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On the Finite Element Method for 
Singularly Perturbed Reaction-Diffusion Problems 

in Two and One Dimensions* 

By A. H. Schatz and L. B. Wahlbin 

Abstract. Second order elliptic boundary value problems which are allowed to degenerate into 
zero order equations are considered. The behavior of the ordinary Galerkin finite element 
method without special arrangements to treat singularities is studied as the problem ranges 
from true second order to singularly perturbed. 

1. Introduction. Consider the problem of finding u = u(x) = u(x1, x2; e) such that 

(I.l.a) -e21Au + b(x, u; e) = f(x; e) in6A 

(1.1 .b) u E j3 

where 6R is a bounded plane domain, 0 < E < 1 a parameter and where u E J 
designates some boundary conditions. 

Allowing the full range of e we obtain pointwise local and global error estimates 
for the ordinary Galerkin finite element method with a family of quasi-uniform, 
unrefined meshes. These estimates are used to investigate the performance of the 
method. 

Assumptions. We shall now more precisely describe the problems (1.1) that will be 
included in our analysis. For the moment we list basic minimal assumptions 
sufficient to derive our main results below. In applications of these, further condi- 
tions may be imposed. 

For the domain 6 we assume either 

(1.2 .a) 6R is a convex polygon with straight edges, 

or 

(1.2.b) a6A is of class C"l. 

The boundary conditions are, for ease of exposition, restricted to Dirichlet or 
Neumann type, i.e., 

(1.3.a) u=F onaoA, 

or 

( 1.3.b) a_ = F oan6A 
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In the rest of this introduction we shall furthermore treat only homogeneous 
conditions, F 0 O. The nonhomogeneous case will be given in Section 9. 

When applying our main results we shall treat the Dirichlet problem, leaving the 
generally better behaved Neumann case to the reader. 

For the function b(x, u; e) it is essentially required that ab/au is positive 
uniformly in u. The nonlinear case will be given in Section 12, and for the remainder 
of this introduction we shall consider the linear case. Thus, (1.1 .a) is replaced by 

(1.1.)linL?U _-,.2\u Jra(x; -)u-=f(x;,e) in6AR, 

where a(x; e) is measurable and, with positive constants a0, al, 

(1.4) O<ao a(x; )?a1, x 6JI,,0< < 1. 

The functions f(x; e) are assumed to be uniformly bounded in L2(A), 
(1.5) 11 f 11L2 < C, 0 < ? 1. 

Numerical Method. For the numerical solution of (1. .a)li., (1. .b), we introduce a 
quasi-uniform family of partitions of 6A, with elements of diameter comparable to a 
parameter h, 0 < h < 1/2, and finite element function spaces Sh. The detailed 
description of these matters is given in Section 3. We find the Galerkin approxima- 
tion Uh E Sh via 

(1.6) AE(uh, X) e2(Vuh, VX) + (auh, X) (I, X), forX E S 

where (v, w) f f v * w. For simplicity in the analysis it is assumed throughout this 
paper that the mesh domains coincide with the basic domain 6R and that all integrals 
are evaluated exactly. 

Main Results. We now display the two fundamental estimates of this paper. First, 
we have the global result that there exists a constant C, independent of e, u and h, 
such that, Theorem 6.1, 

(1.7) lu uh I L.(6) < ln(C + v/h) miIn ||u XII4LO(6A) 
XCSh 

This result is localized as follows. Let xo E 'R, let D be a disc of radius d around xo 
and set id = D nf . There exist positive constants cl, c2 and C, independent of e, 
u, h, xo and d, such that if d - clh, Theorem 7.1, 

(1.8) 1 (u - uh)(xO) 1< ln'/2(d/h) 

X ln(C + c/h) min 11 -X11 L.(d) + I e C2dI(E+h) 11 U Uh 1 gL2(d) 
XCShd 

The results in the nonlinear problem are quite similar, see Section 12. 
Comparison With Some Other Finite Element Work. Let us comment on these 

estimates in the light of previous work on Galerkin finite element methods. In (1.7), 
when - 1 we recover an almost best approximation result in the maximum norm 
for elliptic projections derived in Schatz and Wahlbin [25]. (For certain "higher 
order" element spaces, the logarithmic factor can be replaced with a constant C; this 
we have not included in the present work since it would considerably lengthen it.) 
Taking formally e = 0, we recognize the almost best approximation property of the 
L2 projection; see Descloux [7] or Douglas, Dupont and Wahlbin [8]. 
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In the local estimate (1.8), for e of unit size we have (modulo logarithmic factors 
which are again there to shorten the analysis) the local estimates of [24]. When 
formally - = 0, the reader may compare with the exponential decay results for the L2 
projection given in [7] and [8]. 

The present unified proof is based on the techniques of Nitsche and Schatz [21] 
and those of [25]. 

Example of Local Best Approximation. We now give an example of how the local 
estimate (1.8) can be applied to a Dirichlet problem in our general, possibly 
nonsmooth, situation. Let Q0 c Q2 C 6Y be domains with dist(Q0, ail,) = d > 0. By 
Theorem A.1(i), which is a straightforward energy estimate, and by (1.5), 

Ilu - UhIIL2(6) ? Cmin(l, h2/E2)llf IIL2(2) ? Cmin(l, h2/E2). 

Note next the following elementary inequalities. 

min(l, h 2/E2 )e-cd/(e+h)/d 

h 2/c2d for E and d of unit size, 
8 

{ h2e cd/2e/.2d s Ch2 for 1/2 ;?-- ,d'-eln(1/ c )n 
C 

e-cd/2h/d < Ch2 for e < h, d >-h ln(l/h). 

Substituting the above in (1.8), we have for d either of unit size or d > 

const max(c- ln(I /?), h ln( 1/h)), 

(1.9) IIu - Uh IIL (0o) < Cln3/2(1/h) min || u - X ||L(a,) + Ch2ln'/2(l/h). 

We conclude that, under our minimal smoothness assumptions (1.2), (1.4), (1.5), the 
Galerkin solution performs in a locally optimal fashion on subdomains, up to the 

order h2 determined by the second term on the right. For E small, these subdomains 
can be close to regions where the solution is very rough. 

In Section 10 we shall give further explicit estimates under additional smoothness 
assumptions. 

Remark 1.1. The factor h2 in (1.9) can be replaced by hT for piecewise polynomial 
element spaces of degree r - 1, provided either 0 < e < c/ln(l/h) or, for a result 
uniformly in the full range 0 < - - 1, if data in the problem are smoother. 

Matched Asymptotic Expansions. One classical method of obtaining approxima- 
tions to (1. La)li., (1. .b) for small e is via matched asymptotic expansions. We start 

by recalling salient points concerning these techniques. Comparing them with our 
estimates for the Galerkin method, one can determine, in terms of h and E, which of 
the two approximations is asymptotically better. We shall do this only from the 
point of view of global maximum norm estimates. We consider the homogeneous 
Dirichlet problem (in which the boundary layer is more pronounced than in a 
Neumann problem). Further smoothness conditions have to be imposed. Assume 
that 

(1.10) aJI is of class (2,a, some a > 0, 
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and 

(1.I1) a(x; e), f(x; e) E Q2 uniformly ine. 

Let a(x) denote the distance from x to a JI along the normal to a 6A, let x' denote the 
point where the normal meets a6J, and let A(x) be a smooth cutoff function 
isolating a layer around a6A. Set 

(1.12) uE(x) = a(x) _ f(x') exp ( -8a(X) ) )X 

The functions a and f could be evaluated at the current c, or at - = 0. The first term 
on the right is called the "regular expansion", the second term is the "boundary 
layer correction". We have given only the first term of each; the second term of the 
boundary correction is hard to compute in general. The terminology "outer" and 
"inner" expansions is also frequently used. 

The problem of making such expansions rigorously valid as approximations to u 
for small e has been studied, e.g., in Besjes [4], Eckhaus [9, Section 2.5.3], [10, Section 
7.1.1] and Lions [14, Chapter II]. The thickness of the boundary layer can be argued 
to be 0(c ln(l/c)), cf. Baranger [1]. Under the assumptions (1.10) and (1.11) one 
effortlessly verifies, using a "normal-tangential" coordinate system in a strip around 
the boundary, that LE(u - U) = 0(c). Since u - = 0 on a'i and A(u - u) < 0 
(> 0) at an interior positive maximum (negative minimum), it follows that 

(1.13) lIlu -UIIL (u <) a1 0O(c) < Ce. 

We shall next see that, under the smoothness assumptions (1.10) and (1.11), 

(1.14) IIu - uhIIL () ? C6ln(C + c/h)hc 2 2 for > 0. 

By (1.7) it suffices to estimate II u - XIIL. for suitable X, and, for typical finite 
element spaces 5h' this quantity is bounded by Ch2 11 U 11 02. To estimate 11 U li 2, one 
has by classical Schauder estimates, cf. e.g., Bers, John and Schechter [3, Part II, 5.6], 

IIUIIC 2 Cac 2(11 f 11 c + IIuIIca). 

By [3, Part II, 5.2, Lemma 1], I u I IC ? < [l I I U II 2 +Cf,-v/(2-a) II U II L whereupon 
choosing y 1 c2/2C. and using that 11 U 11 L. < a' 1f11 

II U 1 2 < C6-2-8 8 > 0 

which proves (1.14). The ideas above are taken from Besjes [4, Theorem 6]. 
Comparing (1.13) and (1.14) one sees that it is favorable to switch from the finite 

element solution to the matched asymptotic expansion when e goes below 0(h2/3). 
Other combinations of Uh and u, may be used, e.g., a uniform almost h' accuracy of 
uh on interior domains, cf. (1.9), may be combined with the resolution of the 
boundary layer afforded by u.. From the point of view of interior accuracy the finite 
element solution would then be employed until e hr. 

Still other combined uses of the asymptotic expansion and the finite element 
method on a fixed mesh can readily be envisioned: If, in a problem with smooth 
data, the quantities u. and L.U. are easily computable, then the Galerkin method 
could be employed to find an approximation (u - u,)h to (u - u). Our main results 
estimate the error in this. Since, for small c, u - u. exhibits a weaker boundary layer 
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than u does, the deviation in the approximation (u - u,)h + u, for u might be 
smaller than that in Uh. We leave it to the interested reader to pursue this idea of 
subtracting the singularity in more detail. 

We emphasize again that the asymptotic expansion is not valid unless data in the 
problem are somewhat smooth. 

Some Numerical Analysis Work on Reaction-Diffusion Problems. Let us now briefly 
comment on other work in the numerical analysis of (1.1 .a)lin, (1. .b). This work is 
mostly done in one-dimensional situations and with enough smoothness present to 
guarantee asymptotic expansions for small e. Fitting the form of the boundary layer 
is considered (for one-dimensional convection-diffusion equations; the ideas are 
analogous) in Hemker [ 12] and Miranker [ 18, Section 1 1]. An automatic mesh-refine- 
ment procedure is given in Reinhardt [22]. 

Another circle of ideas, first given for convection-diffusion equations in the 
well-known paper by Ilin [13], is pursued in one-dimensional cases in Shiskin and 
Titov [261, Miller [17] and Niijima [19], [20]. Computations are done on a mesh 
independent of - (as with us), say a uniform mesh, and specially designed finite 
difference schemes are used. The concept of convergence uniformly in - is formalized 
as follows. 

Convergence Uniformly in e. A family of approximations Uh, 0 < h < 1/2, con- 
verges uniformly to u in the norm (or seminorm) III III to order ,t if; with a constant 
C independent of e and h, 

sup IIIu-uh III < Ch. 
O<e1 I 

The specially constructed finite difference approximations alluded to above were 
shown to converge uniformly in E to various orders in the meshnorm III v III = I V III h 

= max(I v(x) I: x meshpoint}. It appears hard to extend these methods to two- 
dimensional situations since they are all based on an ability to solve the equation 
with constant coefficient a(x; e) by quadrature. (A dimension-splitting procedure 
might be feasible.) 

Considering the form of the boundary layer term in (1.12), one realizes that, in a 
general Dirichlet problem, the finite element method on a quasi-uniform family of 
meshes cannot converge uniformly in E in the global norm 11 11 L. ('A). The estimate 
(1.9) gives an interior uniform convergence result of order almost r, provided 
u E Qr(Q2). For a smooth problem, the method embodied in (1.13) and (1.14), i.e., 
switching from the Galerkin approximation uh to the matched expansion u, when 
e < 0(h2/3), gives a "method" of uniform order almost 2/3 in the global maximum 
norm. 

Pollution Absorbent Mesh. The local estimate (1.8) suggests an interpretation of the 
error at a point as governed by local approximability of u and, for - and h small, a 
decaying pollution effect from remote rough spots, including the boundary layer. 
For e < h, the influence of pollution from the singularly perturbed zone extends a 
distance hln(l/h) rather than the shorter distance cln(l/c). The situation is 
analogous to the fairly well-known case of the centered difference scheme on a 
uniform mesh. If one computes with the Galerkin method for small c, the fact that 
the distance h ln(1 /h) can be taken in terms of the local mesh size motivates the 
practical recipe of "sacrificing" a few more closely spaced elements around the 
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boundary for the purpose of reducing the absolute size of the polluted area. (The 
object is not to resolve the boundary layer, which would demand a mesh changing 
with e.) Numerical calculations in Section 11, in particular Examples 11.5 and 11.6, 
give some encouragement to this idea, which is trivial to implement. 

L2 Estimates. For the finite element method in a Dirichlet problem, global 
estimates uniformly in - can be derived in the L2 norm. Under the assumption (1.2) 
on 6A, and under conditions on a(x; e) and f(x; e) allowing, e.g., jump discontinui- 
ties, but not imposing any boundary conditions on f(x; e), we show in Theorem A.2 
that 

(1.15) IIU - Uh IL2(0)?Cmin( h,?G/2) 

so that we have uniform convergence of order 4. Other bounds are given in Theorem 
A.1. 

Remark 1.2. Switching to fi, f(x)/a(x) when e < h, one can prove that, under 
the same conditions on a(x; e) and f(x; e) as in Theorem A.2, the right-hand side in 
(1 .15) can be replaced by C min(V'-, h2G-3/2). 

Extensions of Present Work. We comment here briefly on some simple extensions 
of the present investigation that we have not included for reasons of length. Two 
such results were already given in Remarks 1.1 and 1.2. 

(i) The local estimate (1.8) is only influenced by quasi-uniformity conditions in 
terms of a local meshsize on E2d and the size or variation of a(x; e) on Qd. It could 
thus be applied to analyze certain meshrefinements and also to problems with 
turning points, a(xo; e) 0, away from the turning point: if a(x; e) - a on 2d' the 
result (1.8) holds with e replaced by e/ ,a. Further, we could allow e to vary over the 
domain. 

(ii) The estimates (1.7) and (1.8) extend in a straightforward manner to many 
situations in which the problem -Au + v = g, g E J3, enjoys H2 regularity for g in 
L2. As an example, one has the case of 6P a rectangle with mixed boundary 
conditions, of Dirichlet or Neumann type on each side. Third-type boundary 
conditions could also be treated. 

(iii) The term -e2A u in (1.1.a) could be replaced by 

_E2V * (KI(x; e)Vu) + K2(X; E)> VU 

with K1 positive and I K2 I < c- with y > 1. 
Outline of the Paper. Sections 2-9 are concerned with the fundamental estimates 

(1.7) and (1.8) in the linear case. In this, Sections 2-5 are preparatory. In Section 2 
some estimates for the continuous problem are collected. The assumptions on the 
finite element spaces are displayed in Section 3. Simple global energy error estimates 
are derived in Section 4 and Section 5 is concerned with local energy estimates for 
the discrete problem and for the error. 

In Section 6 we then prove the global best approximation result of (1.7) and, in 
Section 7, its localization (1.8). Modifications necessary to derive the analogous 
results in the one-dimensional case are given in Section 8; there are no logarithmic 
factors in these estimates. Nonhomogeneous boundary conditions are treated in 
Section 9. 
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The local estimate is made explicit, for smooth Dirichlet problems, in Section 10. 
Numerical illustrations occupy Section 11 and the nonlinear case is given in Section 
12. 

In Appendix 1 the uniform global L2 estimate (1.15) and other L2 estimates are 
derived in Dirichlet problems. 

Some Notation. We fix notation that shall be used throughout the paper. We 
employ the conventional spaces Lp(Q), Wk(2), Hk(Q2) kW(Q) and 3k(2) and 
their norms; as usual, Hk(2) denotes the closure of C( (Q) in the Hk(2) norm. For 
brevity we write 

11V 11 a 1 V 11 L2AR) 

and, when S1 6A, the basic domain, we sometimes leave out the region so that 

l1vllwk liv JJvJwk(6) and || v 11 v 11 
ViL2(6A) 

We also use the notation I v Iwk(g) for the corresponding seminorms, with the same 
conventions as for the full norms. 

As special notation we let 

(1.16) 'C' = H'(6J) or H'(6i) 

according to whether a homogeneous Neumann or Dirichlet problem is under 
consideration. Correspondingly, with Sh a "basic" finite element space and Sh those 
functions in Sh that vanish on MA, we let Sh = Sh or Sh depending on the boundary 
condition, cf. Section 3. 

The symbol L, shall always designate the linear operator Lev = -E2Lv + a(x; E)v, 
and AE(v, w) shall stand for the bilinear form 

A (V,W) f E VV- VW +?aVW. 

Finally, with Q0 C Sl1 C 6Rwe set 

(1.17) a (QO, Q1) = dist(Mo \ A, H21 \ A) 
Acknowledgement. We thank L. Bales and P. Chavez for their generous help in the 

numerical calculations. 

2. Some Estimates for the Continuous Problem. In this section we establish some 
results for the problem L?v -E2Av + a(x; E)v g in 6J, v E @, subject to the 
conditions (1.2), (1.3) and (1.4). The weak form of this is to find v E 'JC' such that 

(2.1) A,(V, W) - 2(VV, VW) + (av, w) = (g, w) for w E S 

where 'C( = Hf and ?}' = H' in the cases of homogeneous essential Dirichlet 
boundary conditions and natural Neumann conditions, respectively. 

We first collect some a priori estimates. 

LEMMA 2.1. There exists a constant C such that, for v the solution of (2.1), 

(2.2) 11 v 11< C 11 g 11, 

(2.3) V 11 HI S1 g 1C, 

(2.4) 11 V 11 H2 < 2 11 g 1 for O < E S < . 
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Proof. We have from (2.1), 

? |2vvII2 + aollVll2 ?A,(v, v) = (g, v) < ugh lvii 

so that Iv I I < a-' I I g II and, consequently, II vV < a a-1// 2c- Il I g II. This proves (2.2) 
and (2.3). 

We next recall, cf. e.g. Grisvard [1 1, Theorems 3.2.1.2, 3.2.1.3 and 4.3.1.4] that, for 
the boundary conditions and types of domains under consideration, v C H2 (for 
g C L2) and 

(2.5) 1I VIIH2 < C 11-AV + vII. 

Hence, by use of (2.2), 

IIVIIH2l 2 IILVII + C( 
a 

+ IIvII <lvlgl 

which completes the proof of the lemma. 
We next derive a result concerning exponential decay for functions which satisfy 

LEV = G in a subregion of 6R. 

LEMMA 2.2. There exist positive constants c and C such that the following holds: 
Let E c C: i2 c 6A with, cf. (1.17), d = a.), (00, 01) > 0, and let v G Jq, L?v = 0 on 

U. Then.,for0 < ? < 1, 

(2.6) || V ||1a + d || Vv ||Q < Ce/cdl | V 1L?, 

(2.7) 11 Vv 11 Q2o < Ce-cd/E 11 VV 11 . 

Proof. Let Dp and D?+6 be two concentric discs of radii p and p + 8, respectively, 
with center in 200, and let w e C (D?+6) be such that 

(2.8) W=1 onDp, || Iek(D8) ? CS-k, k = 0, 1,2, 

with C independent of p, S. Set Br = n 0 Dr and assume that Lv = 0 on BP+6. We 
have 

(2.9) C2hIcoVvhI2+ aO < v 2(VvV, 2vV) + (av, W2V) 

= AE(V, w v) - 2? 2(cVv, (Vc)v). 

Since LEV = 0 on BP+6 and v C 6, we find that A(v, w 2v) = 0 so that, using (2.8), 

2 1I VV 1 2 + a0 11 Wv 112 I< 
E 

11 Vv 11 Cc+ 112 
2 62 BP?8 

and, consequently, with K independent of ?, p and 8, 
K 

(2.10) 11 Vv 11 BP 11 V 11 BI 8' 

(2.11) IIV 11 BP < IB?IVII Bp+8. 

We shall now show that 

(2.12) 11 v11 < Ce-cd/lE 1V 

Assume first that 

(2.13) d - 4Kec. 
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We obtain via iteration of (2.11) with 8 = Kee, p = 8, 28,.. . ,N3, 

(2.14) Iv 1I BP ? e1 11 V 11 B21 
? e 1Iv 11 B(N+1)8' 

where, to guarantee that Lv = 0 on B(N+ 1)6', we insist that 

(N + 1)8 < d, i.e., (KeE)(N + 1) < d. 

Clearly, with (2.13), the largest such integer N satisfies 
1 d 

2Ke e 

Now cover Q0 in a locally finite way with discs of radius 3. Upon squaring and 
summing (2.14), (2.12) obtains, under the condition (2.13), with c = (2Ke)-' and C 
depending on the disc-covering procedure. Since (2.12) is trivial for d < 4KeE, it 
follows in general. 

To show the full inequality (2.6), one first takes (2.10) into account, setting there 
8 = d/2, and one then proceeds as for (2.12). 

For (2.7), one uses (2.9) to obtain 

v2IIw XVvII12 + aO I Xov 112 c -212(V 2 . VV, WV) 

3 +8IIVVIIB B +2?lvll2 

so that 

11 VV 11 CB 
c 

y VV I| Bp+8. 

One then continues essentially as before. 
This proves the lemma. 
We conclude this section with the following technical local regularity result for 

functions satisfying L8v = 0 in a subset. 

LEMMA 2.3. There exists a constant C such that the following holds: 
Let E0 C Q1 C (X with d = a +r (,QO 01) > O, and let v E Jqi, Lev = on Q 1 Then 

(2.15) e2 II V II H2(go) ? C( - -Ivv ILg + 01 v o< e 1< 

Proof. It is clearly enough to show (2.15) with the left-hand side replaced by the 
seminorm I v 1H2(Q0). Reasoning as in the proof of Lemma 2.2 and using notation 
therefrom, it suffices to prove 

(2.16) e2 1 V1H2(B8) < C( -iI II B,8 + IIVIIB38), with = d/3. 

Let w be as in (2.8), with p = 8, and let further M denote the mean-value of v over 
B26, i.e., 

M=(measB28)'f v. 
B28 

It is well known that 

(2.17) S v - M V B28 CAvv 11 B 

where C does not depend on 3. 
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We now first treat the case of Dirichlet boundary conditions. Assume first that 
supp X does not intersect a6J. Then by (2.5), 

(2.18) e v IH2(B8) e21 V - MIH2(Bs) < E |1 (V - M) IH2 

C II E2A(CO(V - M)) + E2O(V - M)Il 

< CE2 II(A + W)(V - M)II + CE2 II VW VVI + CI 1 Wr2AV 

ce2 ce2 
2lip - M IIB28 + S IiVVIIB28 + CIIwvIi, 

where, in the last step, we also used that Lyv = 0 on the support of to. Taking (2.17) 
into account, (2.16) obtains. 

In case supp X intersects a6A, take M = 0 in (2.18) and estimate the term 
2I v 1I B2'/82 via Poincare's inequality as CE2 ii VV 2 i 

For the Neumann problem we separate, for technical reasons, the cases (1.2.a) and 
(1.2.b). For a smooth boundary we use the well-known a priori estimate, cf. e.g. [11, 
Corr. 2.2.2.6], 

W11 iH2 < C Ii-AW + wit + C||w an H112(a%) 

The work then proceeds as in (2.18), except that an additional term 

E (w(v - M)) 
= H/(|)(v 

- M) an Hl/2(a6A) an H'/2(a6) 

has to be included. Since the H1/2(a6) norm can be bounded by the H' norm, the 
proof is easily completed. 

For the case of a Neumann problem on a convex straightedged polygonal domain, 
we have, for w with aw/an = 0 on JA, cf. (2.5), 

ii Wit H2 < C||-\w + wi t. 

We may apply this to w o(v - M) provided (i), (ii)(a) or (ii)(b) below hold: 

(i) supp w C C6, 

(ii) a? is a radially symmetric function centered on a8'J in such a way that 
(a) supp X avoids any vertex, or, 
(b) X is centered at a vertex and supp X avoids any other vertex. 

The domain B6 can be covered with a bounded number of sets where X-1 with X 

of the types described. Proceeding as in (2.18),we infer that (2.16) holds also in this 
case. 

This completes the proof of the lemma. 

3. The Approximating Spaces. We shall briskly list our hypotheses for the finite 
element spaces. The assumptions A.1-A.5 below are standard and well known for 
quasi-uniform partitions and corresponding spaces occurring in practice, cf. e.g. 
Ciarlet [6]. The last assumption, A.6, is perhaps less standard. 

Let 0 < h < 1/2 be a parameter and let 6i- U7!'A6 be partitions of 6R into 
finite elements Ti'. We are, for technical simplicity, assuming exact subdivisions of 
@. For curved polynomial boundaries we have isoparametric modifications in mind; 
for more general boundaries we refer to Zlamal [29]. We insist that the family of 
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meshes is quasi-uniform, i.e., that there exist positive constants co and CO, indepen- 
dent of h and i, such that, with ph denoting the diameter of the largest inscribed disc 
of 'ij, coh ? p diameter(rh) o Coh. This condition is implicitly contained in the 
assumptions below. 

A.1. There exists a constant C such that, for v E W 0l(1h), 0 <h s 1/2, 
1,. .. ,() 

f|i|hIS C(h 11V11L (T) + I V IWi(Th)}. 

This condition is easily verified for quasi-uniform meshes of the usual kinds. 
Let Sh be finite-dimensional subspaces of W4(6JA) such that, for X in Sh, 

X F C2(ih) Corresponding to our convention (1.16), we introduce Sh {x E Sh: 
X - 0 on a6A} and set 

(3.1) Sh or Sh 

according to whether homogeneous Dirichlet or Neumann conditions are under 
consideration. 

A.2. (Inverse property.) There exists a constant C such that, for X f Sh, 0 <h h 
1/2, i - 1, * * I I(h), 

II X 
Cm 

W/(r2) Ch (1/q- 1/P) X 1 Wq( h), 

for 0 < m ?I-2, 1 ? q <p oo. 

We next consider approximation properties of the finite element spaces. 
A.3. (Local approximation.) There exist constants c and C such that the following 

holds: Given a function v (with v 0 O on a6 in the Dirichlet case), there exists 

X C Sh such that forO0 h < 1/2, i = 1,...,I(h), 

IIV -X 11 L2(T/) + h XV - S Ch Iv 

where 

= T' dist(Qi, Th) 
T ch 

We introduce the piecewise seminorm 

(3 .2) lIv I Wk,h V ) 1 p l p < cc 

with the usual modification for p oo. 
A.4. (Global approximation.) There exists a constant C such that, given a function 

v (with v 0 on a6A in the Dirichlet case), there exists X E Sh such that, for 
0 < h s 1/2, 

IIV-XIILI + hVXIWI + h21V-XIWI2, S Ch211VIIWI2. 

Note that a similar global approximation result in L2 and H1 follows from A.3. 
Given a domain Q s 6A, set Sh(O) j 5h I Q and, cf. (1.17), 

( ) Sh (0) {~~~~X (= 'h a (SUPP XI 2) > ?}, 

and also 

(3.4) C (Q) = {v e C"(C?): ad ' (supp v, Q) > 0}. 
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A.5. (Superapproximation.) There exist constants c and C and an integer L such 
that the following holds for 0 < h < 1/2: 

Let Q0 < S2 ? with d : ch, where d = a8 C (s0, 021). Let XCo (20) with 

IIIwI(Q0) Ad-', 1 = 0,. ...,IL. 

Then, for any X E Sh, there exists 4 E SF (S2 ) such that 

IIw2x - 011 + h 11 ?2X CAh2{d 211X 11 LA1) 
+ d' IXIH()} 

Our last assumption is the following Sobolev type inequality on Sh. 

A.6. There exist constants c and C such that the following holds for 0 < h < 1/2: 
Let S0 < ? < 6Rwith d : ch, where d a . (20, 21). Then, for any X E Sh, 

11X11 L.(0) S C(ln( d/h)) [ {1XII HX() + d1IX 11L2(0I)}. 

A proof of this, for specific Sh and S0 = 01 = 6R (in which case d - 1 can be 
taken), was given in Wendland [28, Theorem 8.3.3], cf. also Schatz-Thomee-Wahlbin 
[23, Lemma 1.1]. These proofs are easily extended to most practical cases and they 
are also simple to localize by use of local extension operators and scaling arguments. 
Note also that, when d - h, A.6 is a consequence of A.2. 

4. Global Energy Error Estimates. For v F SC, define Ph-v F Sh by 

(4.1) A,(v - Phv, X) = 0 for X E hI 

cf. the conventions (1.16), (3.1). We shall show some straightforward results; more 
complete L2 estimates are given in the Appendix. 

LEMMA 4.1. There exists a constant C such that, for 0 <E < 1, 0 < h 2 

fCllvllHI, 

) 1 ~~~~~~~hV <1 Ch2 ||v| H2, 

CIIIH2. 

Proof. Set e v - Phv. Using (4.1) we find, for any X F S h 

E2Ilve 112 + aolle 112 < Aje, e) = Aj(e, V -X) 

and hence, 

(4.4) 8211Ve112 + aolleII2 < C{8211v(v-X)112 + IIv-X112}. 

We first treat the case - - ch, with c to be determined. Taking X = Phlv in (4.4) we 
have, as is well known, 11 V(v - X)II < C 1I V 11 H and 11 v - X 11 S Ch 1I v 1i H so that 

II ve112 < C{IIvI121 + 271VIIVHI} ? CIIV12 . 

The first estimate in (4.2) follows. Using, in a global fashion, the approximation X 
from A.3 we also obtain the second inequality of (4.2). 

We continue with a duality argument. Let w be the solution of 

Lew = e, w E (B. 
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Then, for any X 5h 

Ile 11' = A,(w - X e) 

so that, with X as in A.3, utilizing (2.4), 

lie 112 < C{e211 VelhilwilH2 + Cllelilh2 11iwi H2} < C{h ii veil llell + - 11elI 2} 

Hence, for e : ch with c = 2C, II e 11 < Ch 11 Ve I1, from which (4.3) follows via (4.2). 
It remains to consider the case E < ch. By (4.4) with X P= v we have also 

iieii2 < C(c2 + h2)IIvli2, < Ch2il Vi H1 

which establishes the first part of (4.3). The second part is deduced by using X from 
A.3. 

To show (4.2) we use the inverse property A.2. For X C h 

iiveii < iiv(v - x)Ii + Ch-iiPhv - xii 

< 11V(v - X)II + Ch 1iv - Xi + Ch-'1I eli. 

With suitable choices of X, as before, and taking (4.3) into account we verify (4.2). 
This completes the proof of the lemma. 

5. A Local Energy Estimate for the Discrete Problem and a Local Energy Error 
Estimate. We shall first prove a discrete analogue of Lemma 2.2. 

LEMMA 5.1. There exist positive constants c1, C2 and C such that the following holds 
forO < E < 1, O < h < 2 

Let Q0 Ci 1 C 6with d : clh, where d = a O ( j20, S1l).If Vh E 0h(E2 1) is such that 

(5.1) Ae( vh,x) = O for X ES (&21) (cf. (3.3) for notation), 

then 

(5.2) Vhi1 io 
+ d iiv ||vhi C c2d/(?h)i11 Vh11 

Comparing to Lemma 2.2, we have here the restriction d > c h. Further, when 
E << h, the decay exponent is not d/e but merely d/h. 

Using this lemma, we shall then establish the following local error estimate. 

LEMMA 5.2. There exist positive constants cl, C2 and C such that the following holds 
forO < E < I, O < h < 2 

LetQ0 C Q1 C 6Awith d : clh, whered = a. (0, Q). Letv E Canddvh h() 

be such that 

(5.3) A,j -vh,x) O for X (&2). 

Then 

(5.4) liv - VhIIH1(Q ) < C min2) IIV(V - x)I, +Illv - xll,) 

+-e-c2d/(e+h) ||v - Vhll|'. d 

In particular, the result holds for Vh =Phv, cf. (4. 1). 
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Proof of Lemma 5.1. We follow the proof of Lemma 2.2. 
Let Dp and Dp + be two concentric discs of radii p and p + 6, respectively, with 

center in Q0, and let w E Cj (Dp+,) be such that 

(5.5) w-I onDp, 11 w 11c 1(D6+,) < CS', / 0,... ,L- 

Set Br = 6 n Dr and assume that 

(5.6) A jV-, X) 0 for X e 5h (Bp,6) 

and furthermore that 8 2 ch. The dependence of c on previously displayed constants 
can be traced in the proof below, but we leave this to the reader. 

Using (5.6), we have by a simple calculation, 

E CW'VVhII + aOIovhlI h e (vvh, w2VVh) + (aVh, w2Vh) 

A,(vh, 
2 
Vh) - E2( wvh,2(vw)vh) 

=AE(vh wvh -X) - E 2(CVv,2(VC)v) for X E 5hc(BP+8). 

By the superapproximation hypothesis A.5 we thus find, 

(5.7) C2I 
IwVVh 112 + ao IIwVh 11 

2 
Ce21l1Vvh 1l Bp(l 

h 
11VVh 1 Bp+8 

? 
lVh 1lBp+8) 

+ C 1Vh 11 BI+8 11 Vh 11 Bp+8 + I 2 1 Vh 11 Bp+8 

C2 
+C- llV)vv h)IB 

Note now that, since 8 2 ch, 

(5.8) C2h Ce2I 112 Ce2 11 82 IVVh 1 B I Vh 1 BP lVVhI BP + 1hVI Bp+8 

Further, by use of the inverse hypothesis A.2, for 8 :> ch, J large enough, 

(5.9) Cli,V < 1 
11 Vh 11 Bp+ VVh 1 B? +8 Vh BIIB 25 

Also, 

CC-2 C 2 CC- 2 
(5.10) WVVh 11 11 Vh 11 B+8 2 1VVA 2 ? 2 1 Vh B- 

Reporting (5.8)-(5. 10) into (5.7), 

(5.11) 12e II Vvh B1 ?+aO h IIlBp < llVVh Bl I+, C2 + h 2 Vh BP+2 2 8~~~~~~~~~~2 JIVIB 

Iterating the gradient term once more and using inverse properties, 

e 2h 1 
2 VVA I! B? 6( ! hVA2 Bl2 

+ C-+i)v h ) 
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Similarly, iterating part of the L2 term in (5.1 1), using the above, 

h 12 < Ch /c2 11___C__ 
2 

1 

|Vh B+28 2 + 1Vh Bp+4 2 62 ) 11 h Bp+48 

Inserting these two inequalities in (5.1 1) and changing notation, we thus have 

2 
11 112i-raivnt, I< lIVh112 2 E1Vh l}Bp + ao | Vh |BP 62 /h BP 

Consequently, with K independent of 8, h, p and 8, 

K ,,1E~~~~~2 + h2 
IIVhIB~IVhIK <IIhIBK 6 IIVhIIB 11 Vvh 11 BP S 

- 11 h 11 Bp+8' llvh l Bp K h1Bp+8; 

in the case of E < h, the first inequality has to be separately established. This is easy 
using first the inverse hypothesis A.2 and then the second inequality above. 

The proof is now concluded as the proof of Lemma 2.2, cf. (2.10), (2.11) et seq. 
We leave the details. 

Proof of Lemma 5.2. Again it suffices to verify the result with Q0 and S1 replaced 
by Bp and B,+28 where 8 - ch, cf. the proof of the previous lemma. Let X E 

Co*(Dp +2 8), 

1 onDp+,, 11 III(Dp+28) < C8, 1= 0, 1. 

With v = WV, vh Ph'(Wv), 

(5.12) fy v - Vh HHI(B ) fv h - 1 HH + fl vh Vh Vh H'(Bp) 

Here, by Lemma 5.1, since Ae(ih - x) 0 for X E (BP 

(5.13) eh - VIh H'(B ) 
: 

6 e c8/(e?h) Ih - VhIBI8 
C 

< -e c( )(11 V - Vh B + +V - Vh Ba)- 

It remains therefore to estimate the quantity 

11V ( V V)h )11 + 11 V eh 11 

From Lemma 4.1, using that 8 - cih, we have the bound 

C 11 v C 11 HI +Ch 11 11 HC < C1 11 HI < C 11 VV 11 Bp+28+ v 11 Bp+28' 8 ~~~~~~~~~~8 

Combining this with (5.13) and (5.12) completes the proof, upon writing v-h 

(v - X) - (Vh 
- X) for X E Sh(Ql). 

6. Global Almost Best Approximation in the Maximum Norm. We shall prove the 
following result. 

THEOREM 6.1. Assume that (1.2), (1.4) and A.1-A.6 of Section 3 hold. Let u be a 
continuous function, with u = 0 on a6 in the Dirichlet case, and let Uh E Sh be such 
that 

(6.1) AJ(U - Uh, X) = 0 forX E Sh 
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(i.e., Uh = Phu). There exists a constant C, independent of 8, h, u and Uh such that, for 
0 < - 1, 0< h ? 

(6.2) UUh |L((6() S )n( C +h) minuX 11 u L-RX ) 

Note that, by Green's theorem, 

(6.3) Ae(U Uh, X) 2 {f(U Uh)AX + (u -uh) a} 
aT7 

+ (a(u - Uh), X), 

so that (6.1) makes sense for u continuous. 
The rest of this section will be devoted to the proof of this theorem. By a density 

argument we may assume that u is continuously differentiable. 
Let xo be an arbitrary point in 6A, and let T denote an element such that x0 E TO. 

By use of the inverse property A.2 we have, 

(6.4) | (u 
- 

Uh)(XO) 1<1 U(XO) I +1 Uh(XO) 1<1 U(XO) I +Ch IlUhII, 

Cllu 1IL + Ch1l|u - 
Uhllso. 

Here, 

(6.5) hlllu - Uhll T =h1 sup (u -Uh,a)) 
+co 200 ( O) 

For each such fixed 4, let v solve 

(6.6) Lev = in 6A, v E 93, 

and let Vh denote Phv. The notation for 4, v and Vh will be fixed for the rest of the 
proof. 

We next derive two simple preliminary results concerning v and Vh. 

LEMMA 6.1. There exists a constant C, independent of 8, h and 4, such that 

(6.7) 1l V 1i + 1i Vh 11 { Chft, 

(6.8) ii VVi + iiVVh z IS2lnl/2( C + 

Proof. Since 

(6.9) 8211i7vv112 + a011v112 sA,(v, v) (4, v), 

and a similar inequality holds for Vh, the first bound in (6.7) is clear. 
For the second part of (6.7), we first consider v. We have 11 v 1 (v, v/l v I1) and 

letting Lw = v/Il v 11, w F 133, hence, 

11 v 11 = AJ(V, w) =(,w).- 

Using Sobolev's inequality in the form IIWIIL S CIII II1W 2 and also that 
II)IILl S Ch Ch, 
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which by Lemma 2.1 is bounded by Ch/E. This shows that liiv s Ch/c, and, since 
by Lemmas 4.1 and 2.1 liv - Vh II s- Ch lvii Hi s Ch/8, we obtain (6.7). 

For (6.8), we start with Vh, using the analogue of (6.9). With Q' the intersection of 
6, with a disc of radius max(Ch, e) around xo, we find from A.6 and (6.7), 

211V 1I S (4, vh) S Ci-l4ii llvL 

s Chln /( C + h)(iiVh 11iH () + )ilVhlL? ) 

sCh Id /2 (C + h V'1 t 11 H. + 
Ch2 

ln/2( +h) 

By this, 

1 Vh 1l H' 2ln / 1 C +h. 

Since also, by Lemmas 4.1 and 2.1, li v-Vh 11 H' S ChiivIIH2 s Ch/c2, we have 
completed the proof of the lemma. 

We return now to (6.5). Using A. 1 (applied to gradients) we infer, via (6.1) and 
(6.3), 

(6.10) (u - Uh, )= A(U - Ul, V) A(u - Uh, V - Vh) A6(u, V - Vh) 

=-eEf UA\(V 
- Vh ) + +ahu (V V-h)) + (au, v 

Vh ) 

S CiiUi|L {el| V - Vh ,IW2h + E 2h' V(v - Vh))I1L + liv -VhIILu), 

cf. (3.2) for notation. Here, with X as in A.4, 
V Vh IW IW2,h S I V - X I W2h + I X - Vh I Wh 

s C 1I v 1I Wi2+ Ch-'lx X -Vh 11 wI 

C 1I v 1I W2+ Ch I 11 v-X 11 wI + Ch-I1IiV -Vh 11 wI 

C 1 ? v 1I W2+ Ch-II V - Vhl1W,'- 

Therefore, from (6.1 0), 

(6.11) h -lr(u - uh,,) 

s CiiUIiL {E2h II vIIW12 + E2h 211v - v,hIiwi + hlllv - 
VhIILI}. 

We next introduce some notation. Let 

j = {x EE 6: 2-J I x -xo I 1 2-j+ 1 

Qj' = Qj- I U Qj U 2J+, oil 
I Q- 2,- U Oil U oil 

Assume, for simplicity in writing, that 6R = U CI Qj. Let J. be such that 2-J* s 
C*h s 2-j*+', with C* sufficiently large, to be determined, and let 52* {x ( 6: 

jx-xo12-J*) so that = U J*Qj) U *. Set further dj2-J, d*2 -J*. 
Also, the notation 2 *II v wk1 (a,) shall mean L:J- lI I v II Wk(u1) + 11 v 11 wk(ii ) 
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Returning now to (6.11), we shall estimate the three terms on the right. For the 
first we have, by Cauchy's inequality and using Lemmas 2.1 and 2.3, 

(6.12) E h lllvlW 2 v E h I 2*IIIW2(0j ) CE 2hl*dj11 V Hj 

J* J * 
< C + C,-2h-, 2 111Vvilt + Ch-1 :E djllvll. 

j=l j=l 

We note now that 

(Je2* /)1/2? n/( 
j-1 h) 

For, since exp(-2c2-x/,) is increasing with x, we may estimate the sum inside the 
square root by I = fJ * exp(-2c2-x/v) dx. Substituting 2-x/e =y we have, since 
2-J* < C*h < 2-j*+?, 

I < log2 f1/2e e2cy 
C*h/4e Y 

and the result readily follows. 
Hence, by the exponential decay result of Lemma 2.2 and by Lemma 6.1, for C* 

large enough, 
J* J* 

(6.13) E2 hI 2 IIvvIK || Q CE2 I1 2 e-cdj' j jVVI oil, 
j=1 j=1 

?Ce2hl( e-2cd/e)IIVvI < In C + h) 

Introducing the notation 

(6.14) h-12* dj(llv11IQj + 11 Vh 1 jK), 

we thus infer from (6.12) and (6.13), 

(6.15) E h11llvw,2 < CE h 1E*dj11V1IH2()) ?n(C+h) ? C6J- 

For the third term on the right of (6.11), we immediately see that it is bounded by 
CY. Therefore, by (6.15), 

(6.16) | h1(u- Uhl , ) 1< CIIUIIL{n(C + )+ T+e2h 2V - vhllw. 

For the last term here, we use the local energy error estimate of Lemma 5.2 and find, 
for any X e S h 

(6.17) E h11 v - VhIJ wl < C? h 2h * dj 11 v - Vh 11 HI(,Q) 

? CE h (dj 11 v X 11 Hl(,;) + 11 v X 11j) 

+ C,2 h2 22*e cdjl(-+h)- VhK V 2* + 2* 

Here, by the local approximation hypothesis A.3 and by (6.15) 

(6.18) 2? CE h 1* djIVIIH 2(,) Iln(C + ) + C5. 
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Further, using Lemmas 4.1, and 2.2, 2.1, 

(6.19) * CE2h-2 (Ee-2cdj/(e+h))1/2 11V - VII 

~C21n1/2(C + +h)IvI I~nl/2(C +j. C ( h IIVIH2 ( h) 

Reporting (6.19) and (6.18) into (6.17), and the result of that operation into (6.16), 

(6.20) |h-'(u - Uh, 0) |<CIILolt h) ) 

It remains to show that 

(6.21) h- 12* dj(ll v 1 Q + 1I VhII) 1 C. 

Admitting this for a moment, we would then have 

|h (u - Uh, ) < CI u 1IL ln(C +h 

so that from (6.4), (6.5), 

IIu - UhIIL ln(C + hlIIUIIL. 

Writing u - Uh = (u- X) - (uh - X) for X C Sh would then conclude the proof. 
To verify (6.21) we proceed as follows. Since IIv + II I C it suffices to 

estimate 

J* 

h-1 :E dj(llvI IQ + 1I Vh 1I Qj). 

j=1 

For C* large enough we may again invoke exponential decay results, now from 
Lemmas 2.2 and 5.1. Thus, 

J* J* 
T C + Ch1 E djecdc/lEIII V + Ch-1 E dje-cdj/(E+h) IV VI~ 

j=1 j=1 

? C + Ch 1? ( E (-)2e-2cdj/e j ||IVII 

+Ch1 (e + h) ( 
i +h e 2cdj/(P+h) ||VhII 

< C + Ch-EI 11v + Ch- 1(E + h)IIvh 11 

Applying Lemma 6.1 and separating the cases E < h and ? > h, we deduce (6.21). 
This completes the proof of the theorem. 

7. A Pointwise Local Error Estimate. We shall establish the following result. 

THEOREM 7.1. Let xo ( 6, with (1.2), let D be a disc of radius d > 0 around it, and 
set Od = D n . Let u be a continuous function, with u = 0 on a6J in the Dirichlet 
case. Assume that A. 1 -A.6 of Section 3 hold. Let Uh = ch(od) be such that 

(7.1) A (uuh,X) for X E(= (Qid)- 
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Assume further that (1.4) holds on 2d. Then there exist positive constants cl, C2 and C, 
independent of E,h, u, uh, xo andd,such that,ford c-h, 0<c 1,0<h? 4, 

(7.2) InC+ i 
( 

U 
2)|(- Uh)(XO) |<Cn (h )(( h ) IIU 

+ le-2d/(e+h) 11 u - uh 1I L2(Q2d)} 

Proof. First change the form A. so that (1.4) holds on 6, with the same ao and a, 
as for Qd. This is easily done. 

Let D" and D' be discs concentric with D and of radii 1/4d and 1/2d, 
respectively, and set Q" = J n D", O2' =i fn D'. Let X e C (D) be such that 

(7.3) I on D', 11 11 Loo(D) -< D. 

Set finally ui w u and fh= Ph(wu). Note that, in the Dirichlet case, i = 0 on a6J. 
Then 

(7.4) | (u Uh)(xO) | (u - Uh)(XO) (' (u- uh)(X0) | +1 (Uh - Uh)(XO) - 

Here, by Theorem 6.1, 

(7.5) - (f i)(xo) I< In(C + h Ifi, In(C + h IlullLod) 

For the function ' - uh in 5h(02d) we have by (7.3), 

h - uh, X) 0 for h X 

Using then the Sobolev inequality A.6 and Lemma 5.1, and also (7.3), 

I( h - Uh)(XO) 16 C(lnd/h) h Ilh - UhII Hl(0') + dIIUih - UhII'"} 

d (ln d/h )/2ecd/(E?h) II - uh Uh 

6C (ld/h\1/2 ii llI+ C(ln d/h)'12 -cd/(e?+h)Iaa 

Here the first term on the right is bounded, using again Theorem 6.1, as 

C(ln d/h)1/2 11 h - 1L ln C + ln(dlh u 11 L (Qd) 

Combining the above we have proven (7.2) with X = 0. Writing u -uh = (u- X) 
-(uh- X) for X C 5h verifies it as stated. 

8. Outline of the One-Dimensional Case. We consider the problem of finding 
u = u(x) such that 

(8.1) -e62u" + a(x; c)u = f inJb = [I, J], a finite interval, u E @, 

where the analogue of (1.4) holds and where u E fi3 designates homogeneous 
Dirichlet or Neumann conditions at x = I and x = J. In the present case there is no 
additional work incurred by allowing different boundary conditions at the two 
endpoints. 

The finite element spaces Sh typically consist of piecewise polynomials of a certain 
degree on a quasi-uniform mesh, the polynomials on different subintervals being 
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connected by continuity constraints across nodes. For a Dirichlet condition at x = I 
or J, it is assumed that the functions in Sh vanish there. 

The analogues of hypotheses A. 1 -A.5 of Section 3 are easy to verify in practice; 
A.6 will not be needed in the one-dimensional situation. In A.2, the factor in front of 
(q-' -pp-') is 1 instead of 2. 

The results of Sections 2, 4 and 5 have no changes in statement; their proofs are 
often somewhat simpler, especially in Section 2. 

We shall now outline how Theorem 6.1 would be proved, with (6.2) replaced by 

(8.2) iiu - u iL(q<) < C nun ii u X 11 L.(6) 
X(= Sh 

For another approach to the same result, see Wahlbin [27]. (The corresponding local 
result is given in (8.3) below.) We have, referring to analogous estimates in Section 6, 

(6.4)' | (u - Uh)(XO) I < C II U II L + Ch /2 i U - Uh II . 

One then proceeds as in (6.5), (6.6). Lemma 6.1 will now have the following 
inequalities: 

(6.7)' V ? Cii,hii1/ 

(6.8)' I V'ii + 1iIIi V ChII21e312 

To see this, consider, e.g., v. By use of the one-dimensional Sobolev inequality 

1iI g 11 1C(l g'l l/2 11 g 111/2 + 1I g 11), we have 

E2 | V,1| + aoiivi12 l (, v) . IIkIiLIiVIIL 

< ChM12 Ii Ii L(11 V 11 1/2 11 V'ii 1/2 + II V 

l iV 11 1/2) (e1/2 ii V'ii 1/2) + ChI12 lviV 

< ( 1"2 i Vi111 2 4 / 2 2 13 V'11 2 + Ch + a? 11 V 11 2. c 1/2 / 2 2 

Thus 

2? V II 2 < C(hl/2E- 1/2 11 v 11 1/2)4/3 + h, 

from which (half of) (6.7)' follows. The proofs of (6.7)' and (6.8)' are easily 
completed. 

Now continue as in Section 6. This time, 

(6.11)' Ih-1/2(u-uh,l)I 

< Ciuii L {e2h l/2 11 v11 W2 + E2h-3/2iv - Vh ii Il + h-1/2 liv - Vh iL}, 

Here, trivially from the equation Ly = 

c2 1/2iiv 1 2 '-12 kiiL + h"'2aliiViiL < C + "22alv2 1VL,* 

Setting now 

(6.14)' ''h- 1/2 * d )/2((livi + i1VhllK), 



68 A. H. SCHATZ AND L. B. WAHLBIN 

we immediately see that h1 2IIvIIL ? C'J'. Also the last term on the right of 
(6.1 1)' is bounded by C?'. Thus, 

(6.16)' Ih /2(u - uh,'k) I' CIIuIIL{1 + OJ + ?2 h3/2Iv - VhIIwJ. 

Using the local energy error estimates of Lemma 5.2, we find 

(6.17)' 2h 3 V2hIV -Vh II < E 2h-3/2*d /2I1v -V h11 H1() 

2 C2 h-3/21*(d]/2 11V-XIIH'(&) + dJ11211V -XII;) 

2 -3/2y* dy 1/2 IV - Vhl,-- C + 2* 

Here, by local approximation, A.3, and since Ev" = av outside Q*, using also 
Lemma 2. 1, 

(6.18)' s CE2h-l/2 *d1/2 II 2 (,,) 

5* 
2 

CE1 || VII2 + Ch/2 2 d 1/2 ||VI|| S C + C5'. 
j=l 

Further, by use of Cauchy-Schwarz' inequality and by Lemmas 4.1 and 2.1, 

(6.19)' S CE2h I2V-vh| CE2 ||V||H2 C. 

Thus, from (6.16)' via (6.17)' and (6.18)', (6.19)', 

(6.20)' Ih 1/2 (u - Uh, )|sC||U||Lj{1 +'}. 

It remains to show that 

(6.21)' T'sC. 

This now goes as follows. By use of the exponential decay results and of (6.7)', 

s C + Ch 112 2 d1/2e-cdd/eIivii 
j=l 

+ Ch-/ 1/2 - d 1/2ecdj/(e+h) Il Vh 

+ C + Ch 1/2c1/2( J _ e" cdj||I h Vh 

h 1/2(~ ~ )/ (e + h)-d (+))/ 

< C. 

This completes the proof of (8.2). 
For the local result corresponding to Theorem 7.1, one obtains it with (7.2) 

replaced by 

(8.3) | (u - Uh)(XO) I 

< C{ min 11 u - XL ) + I e-cd/(E+h) II U - h 11 } 
XeSh d} 
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To see this one proceeds as in the proof of Theorem 7.1. The inequality (7.4) is as 

before, whereas, by (8.2), 

(7.5)' | (u4 - u'h)(XO) C 1 C4 11 L. C 11 11L.,(Qd)* 

In (7.6) we use instead the one-dimensional Sobolev inequality 

g(xo) I < Crd 11gtilQ + VX 11 g 11," 
rd 

so that, by Lemma 5.1 and (7.3), 

(7.6)' 1e -Uc)(XO) ?; ecd/(E+h)IIii - U 

C Hu - _ U' +-e Cd/(h ) Il U Uh 1Q,. 

The proof is then completed as in Section 7. 

9. Nonhomogeneous Boundary Conditions. We shall show how Theorems 6.1 and 

7.1 carry over to nonhomogeneous conditions (1.3). 
Let us first consider Neumann boundary conditions, i.e., au/an = F on a6. The 

weak form of (l.l.a)lin is to find u E H' such that with, as before, A,(v, w) 
82(Vv, vw) + (av, w) and with (v, w) = vw ds, we have 

A JU, V) + F2(F, v) (f, V) for allv E Hi. 

The Galerkin solution Uh is found as Uh E Sh (with no imposed boundary condition) 
such that 

AE(Uh, X) + E (F, X)= (f, X) forX E Sh. 

Here we shall not consider further approximation of (F, X). Hence, 

A(U - Uh, X) = O for X E Sh 

and the results of Theorems 6.1 and 7.1 are clearly true without any change in 

statements or proofs. 
The case of essential Dirichlet conditions is somewhat more technical. We seek to 

approximate u, the solution of 

Leu=f in6A, u=F ona6. 

The approximation Uh in Sh is found via 

AJ(uh,x) = O forx cSh, Uh Fh on a6 

where Sh denotes those functions in Sh that vanish on a6i and where Fh, an 

approximation to F, is the restriction to a 6A of some function in Sh. Then 

(9.1) A,(U-Uh,X) ?0 forXE Sh, where uh = Fh on a. 

The result of Theorem 6.1 now goes as follows: With appropriate notations and 
conditions from there, if (9.1) holds, then 

(9.2) I uUh 1 LO(6g) ln C +h) min U mX 1 LOO(g)- 

XUh Uhon 
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For the localization of this we have, with notations and conditions taken from 
Theorem 7.1 (but not repeated here): If Uh F Sh(Qd) with (in self explanatory 
notation) 

(9.3) A(u - uh, X) = ? for X ESh(Qd), 

then 

(9.4) U (u-h)(XO) 1|< In(C + h 
8 

l2 

XT min IU - XII 1 - 1)+Ie '2dl(e+h)u U 
L2U 

11 

X ESh(Qd L(d) deIu UIL2} 
X=Uh on fldna6 

In the rest of this section we shall show how proving (9.4) can be reduced to the 
previous case of a homogeneous Dirichlet condition. The analysis leading to the 
global estimate (9.2) is similar and simpler and we leave it to the reader. 

By a density argument, we may assume that u F C2(Qd). Set F = Qd na6; we 
shall assume F nonempty and leave the (much easier) case of empty F to the reader. 
Designate F = u 1,, the boundary values of u, and Fh = Uh IF* 

We may assume that the circle of radius d around xo cuts a8 in two points only; 
otherwise use smaller but comparable discs. First, extend F - Fh from F to a8d so 
that 

(9.5) || - Fh 11 L -ad) IF - Fh 11 L.(r); 

this is easily done since only two values of F - Fh are given on the circular arc of 

Define next 4 by 

LE(#-u)=O = in Qd, #-u=Fh-F on8ad. 

Then 

(9.6) #=Fh onF 

and, by the maximum principle and (9.5), 

(9.7) 11 U 11 L.(Qd) 
-- 11 F -Fh 11L.(r)- 

Hence, 

(9.8) (u - Uh)(XO) 11 (u - )(x0) I +1(4 - Uh)(XO) I 
< || F- Fh 1 L.(r) 

+ 1( Uh)(XO) I 

Here, 

(9.9) AE(A - Uh, X)O forX ESh (Qd)- 

Let O1h be any function in Sh(Qd) with O1h Fh on F, and set 

- 4' - 'Oh, - Uh h- 
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Note that 0 On F and that 0 F Sh(Qd). Since, by (9.9), A(n - 0, X) 0 for 
X e S- (Qd) we have from Theorem 7.1 

Here, by (9.7), 

(9.11) Uh1)1IL(Xd) 14 - k hx I In(Cd) 

< IIua - 'P Loo(0d) + II e 4Ch2dl(,h 1(d) 
X 

11F FhLIL (d ) + IIU L 2hIdL)(0) 

By a similar argument, 

(9.12) d 11 L2(Qd) 

<IIJ11 
-UhIlL.(d 

) + d L 
Qd 

11U I IU - I 

Using (9.12) and (9.11) in (9.10) and combining with (9.8) shows that 

I (u-Uh)(XO) d ? ln(C + h )ln/(h i) 

x~~~~~ {1 L29d F- Fh Uh 11r +L2u h 9dL 

+ Lc2d/(r h) dI u - UU h L (2 L)}) 

Since u F, Uh =Ph Fh on r, where CPh iS otherwise arbitrary in Sh(UOId), 

h h~~~U 11~~~ FF Fh 11 L.(r, + 11 U - 
Oh 11 L.0)< m(nQd) x1L()- 

X=Uh on Odnla6A 

This proves (9.4) under the condition (9.3). 
We leave the translation of the one-dimensional estimates to the case of nonhomo- 

geneous boundary conditions to the reader. 

10. More Explicit Local Error Estimates. In this section we shall explicate the local 
estimate (1.8) under certain smoothness assumptions effectively reducing the non- 
smoothness in the problem to the boundary layer. We shall only consider the 
homogeneous Dirichlet case. 

We make the following three assumptions: 
(1) (Local behavior of u.) There exist positive constants C and c, independent of E, 

such that with d(x) dist(x, a6A), 

(10.1) (a )' < C(l + ec 2x/) for al2. 
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If data in the problem, including a6A, are sufficiently smooth, the estimate (10.1) 
is a consequence of Besjes [4, Theorem 13]. 

(2) There exists a constant c such that 

(10.2) ? C independentofO <E 1. 

We note that then (see Lemma A. 1 in the Appendix) 

(10.3) IIUIIL < I f IIL C. 

Finally, we need a local maximum norm approximation estimate for Sh. 

(3) There exist constants c and C such that the following holds. Given a function v 
with v = 0 on a 6R there exists X E Sh such that for 0 < h < 1/2, i 1,.. ), 

(10.4) || V - XII LQr<) ? Ch2 || V | 82(th) 

where Tih = dist(T-s Th )<ch TJ- 

Setting e(x) = u(x) - uh(x), the following is the main result of this section. 

THEOREM 10.1. Assume (1.2), (1.4), A.1-A.6 of Section 3 and (1), (2), (3) above. 
There exist positive constants cl, C2, C3 and C, independent of h and -, such that with 
d(x) = dist(x, a 6i), the following holds. 

(i) If E < h, then 

(10.5) I e(x) I< C In'/ h )h for d(x) >': C2 hIn Il/h 

and 

(10.6) 1 e(x) I< C ford(x) c2hln l/h. 

Iffurthermore E < clh/ln 1/h, then 

(10.7) I e(x) I Cln1/2( ) {h2 + e-C3d/h} for c2h < d(x). 

(ii) If E2h, then 

(10.8) 1 e(x) I< In/2 h)nC + h ) for d(x) >': C2 E n I IE 

and 

(10.9) Ie(x)I<ln C+ 4 h foranyd(x). 

Remark. In a one-dimensional problem, the factors ln1/2(d/h) and ln(C + s/h) 
would not be present. 

Before giving the proof of the theorem, we display, in Figure 10.1, the error 
estimates obtained. Factors In112(d/h), ln(C + s/h) and constants are skipped. The 
shaded regions are intended to suggest (small) areas where our information is less 
precise. 
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e(x) 

1 C < h (10.6) 

< h/lnl/h 

(10.7) 

h2/ 2 c > h (10.9) 

h2 r < <h (10.8 
h2 

(10.5) 

h hlnl/h ? lnh/c dist(x, ) 

FIGURE 10.1 

Local error estimates according to Theorem 10.1 

Proof of Theorem 10.1. The easier estimates are (10.6) and (10.9). Repeating (1.7), 

(10.10) I e(x) I< In(C + h)min 1 u - XILO 

XC~Sh 

For (10.6), take X -0 and use (10.3) and that c/h s 1. For (10.9), using (10.4) and 
(10.1) one has immediately 

minllu- Xl 14Ch'1 IUiC1 2? Ch2 
2 mi II u-X IILSC21 u! B 

XCSh C 

The remaining results are based on the local estimate (1.8). Taking there d 
equalling the present d(x) = dist(x, a6), we have for d : c'h, 

(10.11) | e(x)l |< Cn(h){In(C + h)min IU X IL.(Qd) 

+ c eC"d/(E?h) 11 U - Uh 1L2(d) d 

where dist(Od, ag6) > c'd/2. 
Note now the elementary inequality 

e- cdlE 

(10.12) 2 s 1 for d c2cln 1/-, cc2 > 2. 

We further estimate d 11u - Uh 11 L2(Qd) by C 11 U - Uh 11 L S ln(C + c/h), cf. 

(10.10) et seq. Using then (10.4) and (10.1) in a local fashion, (10.11) gives for 
d > c'h, 

(10.13) e(x) 1< Cln-/2( )ln(C + h){h2(l + 2e ) + e 
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For E ? h and d > c2h ln 1/h > c2dIn 1/e, (10.12) and a similar argument for the 
last term give, since -/h < 1, 

I e(x) I< Cln1/2(d/h)h2 

for cc2 ? 2, c"c2 2 2. This is (10.5). 
For (10.7), one easily finds that d > c(c2, c1)e ln 1/e, and hence the result again 

follows from (10.13) and (10.12). 
Lastly, (10.8) also follows from (10.13) by similar arguments. 
This proves the theorem. 

11. Numerical Examples. In this section we shall elucidate some simple numerical 
examples via our theory, and vice versa. 

Example 11.1. Let 

u(x) = x - 1 - xe11/ + e-X/, 

so that u solves the problem 

11.1) -E u + u = x-1-xee-le O < x <l, 
( )u(O) = () = 0. 

The function u is simply a linear term superimposed on a decaying exponential 
exhibiting, for small -, a boundary layer of width -ln 1 /e at x = 0. Note that the 
coefficients and right-hand side in (1 1.1) are nice functions, uniformly in 0 < - < 1. 

We solved this problem numerically for a range of -'s, employing uniform meshes 
of size h = .05 and h = .025 and, in each of these cases, using piecewise linear and 
Hermite cubic approximations. 

In Table 11.1 we exhibit the maximum norm error (determined at meshpoints 
only) and the meshpointjh where it occured. 

TABLE 11.1 
Maximum error for a range of 's 

PIECEWISE LINEARS HERMITE CUBICS 

? h = .05 J h = .025 J h = .05 ] h = .025 J 
50 .15 - 4 9 .37 - 5 18 .76 - 8 2 .50 - 9 3 
51 .96 - 3 4 .24 - 3 8 .34 - 5 1 .26 - 6 2 
5_2 .27 - 1 1 .60 - 2 2 .83- 3 1 .90 - 4 1 
5_3 .21 1 .12 1 .33 - 1 1 .94 - 2 1 
5_4 .26 1 .26 1 .78- 1 1 .68 2 1 1 
5-5 .27 1 .27 1 .82- 1 1 .82- 1 1 
5-6 .27 1 .27 1 .82-1 1 .82- 1 

We shall now investigate the cases E >> h, E h and E < h in more detail. 
E >? h. For - large compared to h, the estimates (10.8) and (10.9) show that we may 

expect the global maximum norm error to behave like O(h 2/_2), for piecewise 
linears. In the case of Hermite cubics, since we know u(x) explicitly, it is easy to 
derive an O(h 4/ft4) estimate from (1.7). Computing global rates of convergence from 
Table 1. 1, we find them as in Table 1 1.2. 
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TABLE 11.2 
Computed rates of convergence (global) 

e Piec. Lin. Herm. Cub. 

50 2.0 3.9 
5-1 2.0 3.7 
5-2 2.2 3.2 

For smaller E, the computed global rates deviate considerably from 2 and 4. In 
particular, for very low -, there is no decrease in error with h. 

E - h: We next offer a sketch, in Figure 1 1.1, of the case - = 5-3 when, by Table 
1 1.1, all maximal errors occur at the first meshpoint in the respective meshes. 

-.8 t 

EXACT 

t * *ig | ~~~~x PL h=.05 

+ PL h=.025 

* HC h=.05 

* HC h=.025 

Sketching of the approximate 
data points is discontinued 
when these become indisting- 
uishable from the curve of 
the exact solution. 

0 .05 .1 

FIGURE 11.1 
The transition region when h 2 E - h/ln(I /h) 
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Note now that for h = .025, h/In 1/h = .0068 s = .008 s h. Thus, the situa- 
tion sketched in Figure 1 1.1 essentially takes place in a shady region in Figure 10.1. 
For d(x) > c'h our local estimate (1.8) may be applied (in its one-dimensional 
version (8.3)) to give 

e-C3d/h 
(11.2) l e(x) I< C min 11 u - X 11 L,[x-d/2,x+d/2] + C 

x d/lh 

(Here we used Theorem A.2 of Appendix 1 to derive the slightly sharper form of the 
last term.) Of course, Figure 1 1.1 looks, en gros, to be governed by local approxima- 
bility and a decaying term depending only on d/h, but it is hard to say which term 
rules at a specific point. Also, there are two choices for estimating the first term on 
the right of (11.2): with y = 2 or 4 we have 

11 
- X11 <{CV$V e-cd/h (x =interpolantofu), 

C2e-cd/h (X = linear part), 

and the relative sizes of C, and C2 become important in this range. 
For d(x) > c2h ln 1/2 (= c2 X 0.15), the estimate (10.5) takes over and predicts 

that the influence of the fast decaying term is essentially over. In our case, we 
happen to know that both terms in (11.2) are fast decaying, but in general this would 
not be true. 

At any rate, even to come this far we have used more specific information about u 
than we are likely to rigorously secure in a practical two-dimensional problem. Thus, 
our conclusion is that while the local error estimate (1.8) gives some qualitative 
insight in the behavior of the approximation close to the boundary layer when 
h/ln 1/h < E h, Figure 10.1 does well to leave that range as a shady area. 

E < h: When e moves well into the range e S h/ln 1/h, we expect from (the 
one-dimensional, and also the Hermite cubic analogue of) (10.7) that the error 
should behave as, for d 2 c2h, 

I e(x) Is C(hY + e-3d/h), y 2 or 4. 

In our present case, perfect information and Appendix 1 again permit a sharper 
estimate, 

| e(x)l< C je- Cd/? + e /cdh 
< e-cd/h 

In other words, the error at meshpoints should depend only on the meshpoint 
number, not on E or h (for E < cIh/ln 1/h, d(x) > c2h). 

The numerical solution bears out this prediction, as is seen in great detail in Table 
11.3. 
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TABLE 11.3 

The exponentially decreasing pollution in its purest form 

Meshpoint 1 2 3 4 9 14 19 

5-4 h h 

5-4 PL .05 .27 -.70 - 1 .19 - 1 -.49 - 2 .65 - 5 -.85 - 8 .10 - 10 
.025 .25 -.66-1 .17-1 -.43-2 .49-5 -.54-8 .60-11 

5- 5 PL .05 .27 -.72 - 1 .19 - 1 -.51 - 2 .71 - 5 -.98 - 8 .13 - 10 
.025 .27 -.72-1 .19-1 -.51-2 .70-5 -.96-8 .13-10 

5-6 PL .05 .27 -.72 -1 .19 -1 -.52 -2 .71 -5 -.98 -8 .13 -10 

.025 .27 -.72 - 1 .19 - 1 -.52 - 2 .71 - 5 -.98 - 8 .13 - 10 

5 4 HC .05 .78 -1 .19 - 1 .53 -2 .15 -2 .25-5 .42 - .66 -1 
.025 .68-1 .16-1 .43-2 .11-2 .16-5 .22-8 .30-11 

5-5 HC .05 .82-1 .20-1 .57-2 .16-2 .30-5 .53-8 .89-11 
.025 82 - 1 .20 - 1 .56 - 2 .16 - 2 .29 - 5 .52 - 8 .94 - 11 

5- 6 HC .05 .82-1 .20-1 .57-2 .16-2 .30-5 .54-8 .98-11 
.025 .82 - 1 .20 - 1 .57 - 2 .16 - 2 .30 - 5 .54 - 8 .98 - I11 

Example 11.2. We illustrate our assertation that, away from the boundary layer, 
local approximability governs asymptotically, in a somewhat less trivial example 
than the previous. For this purpose, let 

u(x) = e-x/e + ex - x(e + e-l/e) - 2(1 -x), 

so that u solves the equation 

-E2U + U = (_E2 + I)ex - x(e + e-'/) - 2(1 - x). 

We take 5-3 and work with Hermite cubics. The analogues of (10.5), (10.8) 
predict 

e(x) I0= (h4) for d(x) const max(h ln I/h, Eln 1/E). 

In Table 11.4 we present the errors for x = .25, .5 and .75, and also the global 
error, for a range of h's, and calculate rates of convergence. 

TABLE 11.4 
Calculated rates of convergence 

x = .25 x = .5 x = .75 GLOBAL 

h Error Rate Error Rate Error Rate Error Rate 

20-' .775 - 4 .606 - 7 .184 - 7 .33 - 1 
14 6.1 4.0 1.8 

40'- .453 - 8 .895 - 9 .118 - 8 .94 - 2 
6.7 4.0 4.0 2.6 

80-' .435 - 10 .559 - 10 .718 - 10 .16 - 2 
4.0 4.0 4.0 3.1 

160-' .272 - 11 .349 - 11 .449 - 11 .19 - 3 

We see that the expected local rate h4 eventually appears. If one calculates 
e-d/h/ d/lh one sees that, due to the miniscule errors, it probably influences the 
errors for x = .25, h = 20,- ' 40- 1, 80 -1 and for x = .5, h = 201-', 40- '. This is the 
explanation why the asymptotic range appears later in the left part of the table. We 
also remark that the global error always occurred at the first meshpoint, as expected. 
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Example 11.3. We give a two-dimensional example of the pollution effect in its 
purest form. 

We solved the problem, E .001, 

-E2AU + U 
- 

O, 0 < X, y < L, 

u(x, y) = e-x/? + e-Y/e on the boundary, 

which has the obvious exact solution. We used triangular linear elements. The mesh 
was essentially the product of a uniform subdivision in the y-direction with h = .05, 
and a subdivision {xj+11}20 in the x-direction, xj+ =.Olj+.002j2. Thus, the 
x-mesh was slightly refined towards the origin. There were 361 interior nodes and 
800 elements. 

In Figure 11.2 we display the errors at meshpoints in a subregion of the unit 
square. We leave it to the reader to analyze it along the lines of Example 11.1; the 
picture is clear. 

0 i~ 0 0 0 

0/ 4 0 0 0 0 

. 11 1 I 

SCALE FOR ERRORS: =. 

* //e ~ 

O * 0 0 0 0 0 0 

O .1 

FIGURE 11.2 
A two-dimensional example of the pollution effect in its pure form 
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Example 11.4. This example shows that, when a(x) vanishes, the exponential 
decrease of pollution is lost. 

Consider the transmission problem 

-E2U + a(x)u = <(x)(3x - 1), 0 < x < 2 

u(0) = u(2) = 0, 

where 

(x)= ?, Ox? 1, 

With E e- the exact solution is 

U(X) = |(?+lE( )+3X 

(E + 5E(1 -E))e )/ ? (5 + 5E - EE)e-(2-x)/e + 3x - 1, 
L ~~~~~~~~~1 ?x?2. 

We choose E 8.10-6. 

Thus, on [0, 1], the solution is merely a linear function; on [1, 2], near 1 there is a 
boundary layer of the usual kind but weak in magnitude whereas at 2, there is a 
stronger boundary layer. 

On [1,2], where a(x) 1, our theory suggests exponential decay in error as 
e-dist(x,p)/h away from p 1, 2, respectively. On [0, 1], where a(x) = 0, our present 
theory does not apply. However, local error estimates for nonperturbed Dirichlet 
problems, Schatz-Wahlbin [24], say that 

(u - uh)(x) I' C ruin Iu- XIILoL(Id) + Cd |Iu UhIIL2(I) 

Cd 1/2 |U - Uh L2(1d) 

and so predict no exponential decay in error. 
Computing with Hermite cubics for h = 40- 1 (and hence a meshpoint placed at 

x = 1), the following errors ensued, reported here at every second meshpoint, Table 
11.5. 

TABLE 11.5 
Damping of pollution depending on the positivity of the coefficient a(x) 

meshpt.# 0 2 4 6 8 10 12 14 16 18 

error 0 .6-3 .1-3_.2-2 .2-2 .3-2 .4-2 .4-2 .5-2 .5-2 

20 22 24 26 28 30 32 34 36 38 40 

.8-5 .2-8 .2-8_.3-7 .3-6 .4-5 .5-4 .7-3 .8-2 .1 0 

The decrease in error away from x 2 (meshpoint 40) is easily discerned; to the 
right of x= 1 (meshpoint 20) the exponential decay is less noticeable, since the 
boundary layer is very weak here. However, on [0, 1], in spite of the fact that the 
solution here is perfectly approximable by Hermite cubics, pollution is rampant all 
through and does not decay. 
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The same pattern occurs if x = 1 is placed inside a mesh interval, the errors then 
being magnified by roughly a factor 5 on [0, 1], but staying the same on [1, 2] except 
near 1, as expected. 

Example 11.5. Pollution absorbent mesh. One may draw a limited practical 
conclusion from our analysis. Say that we have a problem on [0, 1] and desire 
"good" accuracy on [.1, .9] uniformly in E, with a fixed mesh. The nature of the local 
error, in particular the pollution term which only depends on the number of 
meshpoints away from the boundary for low E, suggests putting a few extra 
meshpoints inside [0, .1] and [.9, 1], for the purpose of absorbing the pollution. Thus 
the aim is not actually to resolve the boundary layer, which would demand a 
mesh refinement depending on E (and would possibly be bothersome in many 
two-dimensional codes if a large number of s'S are to be investigated). 

Observe that, from the asymptotic point of view as h -O 0, since [.1, .9] is a fixed 
interior subinterval, there would be no problem of high accuracy if the solution is 
smooth. We are having in mind moderate to large mesh sizes here. 

We illustrate the principle in the problem of Example 11.2 (and we use our a 
priori knowledge that a boundary layer occurs only at the left). Taking a mesh with 
10 subintervals, the problem was run for a range of E's, and with two different 
meshes. First, a uniform mesh, and secondly, a mesh with 4 pieces of length .025 in 
[0, .1] and 6 parts of length .15 in [.1, 1]. 

The results are given in Table 11.6; the error was calculated only at meshpoints. 

TABLE 11.6 

Uniform mesh vs. pollution absorbent mesh 

IlelIL [. 1,1] 

Uniform Mesh Pollution Absorbent Mesh 

50 .30 - 6 .16 - 5 

5-' .42 - 4 .11 - 3 
5 -2 .55 - 2 .12- 2 
5 -3 .62 - 1 .90- 4 
5 -4 .81 - 1 .10- 2 
-5 5 .82 - 1 .14- 2 

5 - 6 .82 - 1 .15 - 2 

We conclude that the pollution absorbing idea works. For the error uniformly in E 

over [.1, 1], sup0<o l Iell 
L.[.1,11 

we have obtained a 50-fold reduction over the 
uniform mesh. 

Example 11.6. Comparison with some specially designed finite difference schemes. In 
the one-dimensional case, Miller [17], Niijima [19], [20] and Shiskin and Titov [26] 
have investigated special three-point finite difference schemes which converge uni- 
formly in - with respect to the maximum norm over meshpoints but which do not 
attempt to resolve the boundary layer for small E. The construction in [17] and [26], 
where the same scheme is analyzed, is based on exponential fitting, whereas the two 
schemes in [19] and [20] are motivated by Liouville-Green transformations. We refer 
the reader to the papers mentioned for details. 
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In [20] the three schemes were compared when applied to the problem (t 
2x/(x+ 1)) 

-E U + 4(1 + E(X + 1))u 

(x + 1)4 

( 
4 

[(I + ?(x + 1) + 4%r 
2 )cos(2,rt) 

-27TE2(x + 1) sin(27Tt) + 3(l + e(x + 1))ee'-s? 0 x 1 

u (0) = 2, u(l) =- 1. 

This problem has the exact solution 

U(x) -cos(2,rt) + 3(et/ 
e 

- 1/ ) 
1 - el/1E 

We shall reproduce, in Table 11.7, the results for the uniform step 1/32 in the 
finite difference schemes. In the table we adjoin the results for the Galerkin method 
with Hermite cubics, applied with a pollution absorbent mesh (Qn the left only) 
constructed as follows. With H= 1/32, the interval [0, H] was divided into four 
uniform subintervals, to absorb pollution, and the rest, [H, 1], was partitioned into 
twelve equal pieces. Thus, the number of unknowns in each problem was similar. 
The maximal error was taken over each meshpoint in the three difference methods 
and, for the Galerkin method, over the meshpoints in [H, 1] (including x = H). 

Note that we are comparing the general purpose Galerkin method to highly 
specialized numerical methods, available only in one-dimensional smooth cases. 

TABLE 11.7 
Comparison with some special difference schemes 

Miller [17] Niijima [19] Niijima [20] Galerkin HC 

lo-, .65 - 2 .48 - 2 .62 - 4 .34 - 2 
10-1.5 .71-2 .77-2 .26-4 .11-1 
10-2 .26 - 2 .66 - 2 .28 -4 .80 - 3 
1o-2.5 .40 - 3 .28 - 2 .27 -4 .38 - 3 
10-3 .41 - 4 .97 - 3 .86 -5 .22 - 2 
io-3.5 .39 - 5 .31 - 3 .32-5 .30- 2 
10-4 .66 - 6 .10- 3 .30- 5 .31 - 2 

The large errors for rather moderate E are due to the very abrupt change in mesh 
size. 

For further comparison it might be remarked that, for a uniform step of length 
1/16, the quantity maxEmaxj I e(jh) I was .25 - 1, .21 - 1 and .20 - 3 in the 
difference schemes [17], [19] and [20], respectively. 

We leave it to the interested reader to investigate how methods involving matched 

asymptotic expansions (and combinations of such with finite element methods) 
compare; this is easy to do in most examples above. 
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12. A Nonlinear Problem. We show how our results apply to a nonlinear problem. 
Let u solve 

(12.1) -E 2AU + b(x, U; E) = f(x; E) in , 
u=0 ona6, 

where b(x, 0; E)-0, b is absolutely continuous in u, and with some constant ao > 0, 

(12.2) au (X U; e) > ao > 0 for x E 6R, 0 < e 1 , u E R'. 

Further assume that ab/au is bounded above on compact u-intervals. 
The result of Lemma A. 1 of the Appendix extends to this situation and thus 

IIUIIL S I 1f f 11 L.O 
a0 

The existence of a unique solution to (12.1) can be obtained by monotonicity 
methods, see Brezis [5] or Lions [15]. 

We thus have an easily computable bound for I u I that is independent of E. We 
assume in general that we know bounds uo and uI such that 

(12.3) uo s u(x; E)< U1 for x E , O < E < 1. 

To find an approximation uh by the finite element method we first change 
b(x, u; E) to b(x, u; E) where 

b(uo) + -ab (uo)(u - uo) for u s uo 

b(u) b(u) for u s u s u 

Ib(u) + ab (ul)(u - ul), for u > u,. 

This modification is necessary in order to apply our theory when ab/au may grow 
with I u l, at least in an effortless way. It is probably not necessary in practical 
computations but it is very easy to incorporate if desired. 

We define the approximate solution Uh E Sh by 

(12.4) E 2(Vuh VX) + ((Uh), X) = (f X) forX E Sh. 

The existence of uh is again guaranteed by monotonicity methods. 
In the range given in (12.3), b and b coincide and thus u - uh satisfies 

(12.5) E2(V(U - Uh), VX) + (a(u - Uh), X) = 0 forX E She 

where 

a(x; E) f' | a(tu(x) + (1 - t)uh(X)) dt. 

With al = sup{ab(x, u; E)/au: uo s u s ul, 0 < E 1, x E 6J} and ao as in (12.2) 
we have now 
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From (12.5) and (12.6) we see that the global and local error estimates of 
Theorems 6.1 and 7.1 immediately apply. We can thus state the following 

THEOREM 12.1. Assume (1.2), (12.2), (12.3) and A.1-A.6 of Section 3. Let u be a 
continuous function vanishing on a3 and solving (12.1) in the weak sense, and let 

Uh e Sh be given by (12.4). 
There exists a constant C, independent of u, uh, E and h but depending on uo, u1 

(through ao, a,) such that 

|| U Uh || Lw(6A,) < Int C + h min 11u X11Lo,* 

Further, let xo E 6A, let D be a disc of radius d around xo and set 2d = D n 6. 
There exist positive constants cl, C2 and C, independent of u, uh, E, h, xo and d such 
that for d cl h, 

(U - Uh)(XO) I 

CnI( n) ( C ? min II u - Xi L +(d) ? II-cd/(U?h) u - d)} 

Appendix 1. Some Global L2-Estimates in the Dirichlet Problem. We consider the 
problem 

(A.1) {-2Xu+au=f inACCR2 

under the general basic assumptions (1.2) and (1.4). The finite element spaces are 
subject to the conditions of Section 3. We remark that it is easier to treat the 
Neumann problem in an analogous way, and we leave that case to the reader. 

We shall derive estimates for 11 u - uh 11 L2 under weak assumptions on f and a. Our 
main result is Theorem A.2. Due to the form of the boundary layer and our wish to 
allow data with jump discontinuities, a certain interpolation space between H1 and 
L2 turns out to be useful. We proceed to define and discuss this space. 

For 0 < 6 < 1, let H,'? = [H1, L2]900 denote the space given by the norm 

iv llo,o = sup K(t, v) 
t>O t 

where 

K(t, v) inf IIVOIIL2 + tllvlII,H. 
vV V+VJ 

vo E L2, V I E 

We refer to Bergh and Lofstrom [2, Chapter 3] for more information about these 
concepts. 

Of particular interest to us is the space H172' ?. Even for smooth data in (A. l<but 
withf fa%R =# 0, the boundary layer precludes u from being in H,'? uniformly in E, for 
6 > 1/2 (we shall not prove this). Thus, as it will turn out, H1/2'o? is a good choice. 
Also, H1/2' ? is a reasonable space to measuref in: For, f will then not be subject to 
boundary conditions, and f is allowed to have jumps in 6J. In fact, pondering the 
reduced equation u = f/a, taking f in H172', seems to nicely tie in with the 



84 A. H. SCHATZ AND L. B. WAHLBIN 

roughness from the boundary layer; it will also allow jumps in the coefficient a, 
while still u C H'/2 oc, as we shall see. 

To somewhat elucidate these spaces we state and prove the following simple result 
which shows that H1'/2'? does not demand boundary conditions. (This is in contrast 
to the Hilbertian interpolation space [H', L211/2,2 H,<2, cf., e.g., Lions and Mag- 
enes [16, Chapter 1, Section 11, Theorem 11.7].) 

PROPOSITION A. 1 (Lions [14, Chapter II, Section 5, Lemma 5.11). 

H'Q3,) C HI/2'oQ3L) 

with continuous inclusion. 

Proof. By use of local charts, it suffices to consider the case of 6= {x = (xI, x2): 
X2> 0). For v C H1 and t > 0, set 

vot(x) = v, tI), vlt(x) = v(x) - v0o(X). 

Then 

1Ivot 1I L2 t1/ 11 v 11 L2' 

whereas v It E H' with 

11V1t1 H t /2 || V || 'I. 

It follows that K(t, v) s Ct'12 V1 vf1 H' and so v C H1/2,X. 
In a similar way, if F is a Lipschitz curve partitioning 6i into 6l 1 and 62, and v is 

smooth on @16, and q12' then v C H1/2' ?. To see this, smooth v across F by a 
mollifier, cf. (A.3)-(A.6) below. 

We next show two simple lemmas. 

LEMMA A. 1. 

||IuIIL . 1I f 11 LOO 

Proof. In case u C A2(l) the assertation is immediate by considering the sign of 
Au at interior positive maxima or negative minima. 

In general we proceed as follows: Multiply the equation (4.1) by u- 1, p even, and 
integrate by parts to arnrve at 

E2fj VU 12 (p - l)uP-2 + JauP fuP. 

H6lder's inequality then gives 

aOIIuI PL 111f 11 LP LPuI 

and the lemma follows upon letting p tend to infinity. 

LEMMA A.2. If, in addition to (1.2) and (1.4), Va C L., andf C H 1, then 

EIIUIIH2 + llUl HI < C(llf l1pi + II(Va)uIIL ). 

Proof. Multiply the equation (A. 1) by AVu and integrate by parts to obtain 

e211AUII2 + II a 7u12 - f Vf U -J (Va)u Vu. 
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Thus, 

ellAu11 + 11l1vu S C(ll Vf 11 + 11 Vau 11) 

and, since IlI U I H2 S C Il Au II for the domains under consideration, the lemma fol- 
lows. 

COROLLARY. If 11 vail L S C andf E H', then 

lIIUIIH2 + IIUIIH < Cllf II. 

We are now ready to state a first simple L2 error estimate. The general assump- 
tions are (1.2) and (1.4) and those of Section 3. 

THEOREM A. 1. (i) For f E L2, 

ICllf II L2 0 < ES h, 

{ I 2Ifl2 
ll2 I II I L2 h 1 

(ii) JIll1 VaIl1 L~ S C andf E H'72'X, then 

[Chllfll1/2, 0 <CEth, 

(iii) Ifl Va L1 C andf E H', then 
Ch 11f I2o C0 <E h, 

IU- Uh II L2 Ch 2f11, hses 1. 

Proof. The first estimate in (i) is trivial; the second follows from Lemma 4.1 and 
Lemma 2. 1. 

For (iii), use Lemma 4.1 and then the Corollary to Lemma A.2. 
The estimates in (ii) now follow by interpolation. For the reader unfamiliar with 

interpolation arguments involving the K-functional, we give the simple reasoning, in 
the case 0<E < h. Write f=zfo +1f where fo E L2, 1 H'. Then u - uo + u1 
where ui solve Dirichlet problems with right-hand sides fi. By linearity, using (i) and 
(iii), 

ll - Uhll S llu 1 - UOPhEuO + IIUI - PhEUII S CII fol L2 + ChII fl H'- 

Considering all possible fo and fl, we see that 11 U - Uh S CK(h, f) and since 
K(h, f ) s Vilif i1 /2,o wearedone. 

Remark A. 1. By the same techniques it follows that, if 11 Va II L, S C, 

(A.2) 11UI I2 < C 11 f II 1/2,o0- 

Finally we want to consider the case when a is not smooth, so that Va does not 
exist, and prove an analogue of Theorem A.1(ii) in this situation. The assumptions 
on a and f will be such as to cover many practical situations. Thus let a E H /2, ? n 
Loo, where we now may take H7/2'o? = [H', L2],I/20 (which might be technically 
simpler for checking). Considering then the reduced equation u ~f/a for small 6, it 
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is unlikely that u is smoother than in H'7/2o uniformly in E, and hence no better rate 
of convergence than Ih can be expected for small E. Thus, the estimate of case (ii) of 
Theorem A. 1 ought to be the best result possible, and we shall (almost) obtain it. 

THEOREM A.2. Assume (1.2), (1.4) and the conditions on Sh in Section 3. Let 
a E H7/2,'oc n L. Then 

Ch(IIfIIj12,o+I IlfIIL) O<Esh, 
11IU UhI11IL2 ? Ch2(11 f 1 1/2X + 11 f 11 LL) , h 

Proof. We shall need to smoothen the coefficient a. The class of a's considered 
makes it possible to construct a = d(S) for 0 < 8s 1 such that, with constants 
uniform in 6, 

(A.3) 0 <C 
ao s a 2a, 2 1 

(A.4) Ila a-a 11L2 < Crs 

(A.5) < C 

(A.6) IlVaIlL. s 
c 

To see this, use a mollifier of standard type. 
We shall give the details of the proof in the case 0 < E h and indicate the 

modifications necessary for h s - S 1. 
First smooth a to a = a(h) (8 = h) and define u1 by 

(A.7) -E2?[U +,au= f u = 0 on a; 
then u - uI satisfies 

(A.8) -E 2A(U - u) + a(u-u =aa)u, u-u = O ona6A. 
Write now (uh = Ph'u) 

(A.9) u - Uh = u - Phu? + ( u - u) PhE( u - u). 

From (A.8) we find, using also Lemma A. 1 and (A.3), (A.4), 

(A.10) l lu - fill s CII(a a)ull s Cllai alIL2 1 1 L.o s CFh 11f 11 L. 

and similarly 

(A.ll1) 'EP(U <)| CFh 11f 11 L. 

By (A.9), (A. 10) and (A. 11) it remains to estimate - Ph. Let f fo + f? with 
fo C L2,f1 E H'. Then u = u- + ul where 

-c2AjCi + uci =-fi, ui = O on aP, i = 0, 1, 
and 

(A.12) u P'E = - P,UO) ? (U - ) 
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Then 

(A. 13) 10 - Ph uo I s 11 tO 11 + 1I Ph,E uO CI fi C IO 
and, using Lemma 4.1 and Lemma A.2, 

(A. 14) 11 ul-P^Ul 11 < Ch 11 Il 11 Hi < Ch(IIll f, 11 + I(vd)i1 11). 

Here, by (A.5), Lemma A. 1 and (A.6), 

(A. 15) l(Vd)ul 11 < lI(va)uO 11 + lI(va)u il 

< lV'a 11 L. II U0 1 L2 + 11 al L2 l Loo <' h l 0lL2 + h IIl f II Ly - 

Inserting (A. 14) and (A. 15) in (A. 13) and considering all fo,if, 

|i| - Phull s C(l fo + h llfi ll H) + ChII f II L 

s C (l f 11 II2,oo + 11 f 11 L.) 

As noted above, this concludes the case 0 <C - h. 
In the case h s E S L, on, uisfs insma&. n = s,\. 0. - Then. !y L. m 4 1, 

Lemma 2.1 and arguments similar to the ones above, instead of (A. 10) and (A. 1 1) we 
find 

II(u - [) - p -)(U < Ch2I11U - 11H2 

Ch 2 Ch 2 S 2 II(a - a)u 11 
L2 3/2 hlL 

The estimates in (A. 13) et seq. now run as follows, using in particular Lemma A.2. 

- phEri 0 1 <-Ch 2 
lIi i - o P, ,lI ChI2 I, < 11 H2 ( II1 ? foIIc I 

ph Ch IIIil 
ch 2iaOI+lvul 

<Ch (2 iI[, I I I fHo l II+ 1 PlH I ) 
< 

c2 
1 il . + 11fO11+? Ilf IlL. 

Thus, 

Ch 2 Ch 2 
llu Ph'EC'I Is-~( I I o I + Elf 11 I I + Ih lf IIL Ili~~~ - 2 (IfIH cI,I~ ?3/2 hl 

and the desired estimate follows. 
Remark A.2. Corresponding to (A.2) one may establish in case a E [H', L2]1/2,o 

n Lo that 

IU1 I1/2,oo + 1? U 11 L. C(ll ulI 1/2oo +? IIUIIL), 

uniformly in E. 
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The techniques of Theorem A.2 can also be used to derive the result that 

f 
a L2 

for a, f E H1/2,oo n Lo, cf. Lions [14, p. 128, (5.15)] where the same estimate wa. 
proven for a and PI smooth and f E H . 
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