Q(to, 0) C Rn+2 of the point (D6, r = 0). Often we shall restrict 
ourselves to a subset Q+ (D0, 0) C Q(to, 0) which consists of the points (c', r) with 
71' > 0 andr 0> O. Let K", K'2,.., Km be all the different eigenvalues of the matrix 
M'(to, 0) with multiplicities ql, q2. . . , qm. There exists an analytic matrix-function 

(3.30) X'(t', r) = (Xl, X2 ... )Xm) 

such that 

(3.31) (X')1M'X' = diag(Mj, M, ,MA) 
and the matrix Mj'(.O, O), j = 1, 2, ... , m, has the only eigenvalue K). If ReK) >0 or 
Re K; < 0, we may even assume that correspondingly 

(a) Re Mj(', r) I 
(3.32) or 

(b) Re Mj'(' r )s-SI 

for any (c', r) E Q(tf, 0). 
Now consider the case Re < = 0. Due to the strict hyperbolicity of system (1.1) 

this situation may occur only if qf = 0. Moreover, the eigenspace of the correspond- 
ing matrix MJ'(u, 0) will be one-dimensional. If ((' )O = 0 we get from (3.29) that 
M'(tf, 0) is a diagonal matrix with distinct eigenvalues, and thus MJa'(', r) is a scalar 
function. We shall see later in the proof of Lemma 3.1 that for such scalar blocks the 
well-posedness of the Cauchy problem implies 

(a) (I + rMj'(t', r))*(I + rMj' , r)) - I > SnI 
(3.33) or 

(b) (I + rMj(' , r))*(I + rMj(' , r)) - I s-SI 

for all (c', r) E 0+ (o, 0). Thus we restrict ourselves to the more difficult case 
((' )O # 0 in which, however, one can benefit from the presence of dissipation. 
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The matrix Mj'(O, 0) may be thought of as a Jordan cell of the order qj. Following 
Gustafsson et al. [5] we consider a matrix 

(3.34) M(', r) - (ir) l ln(I + rMj'(t', r)). 

Obviously, the matrix Mj(;', r) is analytic in 2(4, 0) and Mj'(O, 0) = -iMj'(', 0) is 
a Jordan cell with the real eigenvalue XJ [ -iKj. The matrix Xj(D", r) in (3.30) may 
be chosen in such a way that Mj(g', r) has a form 

eqj 1 0 ... 0 

eq,-2 0 1 0 

(3.35) r) = X,I + 

eo 0 0 

where eq = eq(W', r), q = 0, 1,... ,qj - 1, depend analytically on D', r and vanish at 
the point (O, 0). Let (i', r) E Q+ (O, 0) with r > 0. Denote by pj the number of 
eigenvalues K of the matrix I + rMj'(a", r) with I K I < 1. Since for (i', r) as above the 
characteristic equation (3.16) has no solutions with IK 1, it follows that the 
number p1 is independent of (D', r). It is easy to show that the mapping K ' = 

(ir)-'ln K provides a one-to-one correspondence between the eigenvalues of the 
matrices I + rMj'Cu", r) and Mj'(a', r) such that the eigenvalues K with K I< 1 are 
mapped into the eigenvalues X' with Im X' > 0. Therefore the matrix Mj'(a', r) has p1 
eigenvalues with Im A' > 0 and qj- pj with Im A' < 0. Let us partition the matrix 
Xj'(a", r) as 

(3.36) xJ = (XI, , xI, j) 
where the matrix XIj, consists of the first pj columns of Xj' and XI,Ij of the remaining 
qj- p columns. If vJ is a qj-dimensional column-vector, we shall similarly partition 
it as 

i VI, 

As in [7, Lemma 2.6] one can show that there exists a matrix-function UL(a', r) 
defined for (i', r) EE Q(~', 0) and continuous at the point (~', 0) such that Uj(O, 0) 

I and 

(3.38) (Uj(t', r)) (I + rMj(t', r))LUj(t', r) 

Kjl y 0 ... 0 

0 Kj2 'Y ... 0 ( l 

: ' . \ O~~~~~~ Nj221 

0 ... K 
jqj 

Here y ir, and for (c', r) E S2+ (g;, 0), r > 0, the eigenvalues with I K I < 1 stand in 
the first pj rows, so that the spectra of the matrices Nj) and Nj22 lie correspondingly 
inside and outside the unit circle I K J 1. 
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In order to build a full symmetrizer for the matrix Mj(D) in a neighborhood of the 
point D 0, we shall first construct a symmetrizer for the matrix I + rMj'(a', r) in 
the case Re Kj- 0 . The main result of this subsection is 

THEOREM 3.1. There exists a Hermitian matrix-function R)(?', r) depending smoothly 
on (c', r) E S(to, 0) and satisfying 

(3.39) (vj)*R)(', r)vj' > -c I V 2j I' + I V 2I j I' for any (c', r) E ( 0), 

(3.40) (I + rM'(D', r))*R'(~', r)(I + rM'(t', r)) - R'(t', r) > &qI 

for any (c', r) E 2 (+W,0), 

where 8 and c are positive constants and c may be chosen arbitrarily small. 

We shall use the construction of Kreiss in [7] in order to build the above 
symmetrizer for the matrix iMj'(a', r), so that in addition to (3.39) the estimate 

(3.41) Re(iR'(G", r)A'(?', r)) > &q'I 

holds for any (c', r) E Q+ (, 0). Then as in [5] one obtains for the matrix 
I + rMj'(t', r) = exp(irMj'(aI, r)) estimate (3.40). Unfortunately, the matrix 
iM1'(', r) does not satisfy the double-sided resolvent condition of [5, p. 685] and, as 
a result, the coefficients eq(G', r) in (3.35) may be complex for q = 0. The following 
lemma provides, however, the necessary estimates for the imaginary part of eq(D', r). 

LEMMA 3. 1. There is a neighborhood Q + (D, 0) and positive constants K and 8 such 
that the estimates 

(3.42) IImeq(", r) I KI Imeo(D', r) I , q 1,2,...,qj- 1, 

(3.43) I Im eo(t', r) I)' 8(Cr' + r2m-1) 2 Sr1II 

hold for any (c', r) E Q+ (D0, 0). Here m is one of the integers mj appearing in (1.28). 

Proof. Consider the characteristic equation 

(3.44) det(X'I -Mk'( r)) 

(X'- XI)J -eqj 1( ", r)(X' -XI)J - * -eo(~', r) = 0 

in a neighborhood (X', D', r) E R(X)) X Q(O 0), where Q(iQ) is a small neighbor- 
hood of XJ in C. We shall show that this equation is equivalent to an equation 

(3.45) s' -0g(', (', r) 0, 

where gi is one of the functions gj, j = 1, 2,. . ., k, defined in (1.26) with (' replaced 
by (X', lI), and the value of the index i is uniquely determined by the equality 

(3.46) so gi (X[, ((_)o0 ) 

Indeed, introduce a mapping 

(3.47) K' I= m( X', r) = (exp(iA'r) - l)/r. 

The function qp(X', r) depends analytically on X' and r and the mapping X' A-* (x', r) 
is one-to-one for bounded X' and small r. Since Mj'(a', r) - 

(Mj'(t', r), r), the 
mapping in (3.47) transforms the roots of Eq. (3.44) into the roots of the equation 

(3.48) det( K'I-MJ (t', r)) 0. 
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Denote L(A', i', r) -L'(q(A', r), t', r). The mapping in (3.47) provides a one-to-one 
correspondence between the roots of the equations 

(3.49) det L'(A', i", r) 0 O 

and 

(3.50) det L'(K', f', r) O. 

Formula (3.28) implies that Eqs. (3.48) and (3.50) are equivalent for K' in a small 
complex neighborhood Q(Kj) of Ki. Therefore Eqs. (3.44) and (3.49) are equivalent 
for A' in a corresponding neighborhood U(A)). Note that the matrix-function 
L'(A', D', r) coincides with the matrix-function L'(x, t, {', s', r) defined in (1.24), 
provided x, t are frozen at a boundary point and (' is replaced by the pair (A', E' ). 
The functions gj in (1.26) are analytically extensible to a complex neighborhood of 
the real vector (A, (t' )0). Thus Eq. (3.49) is equivalent to 

k 

(3.51) II (s - gi(A', X , r)) = 0. 
i=l1 

In the above product only one term vanishes at the point s' = s6 and (A', {', r) 
(A>, (t )I, 0) thus determining the index i in (3.45). We shall omit this index and 
rewrite Eq. (3.45) as 

(3.52) f(A' ' r) = i(s' -g(A' 0' ) . 

If the multiplicity qj of the root Aj is one, for any (D', r) EE Q+(D',0) the root A' of 
(3.52) satisfies the estimate 

(3.53) 1 Im A'J> a8Js'-g(ReA', (' ,r) l 

O - Re g(ReA', X I , r)) > l', 

since Re g(Re A', XQ , r) s 0 (the last is a necessary condition for stability of the 
Cauchy problem). Since 

(3.54) Re( iM'(, r)) = -Im eo(', r) = -Im A', 

in accordance with the sign of Im A' we arrive at one of the estimates in (3.33). In 
case qj > 1 we consider the difference 

(3.55) f(A', i", r) - (', i", r) = i(21'-h(A', rI , 

where 

h(A' ( r) = g(A'X% r) + g(A,x r) 

and is a symbol of complex conjugation. For r 2 0 and real A' the function 
h(A', (_, r), according to Assumption 1.4, satisfies the estimate 

( 3 .56) -8 r 2m I h ( ̂ ' ( r ) < 48 r 2m- I 

where m = m with the index i determined by (3.46). Note that h(A', (X , r) depends 
analytically on the complex A' and real (' and r. Expanding h(A', {' , r) in a power 
series according to r, 

00 

h(A', r) = hi(' )ri, 
i-o 
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we derive from (3.56) that the first 2m - 1 coefficients hi(A', {' ) vanish for real A' 
and, hence, for all complex A' E Q(Aj). Thus we have for all A' E Q(AX) and 

(i", r) E + (o, ? 

(3.57) | f A' ,t r )- f( A', ' r ) sK(O' + r 2m-1l) 

and 

(3.58) |4[f(A', x ', r) -fj(A, ', r) 3 = -,th(A', (' , r) s Kr2ml. 

Denote f(', r) = f(A>, t', r). Then 

(3.59) Im fo(t', r ) =1'- h(A Q , r) > B' + Sr2ml. 

Therefore one can replace the right-hand sides of estimates (3.57) and (3.58) by 
K j Im fo(t', r)I . Thus the function f(A', ;', r) satisfies the conditions of Lemma 3.2 
proven below. The relation with the notations of the lemma is as follows: 

zI = ' ,w = It-0 r) (@ =w |('r) E= Q + (D0, O)} 

Since the functions -eq(g', r), q = 0, 1,... , qj - 1, are the coefficients of the 
Weierstrass polynomial corresponding to f(A', D', r), we arrive, according to Lemma 
3.2 and estimate (3.59), at the required estimates (3.42) and (3.43). 

Let (D', r) E f?+ (D0, 0) with q' > 0. Then, as follows from estimate (3.43), 
Im eo(g', r) is of constant sign. As in [7, Lemma 2.7] we shall show that the number 

pj of the eigenvalues of Mj', r) in the half-plane Im A' > 0 is given by the formula 

q1/2 if qj is even, 

(3.60) pj= j (qj- 1)/2 if qj is odd and Imeo(I', r) > O, 

(qj + 1)/2 if qjis odd and Im eo(t', r) <0. 

Indeed, since this number is independent of (D', r) as above, we shall set r= 0, 
(= ')0 and let ' > 0. Then I Im eo(;', 0) V > Sq' and eq(t', 0) = O(?q'), q = 

0, 1, . . , qj - 1. Therefore the eigenvalues A' of the matrix Mj(a', 0) may be written 
in the form 

A,'= A'.+ e(D, 0) /Iqj. (i + 0(n,1qj) 

and formula (3.60) follows easily. 
Using estimates (3.42) and (3.43) and formula (3.60) we are able to construct the 

required symmetrizer R)(t', r) for the matrix iMj'(t', r). In the notations of [7] the 
matrix iMJ'(g', r) is represented as 

iA(g', r) = iAI + iC + iE(t', r) + N(t', r), 

where 

0 . 00 

1 k ? I 0 0 Re e 0 ... 0! 
C= 0 r). 0 

O~~~~~~~~~~~R e- O 
. 
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Imeq11 0 

N(t', r) = - 

Im eo 0 

Then R'(D', r) = (D + B) - iq'F, where D, B and F are correspondingly the 
matrices D, eB and F defined in [7, Lemmas 4.1, 4.3 and 4.4]. 

Thus Theorem 3.1 is proved modulo the following general 

LEMMA 3.2. Let f(z, w) be a function of a complex variable z and a real vector 
variable w E R', which depends continuously on (z, w) and analytically on z for z and 
w in some neighborhood 7z X Qw of the point z = 0, w = 0. Let z = 0 be a null of the 
function f(z, 0) of multiplicity q. Denote by 

q-1 

p(z, w) = 2 ek(W)Z + Zq 
k=O 

the Weierstrass polynomial corresponding to the function f(z, w). Suppose that for any 
w belonging to some set 6D C Rn and any z in a neighborhood of zero the following 
estimates hold: 

(3.61) If (Z, w) -f(z, w) I| K| Im fo(w) I 

(3.62) af (z, w) _ af(z w) < K Im fo(w) 

where f(z, w) = f(z, w) andfo(w) = f(O, w). Then there is a neighborhood Qw C Rn of 
the point w = 0 and positive constants K1 and 8 such that for any w E 6D n Qw the 
estimates 

(3.63) IImek(W) < K,I Im fo(w) , k = 
09 l, .................. ,q -1, 

and 

(3.64) Im eo(w)| 8Im fo(w) 

hold. 

Proof. Let F = z Ec C z }C z be a positive oriented circle and Qw C Ow a 
neighborhood of zero, such that f(z, 0) 7# 0 for 0 < I z I e and f(z, w) =# 0 for any 
(z, w) E IF X a' Let us fix w E 6D n Qw- Denote by Zl, Z2. ... *Zq the roots of the 
equation f(z, w) = 0 and consider their symmetric functions aj(w) = zl + z2 

+ **+zj 1,2, ... , q. By the Cauchy integral formula 

( 
1 

zJff( w) dz, ai (w 2, r f(z,w) 

where f'(z, w) af(z, w)/az. Therefore 

1pzif '(z9w)d 
a>(W) = Z-i+ + +Z-=rr cf t(')dz I Z2 ~ q 2'7T i r f (Z,w) 

and 

1 ()f j'\f, ji fdf(-f +f) f(f' fI)d 
imai(w) - ~~Z'-j - dz 9Z' dz. 
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Since f(z, w) f(z, w) 7# 0 for any (z, w) E r X Q', we get from (3.61) and (3.62) an 
estimate 

(3.65) IImaj(w) I< KI Im fo(w) , j = 1, 2,... .,q, 

where the constant K is independent of w E . Since ek(w) is a polynomial of 

aj(w), j= 1,2,... ,q, with real coefficients, we obtain for Im ek(w) the required 
estimate (3.63). The coefficient eo(w) is given by 

e0(w) Z2 ... Zq = ---aq(w) + s(a01 a2, * ... 9q-l) q 

where s is a polynomial with real coefficients. It is clear from the consideration of 
degree that the polynomial s has no linear terms. Since a>(O) = 0, it follows that 

I Im s(a1, a2, ... caq - lI) I < 8 II Im fo(w) I, where 8I is arbitrarily small if one selects a 
small neighborhood Qw Let us rewrite the integral expression for Im aq(w): 

lM aq(W)- ~4, f.f + rf f f')dz) 

The functions z qf '(z, w)/f(z, w)f(z, w) and z q/f(z, w) are continuous in r x Qi2 
and, hence, the difference of their values at the points (z, w) and (z, 0) may be 
bounded by an arbitrarily small constant if one chooses a sufficiently small neigh- 
borhood Qw Note that zq/f(z, 0) is an analytic function of z, and therefore 

-+V (f'(z, w) 
- 

f'(z, w)) dz = 0. 

Similarly, 

z q.f,(Z,o0) _ q 1 

f(z, O)f (z,O ) f _(o 
__ + g(z), 

where fq(O, 0) = (q!) laqf(z, o)Iaz q Z= is nonzero and g(z) is an analytic function. 
Then 

-~ ? f (z ;f )(z,O)) (If (z, w)-f(z, w)) dz= q-Imf0) 4iT rf(Z'0)f(Z'0) ~~~~~fq(O,O0) 

Now, using estimates (3.61) and (3.62), we obtain for sufficiently small Qw 

Imaq(w) 8 Im fo(w) 

and therefore 

Imeo(w) 8 I Im fo(w) I 
for some constant 8 independent of w E 6D n Q Q.E.D. 

Having constructed the symmetrizers RJ(D', z) in the case Re K. = 0 and qj > 1, 
we define the matrix-functions RJ(D', z) for the remaining indices as follows: 

(a) Rj'(', r) =Iqj if (3.32a) or (3.33a) hold, 

(b) R'(f', r) = -cIqj if (3.32b) or (3.33b) hold. 
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Here c is a small positive constant and will be specified later. Finally we define the 
symmetrizer for the matrix Mj(D) in the neighborhood Q(DO, 0) as 

(3.67) R'(t", r) = (X'(~', r))']* *diag(Rj(D', r),R2(g', r),...,R',(g' r)) 

The matrix R'(~', r) is Hermitian and satisfies for (c', r) E Q2+ (c', r) the estimate 

(3.68) M*( )R'(t', r)Mj(2) - R'(t', r) > SqI. 

Let v' be a k-dimensional column vector. We shall partition it as 

(3.69) ( = 

where vI includes those components of v' which correspond to the blocks MJ' in 
(3.32b) and (3.33b) as well as the components vI,1 defined in (3.37), and vII consists 
of the remaining components of v'. In the same way we partition the columns of the 
matrix X'(t', r) 

(3.70) XI (D, r) =(xI(- , r), XI(j', r)). 

Due to estimate (3.39) and definition (3.66) we have 

(3.71) (v )*(X'(, r))*R'(', r)X'(, r)v v1 12 - C IV, 12. 

In order to define the symmetrizer R'(g', r) in the domain 

(3.72) Q+ (?) = Q(Do = O) n tq 1 O}, 

we select a finite set of neighborhoods Q(DO, 0) which cover the half sphere 
I t' 12 + j q 12 = 1, ' 2 0. Then using a subordinate partition of unity we "patch" 
together the local symbols R'(g', r). The resulting symbol, still denoted by R'(t', r), 
is a smooth function of D' and r and satisfies estimate (3.68) for any D e Q+ (0). 

3.3. Proof of Theorem 1.3. We consider only the more difficult case when 

D (t, -) in problem (3.4) belongs to the neighborhood Q+ (0) in (3.72). Introduce 
in (3.4) new variables 

(3.73) u(xo) - X(O)v(x0), F(xo) - T(t)G(xo) 

where v(xo) and G(xo) are partitioned in accordance with (3.25) 

(3.74) v vf v vo Gf) G Go 

In view of equivalence (3.26), problem (3.4) becomes 

(A) (Eo -Mf (D))vf (xo) = Gf(xo) 

(3.75) (B) (-Moo( )Eo + I)v v(xo) = Go,(xo)X 

(C) (')X(M)v(0) = g. 

We set 

(3.76) RO(M) -ci, RO(O) I, 

Rf( ) diag(RO(D), R'(t', r)), R(Q) - diag(Rf(D), Rt(t)), 
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and multiply Eqs. (3.75)(A) and (B) in 12(XO) by the grid functions 

Rf (t)(-Eo-Mf('))vf(xO) and Ro,(')(M,(')Eo + I)VOO(Xo), 

correspondingly. Then, comparing the real parts, we obtain 

(3.77) ((Mf*Rf Mf-Rf )vf, vf ) + (Rf vf (O), vf (O))h 

= -Re(Rf (Eo + Mf?)vf v G 

(3.78) R - M*R Moo )Eovo,, E0oO, ) + (R ,v.(O), v. (O))h 
= Re(R,,(MOEo + I)vx, Go. 

Using estimates (3.21), (3.68) and Schwarz' inequality, we get 

(3.79) S(IIVoII2 + 1VIv112) + (Rvf(0), vf(0))h < K(IIG0112 + IG1I2q-F1) 

and 

(3.80) 8 11 EoVj 112 + (R v,(0), v(O))h < KGo 11 2, 

where 11 *I stands for the 12(xO) norm 0. * . Since RX = I, the last estimate is 
equivalent to 

(3.81) V1V0 112+ (Rcvo(O), v(O))h h KGoo 112. 

For 0 < ? Ko we derive from (3.79) and (3.81) 

(3.82) &q1HVH112+ (Rv(O), v(O))h < KIIGI2F- 1. 

The following lemma enables us to estimate the second term in (3.82). 

LEMMA 3.3. Suppose that (UKC) holds for any E Q + (0). Then, for a sufficiently 
small constant c in (3.71) and (3.76) the symbol R(g) satisfies 

(3.83) (R (g)v (0), v (O)) 28 I v(O) 12- K Ig 12S 

or, in other words, 

(3.84) R(?) + K[S(?)X(?)]*[S(?)X(?)] > 

for any EQ+ (). 

Proof. We can assume that the pair (i", r) corresponding to the point D E Q+ (0) 
belongs to some neighborhood Q(, 0) discussed in the previous subsection and that 

R'(%', r) is a local symmetrizer in Q(O 0). The "patching" together of the local 
symbols satisfying (3.84) will maintain this estimate. In view of estimate (3.71) and 
definition (3.76), for any vector v partitioned as in (3.74) we have 

(3.85) (R(')v, v) >| vI 12 + Iv' 12 - c(I v 12 + I v 12), 

where the vector v' is defined by 

(3.86) v' = (X'(t', r)) v, 

and is partitioned as in (3.69). Define g = S(')X(')v and rewrite this equality as 
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where 

Sj(D r) = S()XO( Xl(D Xj(I(D ) 

SII(D, r) = S()XI() XI'(, r)9 XO,(D)] 

In order to prove (3.83) it is enough to show that 

(3.87) det SI (D', r) # 0 for any (c', r) EE 0) 

Consider Eqs. (3.75)(A), (B) with G = 0. Once again change variables 

(3.88) vI = U(D', r)w, 

where U =diag(U1,U2,...,UJ). Here the matrices Uj(t', r), j = 1,2,...,m, are 
defined as in (3.38) if Re K. 

= 0 and q1 > 1, and U. = Iqj otherwise. Partition the 
vector w as 

WII (i) 
in the same way as we did with v'. Due to (3.38) Eqs. (3.75)(A) and (B) become 

(A) (Eo - MO)vo(xo) 0, 

(3.89) ) (E [ N12]) WI (xo)) 

(C) (-Mr0E0 + I)VcO(Xo) = 0, 

where, for (D', r) EE Q + (g, 0) and r > 0, the spectra of the matrices N11 and N22 lie 
correspondingly inside and outside the unit circle I K = 1. Then the general solution 
of (3.89) in 12(xO) is given by 

Voo(xO) w11(xO) 0, 0 vo(ih) = Mov0(0), w1(Vh) = Nlplw1(O), 

and the corresponding homogeneous solution of Eq. (3.4)(A) is 

(3.90) Tp(x0 D', r) (TI(xo, "', r),- ... ,T,(xo, "', r))w1(0) 

+ (T1+ I(XO, D ), * . *, 0(Xo, D )) VO(0) 

- X1(g')X'(t, r)U(t', r)( wI(x?)) + Xo(')vo(xo). 

The number of independent solutions in the first group is, indeed, 1 as it is for the 
differential system (1.1). The matrix-function U(t', r) is continuous at the point 
(1, 0) and U(0, 0) = I. Then, by (3.24), we get 

I 
I 

(3.91) (991(?, 90,)9 . 9,9(0, 90,)) = . XI 90S). 

I 

From (3.29) we deduce that the matrix X'(0, 0) and the first k components of the 
vectors 1(0, D', 0), j = 1, 2, ... ,1, are exactly the same as one obtains in the normal 
mode analysis for the differential problem (1. 1)-(1.3). This remark justifies formula 
(1.38) and Lemma 1.2. Substitute the vectors T(j(0, D0,0) from (3.91) and the vectors 

,1+ 1(0, 0), ... ., ,0(0, 0) in the boundary condition (3.4)(B). The resulting matrix 
coincides with the matrix [N1(x , t, D0, 0), N2(x , t, D 0)] in (1.40) as well as with 
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the matrix Sj(DO, 0) in (3.87). Thus (UKC) implies that det Sj(D6, 0) #/ 0 and 
therefore the inequality in (3.87) holds for any D' EE 0(D, 0), provided the neighbor- 
hood Q(4, 0) is sufficiently small. Q.E.D. 

Return now to estimate (3.82). From (3.83) we get 

(3.92) q 
11 V 12 + h I v(0) 12 K K(,q-'I IG112 + hI g 12) 

which is equivalent to estimate (3.5). Thus we have proved the sufficiency part of 
Theorem 1.3. 

The necessity of (UKC) follows easily from the analysis in Lemma 3.3. Again, we 
consider the more difficult case when condition (1.40) is violated at the point 

r = 0. Then det Sj(D, 0) = 0, and there exists a nonzero vector (v0(0), wj(0)) 
such that 

w1(0)j =0)0. 
SI( 

WI) (O) =? 

With the above vector we build as in (3.90) a homogeneous solution (p(x0 k', r) of 
Eq. (3.4)(A). Then (p(O, D', r) satisfies the boundary condition 

AOT)(0, D'I, r) = g(~', r), 

where g(D', r) is continuous at (D0, 0) and g(D0, 0) = 0. The last violates the estimate 

IT(0 D', r) 1< KI g(D', r) I and, thus, estimate (3.5). 

4. An Algebra of Pseudo-Difference Operators. In this section we study an algebra 
of pseudo-difference operators (later referred to as P.D.O.) depending on parameters 
h and q and acting in appropriate Sobolev spaces of grid vector-functions. Although 
similar algebras were built in [3] and [12], for completeness and rigor we present the 
proofs of all basic results of this section. These results will be used later in order to 
prove Theorems 1.1-1.3 in the case of variable coefficients. 

We introduce first a class Sf% of symbols a(x, (, il) which are smooth functions of 
x = (x, x2,... ,xn) E Rn and = R n X [0, KO] \ {0}, are 
periodic in (j, j = 1,2,...,n, with the period 27T, have a limit a(x, (, ) as x xo 
and satisfy the estimates 

(4.1) 1(1, + Ix )YD0Dga'(x, < ) 1? K,f iyXm-lal (t, 1) 

and 

(4.2) DxD'a(ox, )1< K)Kft A- lalI(,r) 

for any integer y and multi-indices a and ,B. Here 

(4.3) :(E,i) = ( I eitj 12 + I e -1 1/2 

j=1 

and 

a'(x, (,r)=a(x, (,r)a(xo, ,r) 
Obviously, S1 0 = z+OSj is a graduate algebra under the usual addition and 
multiplication of symbols. We also consider a subalgebra g1O C Soo consisting of 
symbols a(x, 4, ii) which satisfy the estimates 

(4.4) 1 (? + I x 1)yDxDa'(x, < K,B y Y 
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(4.5) I DxDOa( ,0 ) I < Ka ,. 

Following Frank [3], we define for a(x, E, q) E Sn the seminorms 

(4.6) 

I a Im,aj,1 (2T ["27)|n sup I (I + I X 12)I3/2DCa',(X X -1 I-q(,) dX 
jai = const R ^ 7 

sup I Dta(a , X, q)XIaK-(, M ) 1] 

Here ac'(X, , 71) = IRn e-xxa'(x, {, ) dx is the Fourier transform of a'. One can 
easily check that the above seminorms are bounded. 

Now let a(h, x, (, ?q) be a smooth function of 0 < h < ho, x EE Rn, t Rn and 
e [0, Ko/h] periodic in ,jj 1, 2,. .. ,n, with a period 2 r/h, which has a limit 

a(h, x, q, 7) as x -x oc and satisfies the estimates 

(4.7) 1 (1 + I x I7)DxAD40a'(h, x, <' 71) 1s Ka,1 ,yhM2AmIIaI (h1, (, n) 

and 

(4.8) DDtaa(h, x, o, )< K a ,h 2AI- Il (h,r 

Here 

(4.9) A(h, ei l 2 2) 1/2 

and a'(h, x, (, r) a(h, x, (, -a(h, xo, (, ii). Frank in [3] uses for A(h, 0, 0) the 
notation (t). Following [12] we denote the class of symbols a(h, x, {, q) with given 
integers m1 and m2 by SFd M12. Our symbols differ from those in [12] by their 
dependence on -q and also periodicity in f (instead of vanishing near j= ?n/h) 

and in the last feature they resemble the symbols in [3]. As in [12] we define in 
addition subclasses S?Om2 C S?Om2 of symbols a(h, x, ,, -q) which satisfy estimates 
(4.7) and (4.8) with the right-hand side replaced by KhM2+ IaI . Obviously lm1m2 SMd'm2 

and Em2 S?0m2 are graduate algebras of symbols. For a E SMImM2 we define semi- 
norms 

(4.10) 1 a ImI,m2,IaI,p (2q)nf sup 
S 

(1 + I X 12)8/2(Dt't(h, X, t, v)) 
ai = const R 4,, h 

Xh M2AIIaKm1(h, (,,q) I dX 

+ SUp I (Dtaa(h, oo, , ,q))h -M2AI -ml(h, 7) I 

where a'(h, X, (, -q) is the Fourier transform of a'(h, x, , rq) in x with the dual 
variable X and the supremum is taken over ? E R , 1 E? [0, Ko/h] and h E? (0, he). 

Remark 4.1. For 1 - ? < Ko/h the function A(h, (, -q) is of the same order of 
magnitude as X(ht, h-q)/h. Therefore, given a(x, ,, -q) ? SFm the corresponding 
symbol a(x, h , hq) restricted to -q ? [1, Ko/h] belongs to S m%m and 

I a(x, ht, hrq) Im,m,jaj, ? K I a(x, 4, -q) Im,ja/8. 
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However, if a(x, E, q) E S0, the symbol a(x, ht, hq) belongs to S90? for -q E 
[0, Ko/h]. 

Let u(x) be a grid function defined on a uniform grid Rn such that u(x) E e 7x"l2(x) 

(we use notations of Section 1 with t = xn). Denote by Thn the n-dimensional cube 

ftE R| nI jI 7T/h,j = 1,2,... ,n}. We define the norm 

(4.11) IIUIkI, h = (2ah(, 7) 2A2k(h, (, q) de, 

where 

(4.12) uh(, 7) = J,Ch(u(x)e-7) = hnu(x)e-xe-ix 

is the discrete Fourier transform of u(x)e-lXn , and denote by Hk , h the correspond- 
ing space of grid functions. Obviously, for fixed h > 0 the norms IIuI k, ,,h 

are 
equivalent to ll u 11 0, ,h. Note also that the norm 11 u 11 0, ,h coincides with the one 
defined in (1.11) and thus Ho ,7 h e 1xnl2(x). To a symbol a(h, x, (, rq) E Sf2drn2 we 
relate a two-parameter family of P.D.O. Ah acting on grid functions u E Ho,,,h and 
defined by 

(4.13) (A,u)(x) = (2,) f eix ?xn7a(h, x, )h(, ) dt. 

We shall also denote such an operator by a(h, x, D, -q) or, instead, write 

c>(A h)= a(h, x, (, ?) 

To shorten the notation we shall often replace the pairs (-, 7), (s', q) and (s", 71) by 
the letters ', D' and i". The definition in (4.13) implies 

(4.14) (A' )( (2,r) n (h, t ,tu ()dt 

+a(h, o;u () 

where a' (h, -x D, C) = _ -,h(a'(h, x, )) is the discrete Fourier transform of 
the function a'(h, x, i). By the Poisson summation formula (see [2]), 

(4.15) a (h, X, = a'(h, x + 27rah-, '), 
a EZn 

where a'(h, X, ') is the continuous Fourier transform of a'(h, x, ') in x E Rn with 
the dual variable X. 

THEOREM 4.1. For a(h, x, ') E SF6,0 the norm of the operators Alh: Hk?m h Hk ,h 

is bounded by 21kl/2 I a Im,o,o,Ikl - 

Proof. For simplicity we consider only the case a(h, x, 0) 0. In view of (4.14) 
we have 

| Ak(h, A | 

? (27 ) nf |[Ak(h, t') Ak(h, ')ah(h ('-( ,)A-m(h, )] 
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Due to the estimate 

(4.16) A(h, t)A-1(h, t') < 21/2A(h, O)- 

which follows from Peetre's inequality, the expression in the square brackets in the 
above integral is bounded by a function 

b(h,/ '-( t,) =2Ik/Ak (h, {'(O a a(h,, ;'-,) A-m(h, ) 

Then, by Young's inequality, formula (4.15) and periodicity of Ak(h, X, 0) in X we 
get 

1AX h11 < (2 iT)n sup b(h, X, t) dx 
T ,h 

(2qT) n212 sup AI (h, X, O) I a^(h, X, t)|A-mh ) 
h~ ~,h 

Since for X E- Rn 

(4.17) A(h, X, O) < (I + I x 12)1/2, 

the last integral is bounded by 2Ikj/2 I a Im,o,o,Ikl* Q.E.D- 

THEOREM 4.2. Let A h, B4h and Ch be families of P.D.O. with the symbols a(h, x, 
E sim{ ?, b(h, x, ') E SM2'0 and c(h, x, a(h, x, )b(h, x, ') E Sf28+m2,? Then 
the norms of the operators 

Ab4 o Bh - Ch-H - 
ABh o inB Ck+m1+m2,q,h Hk+l,ij,h 

are bounded by 

(4.18) IIA ? Boh - Ch, K KIa Imi,0oIk+?11 I b Im2,0,0Ik+l1+?m-lII+l 

Proof. Again we consider only the case a(h, x, t) b(h, oo, 0) 0. Let u E 

Hk +mi+m2qh and v = (Ah Bh - C,h)u. Then 

(4.19) A+ ( h tt) V () 

= (2iTT)2nJ {f| + 
1(h,')A-k-l(h,)1 

* [A-m?(h, )(ah(h, ('-a, c") 

-a (h, tt(t ))A-(,"-) 

* [A(h, D"- )Sh(h, - , t)A`n2(h, )] 

[Nml+M2+k( h U*h] 

The expression in the first square brackets in the above integral is bounded by 

(4.20) 21k+l1/2AIk+ll(h, D - ) < 21k+llAlk+llA(h, D' - '").Alk?lI(h i" - ) 
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For the second brackets we have the following estimates: 

n 

(4.21) ah(h,xX, a)- h(h,X, )I E sup Ia-(h,X, Ot)I 4"-41 
i=1 0<t<1 

where Of t ' + (4"-4, O)t, 4"- belongs to Thn and equals 4"- mod 2'r/h, and 
a1(h, x, D4a(h, x, i); 

(4.22) A-m+?l(h, ;) < 21m1 -l/2A-ml?l(h, Ot)AImI-lI (h, -ft) 

< 21mi-l 1/2A-m1 +l(h, 0t)AI m 1 II (h, 2" -) 

(4.23) I4"-4 A (h, "- ) ? 7"/2, since I T/(elT - 1)1? T/2 for IjT I j 

Define the functions 
n 

f(x)= (27T)- E sup IA k?li(h, x,o)aj(h,x, )Aml(h, )l 
ij=l ~,h 

and 

g(X) = (2 r)-n SUp I AIk+IlI+Im-lI+l(h, X,O)gh(h, X, t)A-m2(h, ) I 
~,h 

Due to estimates (4.20)-(4.23), 

(4.24) | Ak+'1(h, ) v) h( ) 

< KJ[f 1(4'-4")g(4"-4) d4"] [Am +m2+k(h, ) I u'(') j] d4, 

where K= 2Ik+lI2Im1-lI/21T/2. By Poisson's summation formula for ai and b and 

(4.17) we get 

f(x)dX < a ImI,O,,tIk+?II and fg(X) dX < l b Im2,0,0,Ik+?+?Imi-1I+?- 

Estimate (4.18) follows at once from (4.24) and the Young inequality. 
Let Ah be a family of P.D.O. with the symbol a(h, x, ') E Sm%O and A*)h a family 

with the adjoint symbol a*(h, x, t). Denote by (A')* the operator which is adjoint 
to in Ho,h, i.e. (AhU, v)o,qh = (u, (ATh)*V)o,Th for any u, v c Ho,7h. Note that 
for fixed h and q the operators Ah, A(*)h, (Ah)*: Hk, - Hk2,nh are bounded for 
any k, and k2. 

THEOREM 4.3. The norm of the operators (Ah)* - A()h: Hk?m,ijh Hk+l ,h i 

bounded by KI a lm,O,,Ik+lI+?m-11l+1 where K depends only on m and k. 

Proof. Let u E Hk+m,q h and v = [(Ah)* - A*)h]u. Then 

Ak+'(h, )vh(t') - (2ir)nf [Ak?l(h, t')A-k-'(h, )] 

hhh 

[A-m-1(h, )(a (h 4'-4, ')a* (h,4'-4,))] 
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The terms in the first and the second brackets are estimated as in (4.20)-(4.23). 
Introduce the function 

n 

f(x) = (2yr ) sup AIk lIImll (h, X, O)a (h, X, )A-m (h,)l 
i=1 ,h 

Then 

A f(1h' - K)Ak+m(h, ) u(')| dt, 
Th 

where K = 2(1k? II + Im -1)/27/2. The theorem follows from the Young inequality and 
the estimate 

h 
f(x) dX < I a Im,O,1,Ik+I I+Im-1I+P 

We need a modification of Theorems 4.2 and 4.3 for the case a E S90. 

THEOREM 4.2a. Let A 
h Bh Ch be as in Theorem 4.2 and a(h, x, ') E S90?. Then the 

norm of the operators A h o B h- Ch1: Hk?m2,77,h - k is bounded by 
n 

Kh I h-1Dc,a(h, x, t) JO,O,O,IkjIj b Im2,0,0,IklI+ 
i=l1 

In the proof of Theorem 4.2 one should only replace k + 1 by k, -mlI + 1 by 0 
and then observe that the norm I h- Dc,a(h, x, () o,oo Ikl is bounded. 

THEOREM 4.3a. Let a(h, x, ') in Theorem 4.3 belong to 910?. Then the norm of the 
operators (ATh)* - A(*)h: Hk, -h Hk 7h is bounded by 

n 

KhE I h IDc,a(h, x, ) O,0,0, lkl + I 
i=l1 

The next result is known as a weak form of Garding's inequality. 

THEOREM 4.4. Let the symbolp(h, x, ') belong to S?0' and satisfy 

Rep(h, x,) 8 >0, 

and let p77h be the corresponding family of P. D.O. Then 

Re(P 77u, u)0 X1h ? (3/2)IIuII0,7 h - KIIu I/2T, h, 

where the constant K does not depend on -q, h and u. 

The proof is standard. There exists a symbol b(h, x, E) E S0'0 such that 
b*(h, x, 2)b(h, x, 2) Rep(h, x, 2)-8/2. Let B h and R h be families of 
P.D.O. with the symbols b(h, x, ') and Rep(h, x, i), correspondingly, and 

q= [P' 
? (P)*]/2. Note that the norm of the operators A1/2(h, D, 7) 

o (Qh - RTh) o A1/2(h, D, -q) acting from H_ /2,,, h to H-1/2,7,h is uniformly 
bounded. Therefore 

(4.25) h(Q7u, u)077h - (RT7U, u)077h ? KI 11u I/2,77,h 

Similarly, we get 

(4.26) (B hu, B u)O77h - ([Rh - 8/2] u, u)0K7h 1 U KI11 uII/277h 
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Then 

Re(P,7hu, u)O 1 h > (3/2)11 ulI o + 11 ? hIBoUIIh - K || U 111/2h. Q.E.D. 

THEOREM 4.4a. If p(h, x, D) is as in Theorem 4.4 and belongs to S9, then 

Re(P,hu, u)O1h > (8/2 - Kh)l u1iU 1h2 

One should only observe that the symbol b(h, x, ') in Theorem 4.4 belongs to S9 ? 
and use Theorems 4.2a and 4.3a to modify estimates (4.25) and (4.26). 

We also need a local form of Garding's inequality. 

THEOREM 4.5. Let p(h, x, ') be a symbol in S?0? and T(x, D) E Sg0 be a scalar real 
function such that Rep(h, x, S SI > 0 for (x, ht) belonging to an open set Q D 

supp 9p(x, D). Denote by PIh and h the families of P.D.O. with the symbols p(h, x, D) 
and w(x, h') correspondingly. Then 

(4.27) Re(P, o q 'u,q u)0,, h ? (3/2)II4 uII o 1,h - K -IuII 1/2, ,h. 

Proof. As in the proof of Theorem 4.4 we define a symbol b(h, x, ') E So?0 such 
that b*(h, x, D)b(h, x, D) = Rep(h, x, 8)-3/2 for (x, h;) E supp q(x, D). Let 

1'0= (Bq )*BqB + (8/2)I. Then P1h is selfadjoint and P1h > (8/2)I. Estimate 
(4.27) now follows from the fact that the operators 

(RePq - 4: Hk,,h --h> Hk?H+l,h 

are uniformly bounded. 

THEOREM 4.5a. Let p(h, x, '), p(x, ') be as in Theorem 4.5 and p(h, x, ') E S9?0. 
Then 

(4.28) Re(P4 o 4D u,nDu)0,7 h (3/2)Il?uIIo,h - KhhIul 0 h. 

We should only indicate that b(h, x, ') belongs to S90?, and therefore the norms 
of the operators (Re p4h - ph )4h: Hk ,h - k are bounded by Kh. 

Finally we state the sharp form of Garding's inequality. 

THEOREM 4.6. Let the symbol p(h, x, ') E S1'o be Hermitian and nonnegative. 
Then, for 0 s q s Ko/h, 0 < h < h0 with h0 sufficiently small, there exists a constant 
K independent on -q and h such that 

(4.29) Re (P u, )0 1 qh 0 K 1 l o7h - 

Proof. We shall modify and simplify the proof of this inequality given in [3, 
Theorem 8.2] for the case q = 0. Let p(O) E Co?(Rn) be a nonnegative even 
function with the support in the ball j 0 1 < I such that 

(4.30) f R2( ) df = 1. 
Rn 

Following Frank in [3] we define 

(4.31) Th(;, s') = A-n/4(h ')p(A- 1/2(h, )(' - 
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and 

(4.32) 4 (h, 9 h') = Ph(t, t' + 2Th-'a, q) a E Z'. 
a 

Note that for h sufficiently small only one term in the above sum is nonzero. 
Obviously, the function (F(h, ', i') is periodic in t and (' with the period 27r/h. 
Introduce the regularized symbol 

(4.33) a(h, x, T=| (h, x, ' 2 (h, ,'dt' 

Thn~~~~ 

fp(h, x, + ? A1/2(h, t')O, q)>2(O) dO 

and the double symbol 

(4.34) b(h, ~, x, 4)= (h, g, ")p(h, x, g"),O(h, ? " ( 

Let A h be a family of P.D.O. with the symbol a(h, x, D) and the family Bh be 
defined by 

(4.35) 0(3,h)u (2r)-nf b' (h, d (- , D)( ) d' 

+b(h, u, x, 

where b(h, , x, ~') is obtained by substitution x = o in (4.34) and 

b' (h, ;,X, h' 'x (b(h, ~, x, ')b(h, ;, xo, ') 

We restrict the operators An, B4h and ', to grid functions with finite support. Then 
for arbitrary u E Ho,r,h estimate (4.29) will follow by the usual approximation 
arguments. As in [3] the proof of the theorem consists of the following three lemmas. 

LEMMA 4.6.1. The operators BTe are selfadjoint in Ho, ,h and satisfy 

(4.36) (BT) U, u)O q,h > ? 

LEMMA 4.6.2. There exists a constant K independent on -q and h such that 

Re([A - Ph] u, u)Oh I < KU 11 I2h- 

LEMMA 4.6.3. There exists a constant K independent on -q and h such that 

(4.37) |([Br h- ReA h] u, I) h| K 11 u 11 2,1, 

Proof of Lemma 4.6.1. Since b(h, ', x, i') = b*(h, i', x, i), the operator B,h is, 
obviously, selfadjoint. Consider the function 
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According to (4.34) we have 

F(x) = f (p(h, x, t"')v(&"'), v("')) dc" ??- 0, 

where v(D") = f, 4(h, 2, ?")eix u (') d(. It is easy to show that the partial sums 

2F(x)hn, xE Rn ,IxjI<Nh,j= 1,2,...,n 
x 

converge to (2r)n ((B )(h), Uz(v)) as N -- xc. Thus, 

(BnU U)0 1 qh = (2fJT B((t )( uh() 2 . 

Proof of Lemma 4.6.2. The norm of the operators 

Ah Ph: HO,71,h ->HO,,h 

is bounded by 

(4.38) Kja(h,x,)-p(h,x, ) 00,00 
Using definition (4.33) and the fact that p(O) is an even function, we get as in [3] 

(4.39) a(h, x, t)p(h, x, t) 

- f f1A(h, t)(l - t) 
IoL<1 0 

X D4cp(h, x, ? + tA1/2(h, .)O ,'q)0a2(0) dt dO. 
1a1=2 

We shall show that for I ('- I < AY/2(h, ') the ratio A(h, ;)/A(h, i') is bounded 
by a generic constant co. Indeed, the gradient DtA(h, ') is bounded by 1. Therefore 

A(h,) A(h, i') I j - 4' I A/2(h, ) 
and hence 

(4.40) A(h, t)/A(h, t') ? min{A(h, t), (1 - A-/2(h, t))1} 

(3 + 5)/2 = co. 

By (4.39) and (4.40) we get that the constant K in (4.38) is bounded by 

(4.41) K < cO I P 11,0,2,0 < x . 

Proof of Lemma 4.6.3. Let v = (Bh - ReAh)u. Then 

(4.42) Vh(t) = (2v) f kh(h, - t' ;;)ah(;;) dt' ? k(h, u, x, 

where 

(4.43) 2k(h, t, x, ')=2b(h, t,x, ')a(h, x, ')a*(h, x, ) 

From (4.33) and (4.34) follows 

(4.44) 2k(h, ~, x, T') =- p(h, x, t")[4(h, D', c")-F(h, , tj)]2 dc". 
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Hence, k(h, o, 0, ) 0 and 

(4.45) 2k' (h, g - , ') 

f I (h, (-h',")['I(h, , - , tWjj2 dc". 

Represent the above integrand as a product of the following two functions: 

(4.46) q(h, X, i") A2(h, X,0)P' (h, X, t")A-'(h i"), X - 

and 

(4.47) *(h, A, D' " -2 (h, ?'-)A(h, D")[O(h, (' "- (h, ,,)2 

In view of (4.42) and (4.45) the norm of the operators 

Bh- ReA h:Hoh H,h qnR HO,,,h ->HO,,O,h 

is bounded by 

(4.48) f sup I q(h, X, d") j dX sup f J(h, , i", ") dc". 
T*"'%th ~ ,?,h T 

The first integral in (4.48) is bounded by I p(h, x, 0') 11,0,1,2. The function I(h, , D', p") 
is estimated by 

(4.49) *(h,,' ) 

< A(h, t")A 2(h, '- ) I - 12 (l (h, D,")Idt) , 

where t = + t(t' - ') and $(h, , i") is the gradient of 4(h, , v") with respect to 
the variable (. Since the function '(h, ', D', i") is periodic in t and (', we may 
assume that G'- E Thn and therefore, as in (4.23), 

(4.50) 1 t'- I A-1(h, g' - 0) < 7/2. 

Changing the order of integration in triple integrals and using Schwarz' inequality, 
we derive from (4.49) and (4.50) 

(4.51) | (h, D"dt'" 

; ( ,/2)2[f1 dt I | (h, 1, i"') j2A(h, i"') dc") |j. 

For small h 

I $(h, 
1 

) 12 I q'h(~t V" + 2,gh-1a, ) 12, 

and hence 

(4.52) f $ 4(h, I p") 12A(h, i") dc" 1= | Th(~tt c") 12A(h, c") dc". 

Note that i(hG ')t # 0 implies - I ? A'/2(h, In this case, using the 
inequality I A(h, g)-A(h, g") I < I - I A'/2(h, t) we get 
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and therefore 

(4.53) f Ph(Ptl c") 12A(h, c") do" < 2f1 i h(2t c") 2A(h, d) is". 

By direct differentiation one could easily verify that 

(4.54) 1 AY/2(h, O)Dtjh(t, c")! 

A"/2(h, ')DJA-n/4(h, t)q(A-1/2(h, ')(.'"- I 

? KA-n/4(h, t)[q(A-1/2(h, - 

n 

+ E ig(A- '/2 (h,?)t-)1 

where qzp(t) D0p(t), so that the right-hand side in (4.53) is bounded by a constant 
times the integral 

tn 9(0) + l p(O) 12 dO < x. 

The theorem is proved. 

5. Proof of Estimate (2.16) in the Case of Variable Coefficients. Using the algebra 
of P.D.O. built in Section 4 we shall modify the proof of estimate (2.16) in 
subsection 3.3 to be valid for variable coefficients. The different symbols, as X(t), 
T(Q), M(D), R'(t", I 1 ) etc., which appear in Section 3, are, actually, smooth 
functions of x = (xO, xl,.. .,xn-) and t in a neighborhood xt of a point (x, t)0. 
We shall consider xo as a parameter and identify (x , t) with the vector x 

(xI, x2,.. . ,xn-1, xn) in Section 4. If A(x, t, D) is some matrix function in Section 3 
(appearing there without the variables x, t), we denote by A' the family of P.D.O. 
depending on parameters 7, h and xo with the symbol a(A h) = A(xo, (x_, t), h). 
Thus we rewrite problem (2.1 1) as 

(A) Q(E0)u(x0) = (AhEo + B,h)u(xo) = hF(xo), x0 R 
(5.1) (B) nu(O)g 

where u(xo), F(xo), g are grid vector-functions depending on (x , t) E R1. To 
simplify notations we denote the norms I* k,, h by lk, n if k # 0 and by I - if 
k 0 O, and the scalar products ( , ) , h in Ho ,7 h by ( , ),,. Also replace the norms 
I I - X t, and scalar product < x, >t n in (1.11) by I . 11 and ( , - ). As shown in 

Section 2, we may restrict ourselves to 1 s 'q s Ko/h. Finally estimate (2.16) 
becomes 

(5.2) -1I u12 + I u(O) 12j< K(,q-1 FII2+ I g2). 

Let Qxit X Q(DO) be a neighborhood of a point (x, t)0, t0 in which equivalences 
(3.22) or (3.26) hold with the matrix-functions X, T, Mf, M. depending smoothly on 
(x, t, i), and let p(x, t, D) be a cut-off function which is equal to one in a 
neighborhood of (x, t)0, 0 and has support in S2x t X R(DO). We may assume that a 
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finite set J of such neighborhoods covers the domain xo 2 0, (x , t) E Rn, t E Rn, 
0 < 'q < Ko and the corresponding cut-off functions qj(x, t, i), j E J, form a parti- 
tion of unity, i.e. 2j,1jj(x, t, t) = 1. Let V be a family of P.D.O. with the symbol 

j(Xo~ X_,t, ht) which belongs to S90? for any x0 E R+. Due to Theorem 4.2a, the 
grid function Du E e"'7l2(x, t) satisfies the equation 

(A) (AhEo + Bh)?Fh%u(x0) = h4VF(xo) + 0(h)u, 

(B) SV Fu(O) = V Ig + 0(h)u(O), 

where 0(h) in (A) and (B) are correspondingly operators in en'l2(x, t) and 
e'tl2(x , t) with the norm bounded by Kh. Suppose that for the system in (5.3) with 
the right-hand side denoted by hF and g correspondingly we have the estimate 

(5.4) 11 hD U || 2 + I Dh U(0) 12 < K(-1F11 F12 + I g 1n2 + 11 U 11 2 + I I U(0) 12 )- 

Then, u = Ej,CJ q^ u and F, g in (5.1) satisfy the estimate 

qju11n2 + I U(O) 12 IJ12 E ((ii jXu11i2 + I 'Fh U(O) 12) 
jCJ 

? K[ 1 IIVFJ? FI12 + I | ? (< ? + U)IIuII 

j j 

+ (1-l1 +h2)Iu(O)I1] 

S[-111F 112 + Ig 12 + 1Ull I2 +I 1 U(o) i2], 

which for large 'q is equivalent to (5.2). 
Thus we consider the equations 

(A) (AhEo + B? ) hu = hF, 

(B) ShDhFU(0) = g. 

If the neighborhood Qx t does not intersect the boundary, so does the support of the 
grid function FD,u, and estimate (5.4) follows from the well-posedness of the Cauchy 
problem. 

Now, as in subsection 3.3, we restrict ourselves to a more difficult case when Qx,t 
is a neighborhood of a boundary point (0, (x -), to) and Q(DO) corresponds to 
t0 = 0. We may assume that equivalence (3.26) holds on supp p(x, t, ') and that the 
matrix-functions X, X- 1, T, T-1, Mf, M. vanish outside some open set which 
includes supp p(x, t, i). Denote 

(5.6) V = (X-)hu, G = (T- )hF. 

We assume that v and G are partitioned as in (3.74). Note that the symbols 
X(x, t, h2) etc. belong to So?0. Since X9X- 1 = , we have 

(5.7) XqDv = 0U + O(h)u 

and 

(T-I)h(AhEo + B?)Xh(DhV = hG + 0(h)u, 

IhSXh4Dv(O) = g + 0(h)u(O). 
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Then, equivalence (3.26) on the support of p(x, t, ') implies 

(A) (Eo - Mh )FDvh = hG + O(h)u, 

(5.8) (B) (-Mh,,Eo + I)4Dv. = hG? + O(h)u, 

(C) ShXhFDV(O) = g + O(h)u(O). 

Suppose that for the system in (5.8) without the terms O(h)u we have the estimate 

(5-9) I71 ilhV || + I (qV (0) 12 < K( ql IIG11 2 + I g 12 + || V I2 + q- I |V(O) 12). 

Then, by (5.6) and (5.7), we get for (D4 u the desired estimate (5.4). We define the 
symbols Ro(x,, , ), Roj(x, t, t), R'(x, t, t) = R'(x, t, t', I D 1), Rf (x, t, t) and 
R(x, t, t) as in (3.76). Note that Ro(x, t, ht) and Ro(x, t, ht) belong to S90,0 and 
R'(x, t, ht) E S?0' for - > 1. Multiply Eqs. (5.8)(A) and (5.8)(B) (without the terms 

O(h)u) by Rh (-EO - Mfhf)(Dqvf and Rh (MhnEO ? I)DVx in the sense of the 
scalar product in eqt12(x, t), and compare real parts. Instead of (3.77) and (3.78) we 
obtain 

(5.10) Re {[(Mf T)*RXM8PMf -R] fl] i V ) 

?h(R (DhVf (0), 4DhV (h) ?(A EOD hVf, E04vo } +h(Rf, qv (O) vf ())q + (A Rf 'Q (DI Eovf ), 

-Re (R h ) Mfh + RX ,7 Eo] 
Dqhvf 

, hGf 1) 

and a similar equality for 4DhvoO. Here ARh has the symbol Rf(x0 + h, x_, t, h2) 

-Rf (xO, x_, t, hi) and therefore the norm of ARX : Ho,h -,7 Ho ,7h is bounded by 
Kh. Consider first the term 

Re([( Moh ) *R h 
q Mohq 

- R h 
q] 
j4 Vo, D hVo ) . 

Since the symbols po(x, t, hi) = Mo*(x, t, h')ROMO(x, t, hi) - Ro and 9p(x, t, t) 
satisfy the conditions of Theorem 4.5a, the above term is bounded from below by 
8/211 4vhvo 11 - Kh II VO 11 2. The symbol 

pi(x, t, ') = M*R'M -R' = (Ml - I)*R'M1 + R'(MI - I) 

belongs to S 0, and for (x, t, ') e supp p(x, t, ') estimate (3.68) holds. Note also 
that the symbol (MI(x, t, ht) - I)/h belongs to S 0? and therefore the operators 
(Mh - I)/h: Hk? 1,T,h Hk h are uniformly bounded. Introduce the symbol 

p2(x, t, ht) = (h-1pI(x, t, ht) - 83qI/2)>2(x, t, hr), 

which for Iq ? 1 belongs to Sg 0 and satisfies the conditions of Theorem 4.6. Using 
Theorems 4.1, 4.2, 4.3 and 4.6, we get 

Re( [(Mq)*Rq1 hM - R']4vi, I IVi)n 

4 hv 4DhV h hv 111 = Re(P % h, 1' I ? O(h)II4 v1 0 I 

=~~~~ h I Re I2WtlS ) q + Sq7hl2 11 (D,hv I 11 27 +0O(h)II v, 11 27 

8 &qh/2II (DhtV 112 - Kh 11 V 11 2 

The right-hand side in (5.10) is bounded from above by 

K(h2IIGo 12 + hr-)-1GII12) + 8'(II4vhtol12 + -qhIkDhviI), 
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with 3' < 8/2. Collecting all the above estimates, we obtain 

S(I (Dhl V o l l2, + 71h 11 (DhV I l2 , + h (R h r,(Dhv (?), ??Dht (O) ) 

?K(h IIGoIIO + hr-1II G1II + hIIvfII2). 

Since -qh < KO, the last estimate implies 

871|lt7tf 1t7 (Rf 4??7f (O), ,7 (D ) 
h 

Kr |f 11,7 + IIV 1,) 

In a similar way we get for 4,v. instead of (3.81) the estimate 

II vl 11 2 + h(RIh Dv(0), vD(0)), K(h211Go,112 + hIIvI 11) 

and thus 

(5.11) i,IhV 11 2?(R,7 ,hv(0), ,hv(o)), K(n 1IIGII? + 11vII)2 

The symbol 

q(x, t, t) = R + KX*S*SX 
in (3.84) satisfies the conditions of Theorem 4.5. Therefore 

(RDh,v(O), (Dhv(O)) = (QhDhv(0), (Dhv(O)) - K| g 12 + o(I v(0) 12 ) 
(34hV(0) 112 g 12K1 v(0) 1-i12, - 

However, 

I V(0) 12 1/ -1 
I V (0) 12, 

and estimate (5.9) follows. Q.E.D. 

6. Proof of Theorems 1.1 and 1.2. 
Proof of Theorem 1.1. Sufficiency of conditions (a), (b) and (c). In view of Lemma 

2.2, we start with the linearized problem (2.20). We consider the general case of 
variable coefficients and use the algebra of P.D.O. from Section 4 with the symbols 
a(h,x, = a(h,x,x_ (,) E S,'0 and =0. Here x0 E R+ is a parameter, 
x R n-I and (_ E R n-I is the dual variable. The corresponding family of P.D.O. 
is denoted by Ah (but depends also on xo) and acts in the space Hoo h = 12(X_). To 
shorten the notations we also remove the signs and (0) from L(?) and g(0), omit the 
dummy variable t and rewrite (2.20) as 

(A) Lh(Eo)u(xo) = (AhEo + Bh)u(xo) = F(xo), xo E R, 
(B) Shu(0) = g, 

where Ah, Bh and Sh have correspondingly the symbols A(x, ha-), B(x, h,_) and 
S(x, hp). Condition (a) in Theorem 1.1 implies that the characteristic equation 

det(A(x, ht, )K + B(x, hp-)) = 0 

has no solutions on the unit circle I K I = 1. Therefore, in a neighborhood ox X Qhc- 
of any point (x)0, (h, )o the pencil A(x, h, )K + B(x, h,_) may be brought to a 
block form 

(6.2) (A(x, ht, )K + B(x, ht, ))X(x, h_) 
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where the matrix-functions Mo and M. are as in (3.21), and the symbols X, T, Mo 
and M. belong to S9. According to condition (b) the matrix 

N(x, ht_) = S(x, h_ )X0(x, ht_) 

is of order lo X lo, and condition (c) actually states that 

(6.3) det N(x, h(_ ) #0 for any h(_ and any x = (0, x). 

Condition (6.3) is an analog of (UKC) for the initial-boundary value problem. We 
define symmetrizers Ro = -cI and Ro. = I as in (3.76) with R = diag(RO, Ro.). 
Then, for small c, we have as in (3.84) 

(6.4) R + K(SX)*SX?> SI. 

Now we repeat those parts of the proof in Section 5 which are related to the blocks 

Mo and M. and get easily the required estimate (1.16). To prove the existence of 
solution in (6.1) we look at the pair e = (Lh(Eo), Sh) as an operator from 12(x) to 
the space H {(F, g) I F E 12(x), g E 12(x_ )} with the norm II(F, g)112 =F 11 2E 

+ h 11 g 11 2and consider the adjoint problem 

(A) (EOBh* + Ah* )F(xo) u(xo + h), x ER+ 

(B) Bh*F(O) + Sh*g = u(O). 

The pencil of matrices B*(x, h_ )K + A*(x, ht_) is equivalent to a block form of 
the same type as in (6.2) with X and T replaced by X = (XO, XOO) = (T*)-1 and 
T = (X*)-l. Note that the operator e with coefficients frozen at some boundary 
point is an isomorphism, since one can find the solution of (6.1) by applying the 
Fourier transform and equivalence (6.2). Therefore the adjoint operator FX* with 
frozen coefficients is an isomorphism too. The last implies that the matrix 

N(x, h(_ ) = [B*(x, ht_ )io(x, ht_ ), S*(x, ht_ )] 

is nonsingular. The system in (6.5) is of a slightly different type than the one in (6.1). 
However, we could extend the grid function g to x0 > 0 and add to (6.5)(A) the 
equations 

(EoI + O)g(xo) = 0, x E RZ. 

Then problem (6.5) becomes of the same type as (6.1), and we get instead of (1.16) 
the estimate 

(6.6) IiF112 + hiigi_2 < K iuii1, 

which proves the sufficiency part of the theorem. 
Necessity. Suppose that condition (a) is violated at some point (x)o, to, ( and 

vector uo belongs to the kernel of L(0)(0, (x)o, to, eid). Let qm(x) be a cut-off function 
with support in the ball x - (x)o I <c and in the half-plane xo > 0. Then, for small 
E and h, the function u(x) = qg(x)uo exp(itx/h) violates estimate (1.16) with g = 0. 
Further, if problem (1.19) with the coefficients frozen at some boundary point 
((x)o, to) and some (_ has a nontrivial solution uo(xo), we build a grid function 

u(x) = m,(x)uo(xo/h)exp(ix- (_7h), 

where this time q4((x)0) = 1. Again, for small E and h the function u(x) violates 
estimate (1.16). Condition (c) implies that the boundary condition (1.15)(B) is not 
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underdetermined. If it is overdetermined, then the boundary condition (6.5)(B) 
would be underdetermined. The last contradicts estimate (6.6) and, thus, the 
assumption that the operator f, is an isomorphism. 

Proof of Theorem 1.2. We consider the Cauchy problem 

(6.7) ~Lu(x, t)=hF(x, t), (x, t) E Rnh X Rh+ t a;~ ooh 
u(x, oh) f f(x), x ER R ,a = 0 1, .-. go- 1, 

where 
- go 

L = L L)En?, L(?) = 2 LV ,, (x, t)EoEt. 
a=0 v IL 

Our objective is to prove the estimate 
T 

(6.8) I1u(x, T)e-7'T-I1 + rqh 2 11 u(x, t)e-t" 112 
t=0 ( -1 T 

sK 1 oX)l 2 + 7-q-h E II1F(X, t)e-ntil 12 

U=0 t=0 

for q > q70 0, 0 < h s h0 and q h < Ko. Here the sum E1=T is taken over the grid 
points in the interval [0, T = hN]. Estimate (6.8) obviously implies estimate (1.21). 
In return, estimate (6.8) follows from (1.21) by the Duhamel principle and, thus, is 
equivalent to (1.21). 

We treat problem (6.7) in the same way as the boundary value problem (1.8). 
First, linearize problem (6.7) with respect to t. As in (2.8) we introduce difference 
operators 

(6.9) A = diag(I, ... ,I, L(?)), 

O -I 0 ... 0 
0 0 -I ... 0 

L(-ao) L(-??+I) ... * - I) 

and 

L(En) =AEn + B. 

To distinguish between operators and symbols, we denote the operators by Ah, Bh 

and Lh(En) and their symbols by A(x, t, he), B(x, t, h() and L(x, t, ht, En), 
correspondingly. We consider t as a parameter and use the algebra of P.D.O. from 
Section 4 with 'u 0. Operator Lh(En) is related to L(x, t, Ex, E) by an equivalence 
analogous to (2.12). Then, as in Lemma 2.1, we get that estimate (6.8) for problem 
(6.7) is equivalent to the estimate 

T 

(6.10) IIu(x, T)e- TI 2 + nh E IIu(x, t)e-'tI12 
t=O 

K 11 f(x)II 2+ /_lh IIF(x, t)e-t 112X) 
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for the problem 

Lh(E")U(X, t) = hF(x, t), (x, t) e Rn X Rh, 
(6.11) u(x,O)f(x), xeRh. 

In view of condition (1.22), for h apart from zero we have a local equivalence 

(6.12) L(x, t, h,, z)X(x, t, h() = T(x, t, h()(zI - MO(x, t, he)), 

where MO*(x, t, hC)M0(x, t, h() S (1 - e)I. 

For hC in the neighborhood of zero and (x, t) near (x)o, to we have like in (3.26) 

(6.13) L(x, t, hC, z)X(x, t, hC) 

= T(x, t, h()diag(zI - MO(x, t, he), zI - M1(x, t, he)), 

where MI(x, t, 0) = I. Introduce conical coordinates 

(6.14) r = IhC , ('=4/| |I z' =(z -l)/r 

and the matrices 

(6.15) L'(X, t, z', Z', r) = L(x, t, e 1 + z'r)/r, 

M'(X, t, I', r) = (MI(x, t, C'r) - I)/r. 

Then, as in (3.29), one can show that 
n-I 

(6.16) M(X, t,(,0 - Aj(x, t)Cj 
j=o 

By strict hyperbolicity, the matrix-function M'(x, t, C', r) is locally diagonalizable, 
i.e. for (a', r) in a neighborhood of ((C')O, 0) there exists a smooth matrix-function 
XI = X'(x, t, V', r) such that 

(6.17) (X') 1M'X' = diag(Xj, A'2,... ,), 

where XJ = XA(x, t, C', r), j 1, 2,.. . k, are smooth functions. Again, condition 
(1.22) implies that 

(6.18) 1l + rXA(x, t, C', r) 1 

We define a local symmetrizer R' = [X'(X')*]-f and use partition of unity- in 
variables C' to build a global symmetrizer R'(x, t, Ch) which is defined for 0 < I h I < E 
with R'(x, t, C) belonging to SOO. The symbol R'(x, t, (h) is positive definite and 

(6.19) R' - M*R'M > 0 

for 0 <Ih <e and (X, t) in a neighborhood of ((x)o, to). We can redefine the 
symbol R'(x, t, Ch) for I j I < 1 so that a new symbol R'(h, x, t, C) belongs to So?0, is 
Hermitian and positive definite, and estimate (6.19) holds for I 2 1. Let (P(x, t, Ch) 
be a cut-off function with support in a small neighborhood of the point (x)0, to, 
Ch = 0, and 1Dh the corresponding family of P.D.O. As in the proof of Theorem 4.5 
one can find a family R h of P.D.O. such that 

(a) Rh: Hk,h Hk,hand (Rh - R h)4Dh Hkh Hk?lh are 
(6.20) uniformly bounded, 

(b) R, is selfadjoint and RI 
S I. 
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The symbol 

PO, x, t, ) h-'(R I R'MI) 

[h-(I - Ml)*R'MI + R'(I -M)h-1] 2 

belongs to Sl '0 and satisfies for 1 the conditions of Theorem 4.6. Therefore 

R(1 u, 
U)O,h 

> K11O,h 

and because of (6.20)(a) also 

(6.21) Re([Rl - (1M )*R M]hu, hu)oD h _ -Kh 11 u l oh 

Now we are ready to prove estimate (6.10). We localize problem (6.11) and then 
change the variables as in (5.6). Thus we arrive at the problem 

(6.22) (En- Mh)DhV -=[En -diag(Moh, Mh*)] 4DV = hG, t (E Rh+ 

(DV =f, t=O ~~hvf t -0. 

Instead of (5.9), now we have to prove the local estimate 
T 

(6.23) II(DhV)(x, T)e-"T112 + -qh 2 II(DhV)(X, t)eI 1I1 
t=0 

< K x lfl } h 2 IF(x, t )e-71t ll + h 2 lv(x, t)e-lt x1 
t=O t=O 

Define Rh = diag(I, R h) and multiply the system in (6.22) by e-2T)tRh(E, + Mh)Dhv 
in the sense of the scalar product in 12(x) = Ho h. Then take sum in t for t E R&h 
0 s t s T - h, and compare real parts. We get 

(6.24) (R h he-7Tv(x, T), Dhe 7Tv(x T)) - (RhDhV(x, 0), DhV(X 0)) 
T-h 

?+ Re([R - Mh*RhMh](Dhe-71tv(x t), (Dhhe-1tv(x t)) 
t=O 
T 

+ 2 Re([(e 27 - l)Rh - e2-h ARh] ohe-ttv(x, t), oIhe-ttv(x, t)) 
t=h 

T-h 

: Re(e-tRh(E, + Mh)>Dhv(x, t), he"tF(x, t)). 
t=0 

The first term in (6.24) is bounded from below by 811 hV(X, T)e&-T 11 2, the second 
from above by Kl f II2 . Because of (6.21) and Theorem 4.5a (for the operator 
(I - Moh* Moh)), the sum ET2-[h in the left-hand side of (6.24) is bounded from below 
by -KhTf-h 11 e-tv(x, t)II 2. Since -qh < Ko, the term 

e 2qh /R h e2?1h(Rh(t) - Rh(t - h)) 

is bounded in the norm of 12(x) by Kh. Therefore 

( [(2e7h - I)Rh - e 2-qh AR> hI4he-rtv(x, t), D hee-tv(x tx)) 

> (Sqh -Kh)lD he-7tv(x, t)lX2. 
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The right-hand side in (6.24) is estimated from above by 
T 

W (3,h 11 e-TtDhv(X, t)II 2 + K- ih 11 e-TF(x, t) 12) 
t=O 

Combining all the above estimates and choosing 3' < 8/2, we arrive at estimate 
(6.23). Q.E.D. 
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