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Sharp Error Estimates
for a Finite Element-Penalty Approach
to a Class of Regulator Problems*

By Goong Chen, Wendell H. Mills, Jr.,** Shunhua Sun and David A. Yost

Abstract. Quadratic cost optimal controls can be solved by penalizing the governing linear
differential equation [2], [9]. In this paper, we study the numerical analysis of this approach
using finite elements. We formulate the geometric condition (H) which requires that pairs of
certain related finite-dimensional approximation spaces form “angles” which are bounded
away from the “180° angle”. Under condition (H), we prove that the penalty parameter £ and
the discretization parameter s are independent in the error bounds, thereby giving sharp
asymptotic error estimates. This condition (H) is shown to be also a necessary condition for
such independence. Examples and numerical evidence are also provided.

0. Introduction. Consider the optimal control problem: Given the quadratic cost
functional J,

J(x, u) stT[<x, Nt ge + () Nyx Ve + (ut, Mugo] dbt,

solve
(0.1) Min  J(x,u)
(x,u)EH), XL,
subject to
x(t) = A(t)x(¢) + B(t)u(r) + f(2), te]0,T],
(0.2) {x(O) ~ 0.

where x(¢) € R” is the state at time ¢, u(¢) € R™ is the control at ¢, A(¢) and B(z)
are, respectively, n X n and n X m time-varying matrices, and f is the inhomoge-
neous forcing term.

In the cost functional J, we assume

Ny, N,, M are constant n X n, n X n, and m X m symmetric

03) positive semi-definite matrices,
' (x, NyxYpe = 2l x | jo, {0, Mu ) gm = v||u||121m forallx € R", u € R™,

where » > 0, is independent of x and u.

The standard Sobolev norms and spaces used are as follows.
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2 k T W 2
W= 3 [yl d,
j=0

Hf =HF0,T) ={y:[0,T] - R| y® is absolutely continuous,
O0<i<k—1,[yla < oo},

Hy={y € H'|y0)=0},  Iylm =yl
le = L12(0’ T) = HIO(O’ T)’
forleZ* ={1,2,3,...} andk eN={0,1,2,...}.
Using calculus of variations, (0.1) and (0.2) are equivalent to the variational
formulation

©04) o[X].[2]) =0 foran[V] € m, x 12,5 = Ay + Bu,y(0) =0,

where
a([i], [ﬁ]) szT[<x, Ny g+ (X, Nyydge + {u, Mo )gn] dt.

A feasible approach for computing the optimal control # and the corresponding
optimal state X is by penalizing the governing equation (0.2): we solve the uncon-
strained problem

05  Min  J(xu f)=J(x,u) + |5 — Ax — Bu—fliz, >0,
(x,u)EH(',,,XLf,l €

and let ¢ tend to zero to obtain convergence. This approach was first introduced by

A. V. Balakrishnan [2] and J. L. Lions [9].

Note that the form of the cost functional J requires that the (weighted) rate of
change of the state X be minimized, in addition to both the (weighted) state x and
control ». This is an important technical assumption in our paper. We also note that
an inhomogeneous initial condition x(0) = x, can be reduced to the zero initial
condition (as in (0.2)) by the change of variable y(¢) = x(¢) — x,,.

From the Poincaré inequality, the expressions

/OT<x(t),N1x(t)> dt, fOT[(x(t), Nx())+ (x(2), Nyx(1))] dr

in J define equivalent norms in the Hilbert space H},. We assume A(¢) is sufficiently
smooth such that, fory € H},,

i= ([T = a0y a) =y

(0.6) |y— Ay u! for somec >0
(i.e., the above defines an equivalent norm in H(,). It is trivial to see that this holds
when 4 is a constant matrix.

Let S} C H}, and S? C L2 be two sequences of increasing finite-dimensional
spaces such that

lim inf ||x — y|m, =0, I{im

inf |lu—o|z=0 V(x,u)€ H}, X L2.
hil0 yes; es?,

v
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The finite element approximation is to minimize (0.5) over S, X S? C Hj, X L2,
(h = h, for some i). Let (%, @if) be the unique minimizer of (0.5) in S} X S2. Our
goal is to analyze the error

125 = Rl + 125 — all .z,
with respect to the penalty parameter ¢ and the discretization parameter 4.

Numerical analysis of penalty problems of similar nature has been studied in [6],
[7], for example. In those works, the penalty parameter ¢ is often found to be
coupled with (or dependent upon) 4. In [4], Chen and Mills give some sharp
estimates for a primal-penalty-finite element computation scheme which show that,
in the error bounds for that problem and approach, ¢ and 4 are actually independent
of each other. The problem in [4] is simpler than the one being studied here because
the penalized constraint is finite-dimensional. As we will see later on, for the
problem and approach considered here, the independence of ¢ and 4 will not hold in
general.

The main result of our paper is as follows. We show that sharp estimates (cf. (3.4))
hold if and only if the approximating finite-dimensional spaces {(S,{i, S,,zi)},?":l satisfy
a certain special property, namely, Condition (H) in Section 3. This condition
requires that pairs of certain related finite-dimensional subspaces form ‘“angles”
which are bounded away from the “180° angle”.

In Section 1, we introduce some basic facts about penalty and study the well-
posedness of exact solutions and penalized solutions with respect to the inhomoge-
neous data f. The relations between the solutions and the inhomogeneous data f are
linear and expressed in terms of certain linear operators £, £, £, and £j. Basic
errors between the exact (or, the discretized) solution and the penalized solution are
estimated.

It is found in this paper that the validity of sharp error bounds can be studied in
terms of an abstract approximation problem. This problem has considerable theoreti-
cal interest in its own right and is thoroughly examined in Section 2. Necessary and
sufficient conditions are formulated for the solvability of this problem

In Section 3, we give the main estimates in Theorem 12. Condition (H), which is
obtained through the study of the abstract approximation problem in Section 2, is
seen to be necessary and sufficient for Theorem 12 to hold. Error bounds in the case
without (H) are given in Theorem 20.

In Section 4, we apply the theory to some examples. Numerical computations
obtain suggest that the errors indicated in Theorem 12 are sharp.

As with the penalty method, the stiffness matrix (associated with the quadratic
form J, in (0.5)) usually has a large condition number, thereby producing consider-
able numerical instability. This instability can be circumvented by using the stan-
dard matrix iterative refinement technique. Numerical results indicate that the
penalty method is quite accurate and efficient when compared with other methods,
e.g., the primal [4] or the dual [3] methods.

In the design of optimal regulators, the matrix N, appearing in J is usually 0 [11].
In this situation, computationally, the penalty method also produces accurate results.
Nevertheless, at this stage, no satisfactory error estimates like (3.4) for such
problems are available. It remains a challenging research work yet to be completed
by control theorists and numerical analysts.
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1. Finite Element Approximations of the Penalized Problem. We consider the
unconstrained penalized problem

(1.1) Min  J(x,u, f),

(x, u)EHy, X L2,

where

J(x,u, f)=(& Nx) 2+ (x, Nyx) 2+ (u, Mu) 12,
+%||X—Ax—Bu—ﬂ|12,g, >0,

and (0.3), (0.6) hold.
Let (%,, 4,) be the unique minimizer of (1.1) and let (X, #) be the optimal state
and control of problem (0.1) and (0.2). From the work of Polyak [10], we see that

(1.2) %, = %llz, = O(e),
as £ 0. The analysis of these estimates is central to our development.

For each f € L2, let (%(f), 4(f)) € H{, X L2 be the solution of (0.1) and (0.2)
corresponding to this f. This induces a mapping £: L2 — H]}, X L2, defined by

(1.4) L(f)=(x(f), a(f)).

The following lemma states that the optimal control problem (0.1) and (0.2) is
well-posed with respect to the inhomogeneous data f.

LEMMA 1. Let (0.3) and (0.6) hold. Then the mapping £ defined by (1.4) is a bounded
linear transformation from L? into Hy, X L2,

Proof. This can be easily verified from the variational equation (0.4) satisfied by 4,
using the primal theory. O
Letf, = x, — A%, — Bi,. Itis obvious that (£, 4,) is the unique solution of

Min J(x, u)
Subject to
%(t) = Ax(t) + Bu(t) + f(t), t€][0,T],
x(0) = 0.
This implies that
(1.5) L(£) = (2., 2,).

Therefore, by Lemma 1,
(1.6) 12— £, +la — allz =12CF) = EC gz, <lIE NS = 7]

Since (X, #,) minimizes J,, we have

L3

(1) (30 0) SI(£0 80 ) = (500 0) + T, — A2, — Ba, — {33

<J(%, 4, f)=J(% ).
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Thus

n<J(%2) = J(2,.4,)

2 1
L%,:;“fe“ﬂ

£,] [%- %,
=2‘a([k H ) ]) + (%%, 0—4,).
u Uu—u

(1.8) %||)ée — A%, — Ba, — f|

Therefore

()ee’ ﬁS)llH(])nXL%n “()2 - fe’ a— ﬁe)“H(l)nXL%n)

A

2
FR(I(2 — 20— ) sz,

where K is a positive constant satisfying

o([5] 2]

2
J(y,0) < K[[(y, o)z, 22

2 <K”(yl’01)”H$,,><L,2,, “(y25v2)”H(‘],,XLE,,,

By (1.6) we obtain
1
Sl =1

2 A A A A A A A A
B (I 8+ = 20— 8 )%~ 2000 — a)]

)
JDIENIL = A

<K(I(5e 2+ (% — 2,2 -

>

L}
So

(1.9) If. = A
By (1.7), we have

< K(I(2, 2|+ (5 = £, 2 = a)])I12]]-e.

110 I al<] s 0] <[ Lo )]
<[ Sxe ] =z,
where » is the positive constant in (0.3). So, using (1.6), (1.9), and (1.10) we get
1%, = %llm, +lla, — all2, <[|E}IL — A

<[l K (I(£., 2D+, )]+ (. a))IEN- e
<[&* K -e[(1 + 2072k 2)|| (%, 2))]]
=K-|(z )€ e,  K=K(1 +20"2K/?).

We summarize the above in

THEOREM 2. Let (%, 4,) solve (1.1) and (X, @) solve (0.1), (0.2). If (0.3) and (0.6)
hold, then

Ly

R . . . = . . 2
1% = £l +l2, — allz, < K- (2, @) €] e
for all € > 0, where K > 0 is independent of X, it and e. [

For any f € L2, define £: L2 —» H}, X L2 by £(f) = (%,, &,), where (%,, &) is
the unique solution of (1.1) corresponding to this f. From (1.5) we have £ ( f) = £( £)).
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LEMMA 3. Let (0.3) and (0.6) hold. Then the mapping £_is a bounded linear
transformation from L2 into H}, X L2 . Furthermore,

(1.11) lim {[2]} < 0.

|0

Proof. The fact that £_ is bounded linear can be verified from the variational
equation for (1.1), see (1.13) below. By Theorem 2, we have

(1.12) L.f-Lf asel0, Vfe L2.

Applying the uniform boundedness principle gives (1.11). O
Remark 4. The penalized problem (1.1) is equivalent to the variational equation

o el LI =R 2] emoxr,
where

a([ﬁl] [iz]) za([z:] [2]) +%<x1 — Ax, — Bu,, %, — Bx, — Bu, ) ;2
and

03([2]) E%(f, Xx—Ax—Bu);2. O
From [10], we know that

s-lim — (x —A%,—Ba,—f)=p inL?
el0 €

for some p € L2, which is the Lagrange multiplier. In the limit (1.13) becomes
(1.14) a([xl;], [ﬁ]) +{(p,y—Ay—Bv);2=0 V(y,v) € Hj, X L},

the variational equation for (X, ).

We now approximate the penalized problem (1.1) by finite elements. Let {S;} X
S?|0 <h < h,} be a one-parameter family of products of finite-dimensional sub-
spaces S, and S7 satisfying

S} X S C Hy, X L%,

lim inf =0 foranyy € H,,,
(115) limn yhehlly Yiullm, yy € Hy

lim inf [o— v,z =0 foranyv € L2.
10 v, e8?

The approximation is to solve (1.1) over S, X SZ. For each ¢ >0, h > 0 let (£f, @})
be the unique solution of

(1.16) Min  J(x,u, f).

(x,u)ES) XS}

This is equivalent to the variational problem

(1.17) ae([zé], [z;]) = 05([2;]) V(v,,0,) € S} X S7.
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If {$;}2, {@:}2, are bases for S,, S7, respectively, (1.17) is a matrix equation
M. ,q., =0, ,, where
[Me,h]ijzae(q)j’q)i)’ (0e,h)j: oe(q)j)’
and {®,}X:17X> is the basis for S} X S? induced by {y;} and {¢,}. More specifically,
iJi=1 h h Yy i i

LI b e =L [ B At

+ [T N+ (9 M o]
M, =|l-- - - - - - - ——— - i

T
e[ (B, Bo.) g a

+_/(;T<<pj, Mq>i> dt

and

Examples in Section 4 show that this matrix is of a block banded structure for
certain choices of approximating spaces.
The analysis of the errors in this approximation is quite subtle. We begin by
introducing certain subspaces of L2 associated with S, and S?2. We define
(1.18) Vi = {0 — | € S},
(1.19) V2 ={Bo,|v, € S}?}.
We denote by ¥;! + V;? the closed linear span of ¥;! U V2. Then V;! + V;? becomes
a finite-dimensional subspace of L2. It is easy to verify that
lim inf |w—w,[.2=0
R0 w,ev)+V?

is satisfied, for all w € L2, provided (1.15) holds.

For a given Hilbert space H with some closed subspace H,, we let P, denote the
orthogonal projection of H onto H,. The error analysis hinges on the behavior of the
operators £5: L2 - H, X L? defined by
(1.20) LR(f) = (25, a;),
where (X;, 4},) solves (1.16).

LEMMA 5. Let (0.3), (0.6), and (1.15) hold. Then the mapping £} defined above is a
bounded linear transformation from L?* into Hg, X L2, with Range(£5) C S} X S7.
(%5, 4), the image of f under £3,, is characterized by the variational équation

(1.21) a([z:] [z’;]) =6,/

for all (y,,v,) € S} X S?, where f, = Pyiiyaf.
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Proof. Since {f, y, — Ay, — Bv,)= (fu, Yo — Ay, — Bv,), we replace f by f, in
(1.17) and get (1.21). O
An immediate consequence of the above lemma is

(1.22) LR(S) = L4 f)-
In solving (1.16), unless f € V,! + V;2, it is in general true that
(1.23) J(%5, 85, f) > o0, asel0,

because no (y,, v,) in S} X S? can satisfy the constraint y, — Ay, — Bv, — f= 0.
This makes one wonder whether the solution (X5, ;) in Lemma 5 will converge as
£10. However, solving (1.16) is equivalent to solving

(1.24) Min  J(x,u, f,).

(x, u)ES)XS?
Because solutions (£, 4} ) of (1.24) do converge as €0, we conclude that

s-lirg (%5, 25) = (%, #,) inHy, X L%
el

for some unique (£, #,). This defines a mapping £, by
(125) R L2 HYy X L2y £4(1) = (i ).
Then Range(£,) C S} X S?. Arguing in the same manner as in the proof of

Theorem 2, we have

COROLLARY 6. Let (0.3), (0.6), and (1.15) hold. Then, for each h > 0, the mapping
R, defined above is a bounded linear transformation from L2 into Hg, X LZ, with
Range(R,) C Sp X SZ. (%, @), the image of f under £, is the unique solution of
(Min J(x, u)
subject to
(1.26) J(x,u) €S} XS
x=Ax+Bu+tf,, [fi=Pyif
(x(0) =0.

Furthermore, for any f € L2, we have

R . A 2
(121 %5 — Rl 135 — @z, < K[ ) iz 1817 e
foralle>0. O

It is obvious that the properties
(1.28) Bh(f) :Bh(fh)’ )éh_AxAh — Ba, :fh:PV,}+V,,2f
are satisfied for all f € L2. Also, the analogue of (1.14) for problem (1.16) is

| [ ¥ L |
(1.29) a([ﬁ:],[v:])+<ph,yh_Ayh_th>Lf,=0 V(yns4) € S X Sj.

2. An Abstract Approximation Problem. In order to obtain optimal error estimates
for solutions of (1.16), it is necessary to consider the following abstract approxima-
tion problem: “Let {G!}, {G?} be two families of increasing finite-dimensional
subspaces of a Hilbert space H such that
(2.1) lim inf |x—g|,=0 Vxe€H.

i—o00 giEGil
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1 1 2 2 c ot
G, CG,G CG; fori<j,
(22)

1 1 2 ~2 s . . .
Gik. - G,.kz, G,.kl C G,.k2 if k, < k,, for some increasing sequence {i,} C N.

Then, for any f € H, does there always exist a sequence

{(gl.8%)| 8 €G, g8 €G}-,

satisfying

(2.3) PG,!+G,2 f= gil + gi2
such that

(24) tim {|g!]+ 2] < w0,

11— 00
Since this problem has quite independent interest, we study it separately in this
section. In Section 3, we will apply these results using G = V}! and G? = V}?, the
spaces defined in (1.18) and (1.19).
We let

(2.5) G?=G20 (G n G?)

be the orthogonal complement of G/ N G? in G? and form the orthogonal decom-
position

(2.6) G? = (G N G?) ® G2
Then
(2.7) G/ + G} = G! + G?

holds, where the right-hand side becomes a (in general, nonorthogonal) direct sum.
Definition 7. For any two closed subspaces H, and H, of a Hilbert space H, we
define [8]

sup [ (fi, )| ifH #{0}, H, #{0},

cos(H,, H,) =1 IAlI=1£i=1
0 if H, = (0} or H, = {0}. O

THEOREM 8. Let {G)}; and {G?),; be two sequences of finite-dimensional subspaces in
H satisfying (2.1) and (2.2) For any f € H, there exists a sequence {(g!, g?) € G} X
G?| (2.3) holds} satisfying (2.4) if and only if there exists some p = 0 such that

(2.8) cos(G,G?)<p<1 VieZ*.

Proof. (only if) Assume the contrary that (2.8) does not hold. Then there exists a
sequence {i;} such that

1 A2) = :
(2.9) cos(G,./_, G,j) =p,~>1 asj- co.
This is easily seen to be equivalent to

(2.10) inf |x— Py x||=a, >0 asj— oo.
lIxli=1 Y /
xeé,-f
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Here we assume that G2 is nontrivial (£ {0}), thus &; > 0. Because G2 is finite-
dimensional, (2.10) attams its minimum at some x, € G2

(2.11) ||x,.j — Py x| = | 1}}{1 [lx — Pg x” o =1
xEG,z_
(2.12) lim a, = 0.
jo oo

For any x € G} + G2, by (2.7), we have a unique representation
x_gt(x)+gz (X) gl(x) EG{l’giz(x) €G~i2'

We define
(2.13) P:G/+ G~ G, Px=g(x),
and let || P,llgg14 62,61y = ¥i» | € Z" . Note here that y, > 1.

Now we choose a subsequence {i,},cz+ of positive integers and a sequence
{B,}xcz+ of increasing positive real numbers with the following properties:

-1/3

B E(aik k) Y a?, kEL,aq; = a,
B, =, (I1<i<k),keZ",

lim [Bk_(1+yik) > Bl =
k— o0 j=1

(2.14)

The constructability of such sequences {i, } and {8,} is guaranteed by (2.12).
Let

(2.15) 2 Bi(x,, — Pay x,,),

where x; € G~,.2‘k is defined through (2.11). Using (2.12)-(2.14), we easily verify that
fo e H-
Let

(2.16) 6§=3 B(x,~Pax), m=f—4&

Since ¢, € G} + G7, we have
(2.17) PGI c? o= PGI G2 [é, + 171] =§+ PGI G2 [n,]
-1

Bix;, + 2 Bjxij + PG},+G,.2, M
j=1

=(I-P)

!

!
2 Bsz + PG'+GZ 1'Il) - 2 BjPG}jxij .
._ j=l

J

In the above, the first term belongs to Gf and the second belongs to G,.‘,. Thus we
have the unique representation

(2-18) PG},+G,?,ﬁ) = (2-17) g;,(fo) + g;,(fo)
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We wish to show that lim,_, |l g,[(fo)ll = oc0. From (2.16), (2.13), and (2.14),

o0 o]
@19 i< 3 B - Pyx]= 3 Boy= 3 L

j=I+1 j=i+1 j=i+1 [}].22
a _ 1 g “ “—l

< < — =
Bx, B v, B

Because x; € G:%, (I — P,)x; = x,, and because Pgi 162 1s an orthogonal projection,
(2.13), (2.17)-(2.19) give

2200 [g2(%)]| =Bk, - (1 = )Py 3,

—1
(I i,) ;1 Bjxi,

>[ (1|7 ||)2B} (1+l2d) g =7

The bracketed term in (2.20) tends to + c0 as / > oo by (2.14), and || P,.[]| = 1 gives
a -1
1+|P||)=—|P N - 0.
( I :,”) [ “ :,|| 0 as/- oo

Hence

(2.21) lim ||g3(f)] = o0

For this f;, if there still exist sequences (g} € G}, {g? € G?} satisfying (2.3) and
(2.4), then
Povar o= 2.17) = g,(f) + 82(£) = 2.3) = g} + z2.
Therefore

gi( k) — &,=8(/) € Gl n G2,

since the left-hand side belongs to Gl while the right-hand side belongs to G/. %. So by
(2.5), using g7(fy) € G7, we get

(82— 82(£). 82(fy))=0

le2(R)| = (&2 2 %) ))<1s? (fo)“ + 4’

implying 11 g7(f)II*> <IIg21I>. But the right-hand side is bounded by (2.4), con-
tradicting (2.21). Hence the proof of the “only if” part is complete.
(if) For any x € G! + G2, we have a unique representation
x=gl(x) +g(x), (s!(x),gX(x)) € G/ x G2
We define P, as in (2.13). Then for any x € G} + G?, we have
x=Px+ (I — P)x.

b
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So
(222) I’ = (o, x) =Pl +(1 = P)xll” = 21( Pix, (1 — P)x))]
=[Pl +[(1 = P)x|” = 2ulPxl| | (1 — )]
= (1= )2l + (w2 —[(1 = B)x])*
> (1—w2)|P’.
For any f € H, we now let
gl(f)=P(Ps.c:f) €G..
From (2.22), we get

1
7l veHviezt,

IO alPara =

n)

and

le2(A=|Por 62/ — &) <|Pors a2 7] + 8} <

(I—_-W]Ilfll-

COROLLARY 9. Let {G}}; and {G}), be two sequences of finite-dimensional subspaces
in H satisfying (2.1) and (2.2). If they satisfy

G'NG*={0}) Viel",

This proves (2.4) (.

then
sup cos(G},G?) = 1.
Therefore there exist some f € H such that (2.3) and (2.4) fail to hold.

Proof. Obvious. [

Remark 10. A careful examination of the proof of Theorem 8 shows that (2.4)
remains valid under the more general assumption that {G}}, {G?} are sequences of
closed subspaces only, i.e., {G}}, {G?} need not be finite-dimensional. [

Remark 11. According to von Neumann’s alternating projection theorem [5], for
any two closed subspaces G!, G? in a Hilbert space H, one has

s- lim (PyiPg2)*x = Pungex Vx € H.
k— o0

Therefore, for any f € H, its component in G} N G? can be obtained iteratively as
above. 0O

3. Finite Element-Penalty Error Estimates. In Section 1, we have assumed that the
family of products of finite-dimensional spaces {S; X S C Hj, X L% |0 <h < h,)}
is a continuous one parameter-family. In this section, we consider instead the simpler
case, namely, we assume that we have a discrete one-parameter (sub-)family of
finite-dimensional product spaces {S, X S |0 <h, < h,, i € Z"* } with the follow-
ing properties.



FINITE ELEMENT-PENALTY APPROACH TO REGULATOR PROBLEMS 163

lim inf ”y In, “H' =0 Vy € HOn’

hil0 Yn,ES) h

(3.1)
lim inf [o—v,],. =0 VoeELZ,
h; 10 D,,,ESE', i

(3.2) S,:i(_;S,}j,S,,zi;S,%j ifh;>h;.

From S, and S}, we construct ¥, and ¥, as in (1.18) and (1.19). In the sequel, we
will denote S, , S, ¥, , and ¥} simply as S/, S?, V!, and V}?, respectively.

Condition (H). We say that the family {S;! X S?},c4+ satisfies condition (H) if the
associated family {V!, V;?},c+ satisfies

cos(V, V) <p<1 VieZt,

where V2 = V2 © (V' N V%) (cf. (2.5)).

A further auxiliary condition on B will be needed. From now on we assume that B
and {S?)} satisfy the following condition:
(3.3) for any sequence {w;|w, € V?} satisfying lim, . llw,]l < oo, there

' exists a sequence {v,| v, € S?} such that w, = Bv,and lim,_ , I| v, || < 0.
It is easy to see that if B is 1-1, then (3.3) is valid for any {S?}.

We are now in a position to prove the main theorem in this paper.

THEOREM 12 (MAIN ESTIMATES). Given a family of finite-dimensional subspaces
(S X §?|i € L™} satisfying (3.1)-(3.3), let {(%f, &5) (= (%5 , 0}, ))| i € Z* } be the
solutions of (1.16). Let (0.3) and (0.6) hold and let ()‘c, i) be the solution of the optimal
control problem (0.1) and (0.2). If condition (H) is satisfied, then, for every h; >0,
e >0, and f € L2, we have

(3.4)  |1&F — Rl +las — allrz,
< (2. 0)e + G inf eyl + inf Ja— o),
. €S} v,ES?

where C\(X, ) depends on ||(%, @)\l (or equivalently, on || f ||) with a linear growth rate
and C, > 0 is a constant independent of %, 4, f, €, and h,.

We first prove the following two lemmas.

LEMMA 13. Let the hypothesis of Theorem 12 hold. Let £, =, , be the mapping
defined in (1.25), and £ be as in (1.4). Then
(3.5) L.f-Lf inH}, X L% ash,\0Vf€E L?
if and only if condition (H) holds.

Proof. (if) Assume (H) By Theorem 8 there exists a sequence {(w/
V2| =Py, f=w' + w?} such that

(3.6) Tm [lw!ll + Iw?1l] <

i— o0

2)eV1

i l

Since Blf = ()ei, ﬁi)a (128) giVCS
=Py f= (% — A%;) + (—Ba,) =W + w7,
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where (X, #;) is uniquely characterized by
J(%;,8,)=  Min  J(x,u) subjecttox — Ax — Bu=f, x(0) =0.

(x,u)ES}! ¥ S?
Since (w}, w?) € V! X V2, there exists (y,, ;) € S} X S? such that
w =y, — Ay, w? = Bu,.
Therefore
(3.7) J(%,, 4,) <J(y;,v,).
But, by (3.6) and (3.3), we can choose v; such that lim|| v;l < o0, s0

lim J(yi0) < C lim {”wil “Lf, + o,

i— o0 i— o0

L3}<OO

for some constant C depending on N, N,, and M only. Therefore, from (3.7),
{(%,, 4;)} has a subsequence converging weakly in H,, X L2 to some (X, i). Because
of the lower semicontinuity of J in H}, X L2, it is easy to see that this weak
convergence is also strong, and the weak limit (X, &) satisfies

X— A% —Bi= lim f=/.

Thus from uniqueness we see that (X, ) = (%, @), the unique solution to the optimal
control problem (0.1) and (0.2). Since every subsequence of (%;, ;) converges to
(%, @) strongly, we conclude
s-lim (%, 4;,) = s-im@, f= (%, 4) = £f.
So (3.5) is proved.
(only if) If £, f converges to £ f for every f, we can choose
wl =%, — A%, w}= -Ba,
where (X;, 4;) = £,f. Because (%,, 4;) = £, f converges to (X, #) = £f strongly in
H}, X L%, we have

2+ ||Bﬁ

2] =lI% — 4% 12 < oo,

: 1 2
lim 1w 112 + |w;

proving (H). O
Remark 14. By the uniform boundedness principle and Lemma 13, we conclude

(3.8) sup {lIL;1I} < oo
iezZ*
under condition (H). O

LEMMA 15. Assume the hypotheses of Theorem 12. Let (%,, @i;) € S} X S? satisfy

> lamab )=

for all (y;,v;) € S} X S?. Then we have

£

v, ES;

(3.10) 1% = Rillm, + a2, — allz < CIIQN[ inf 1% = »la, + inf fl2 ol
Yi&o;

for some constant C > 0 independent of (%, #i).
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Proof. Let f, be defined by
/

2
X

i

From (3.9) and [1] we have

G11) 1% = Ky, +la — @l < C3[ inf [~ ylm, + inf |- vilILg,]
€S} v,ES?

for some constant C; depending on N,, N,, and M only. Therefore, by (3.11)

(3.12) If = iz =l (& — 42 — Ba) = (% — 4%, — Ba))|3

<|[(% = %) — A% — &)z +||B(a — @,)

L
<G| inf [|£ =ylm, + inf |@— o]z,
Yi€S; 0 €S
for some constant C, independent of %, 4, f, S}! and S?2.

From (1.14) and (3.9), we see that (X, éi;) is characterized by the variational
equation

| [ .
a([ai], [Di]) + <P’ Vi — Ay, — B’-’i>L3, =0 VY(y,v) €S XS~
Therefore (%, #;) is the unique solution in S} X S? of
Min  J(x, u)
(x, ) ES,XS?
(3.13) subject to
x—Ax—Bu=f, x(0)=0.

Now, consider (%,, ;). Let f; = Py1, ;2 f. We have

(3.14) |f =4

= inf |f—gle
sEV+ V7
= inf [|[(£ — 4% — Ba) — (y, — Ay, — Bv,)| 2
Yi» U

< inf I[(x = 5) = 4(% = y)]lzz + inf |B(@ — 0|2

<G| inf %=yl + inf ua—v,-umn]
¥€ES; v, ES?

for some constant Cs independent of %, 4, f, S} and S?. Hence, (1.26), (3.13), (3.12),
and (3.14) give

1%, = £llm, +la; — allz, =€ 7) — L)

<IN 7 — £l <ICM[IF = Az +17 = All2]
< céllﬁfll[ inf (& = yllm, + inf |2 v,-llem]
YiES; 0, ES;

with G, = max(C,, Cs). Thus (3.10) is proved. [J
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We now give
Proof of Theorem 12. We use the triangle inequality

(3.15) |12 — Ry, + 125 — a2z,

S”)Qf - )A‘i"Hé,. + ”')ez - J?i“H},,, + ”’E: - ’e”H},,, + "ﬁf - ﬁi”i},,
6
+la, = @l + g — alz= 2 T

i=1

By Corollary 6, we have

(3.16) T, + T:t<I_{-'”(Ai’ﬁi)”'llﬁiuz.s Ve >0.

By Lemma 15, we have

(317) L+ T< c7[|ei||[ inf [ = ylm, + inf 2— ol ]
yiE€Ss} v,€S8}7

for some C,; > 0.
By (3.11), we have

(3.18) T+ T, < cs[ inf % = yllm, + inf [ v,.nLa,]
y,€s} v,€S}
for some C; > 0.
We define
— . 2
(3.19) C\(%,2)= S‘%PK (2, @) e

By (3.8) and the strong convergence of (%;, 4;) to (%, @), we see that C,(%, 4) is
finite, and it depends on ||( £, #)l| with a linear growth rate. We also define

(3.20) G, =Cy+ Cysup [|€].

Then C, < oo by (3.8).

Combining (3.15)—-(3.20), we conclude (3.4). O

Remark 16. One might try to prove Lemma 13 (and Theorem 12) from the
boundedness of the multiplier p,, in (1.29). Actually, our argument above shows that
if condition (H) is not satisfied, then not all multipliers p, are bounded as £ 0. O

As in [1], we say that S, C H; is an (r, s)-system if for all v € HF0, T), there
exists v, € S, such that

lo = ollgp < Ch*|o||lap+» VO <n < min{k, s},n €N,
where p = min{r — 7, k — n} and C is independent of 4 and v.

COROLLARY 17. Let (X£, @F) solve (1.16). Let (0.3) and (0.6) hold and (X, &) solve
(0.1) and (0.2) with 2 € H" and &t € H%. Let S} C H}, be an (r,, 1)-system and let
S? C L2, be an (r,,0)-system such that (3.3) and condition (H) are satisfied. Then for
each h,> 0, f € L2, and e > 0, there exist constants C\(%, ) (depending on ||(%, 4)Il)
and C, such that

(3:21) ||&¢ — #llmy, + 2 — a2z, < Ci(%, 2)e + C[ A2

where p; = min(r; — 1,1, — 1) and p, = min(r,, 1,). O

gt + el ),
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From (3.21) we see that optimal error bounds are obtained when g, = p, and
e = O(h!"). Therefore, if (%, 2) € (H,"' N Hy,) ® H, for some ! € Z* , we usually
choose

(3.22) rn—1=r,.

Condition (H) is a very strong assumption. If it is not satisfied, one can show that
sharp error estimates like (3.4) are impossible.

THEOREM 18. Let (0.3) and (0.6) hold, and let {S} X S}?}, be a discrete (or
continuous) one-parameter family of closed subspaces of H,, X L2 satisfying (3.1)—(3.3)
(or (1.15)). If (H) is not satisfied, then there cannot exist nonnegative error estimation
functions E (&, %, ) and E,(h, X, i) satisfying

(3.23) imE,(e, £,2) =0, LmE,(h, %, 4) =0
el0 hi0
such that
(324) ”5‘\:; - xA“H};n +”alﬁn - ﬁ”LG < El(ea x, ﬁ) + Ez(h, x, ﬁ)

Proof. Assume the contrary that (3.23) and (3.24) hold. By Corollary 6, we have
V8 = &l + 12 = @lzs, = lim (85 = 2, +1; — 23]

<1ing [Ei(e, %, 4) + Ey(h, %,8)] = Ey(h, %, 0).
el

Hence
(3.25) fim [, — £z, +112, — llz3] <lim By(h, 2, 2) = 0.
Let

wi=2%,— A%, €V}, w}=-Ba, €€ V2
For any f € L2, (1.26) gives
Pyiyaf=wy +wi,
and (3.25) gives

2 2 .
2 wRlz] = 0% — sz +Bal: < oo.

: 1

im [
This means that (H) is satisfied, a contradiction. [

From the proofs of Theorems 12 and 18, we conclude

COROLLARY 19. Let (0.3), (0.6), and (3.1)-(3.3) hold. Let (X}, 4}) and (X, i) denote,
respectively, the solutions of (1.16) and (0.1), (0.2), and let £, be defined as in (1.25).
Then the following conditions are equivalent.

(1) Condition (H).

(2) sup;ez+ {II£;11} < oo.

(3) There exist C,(%, &) > 0 depending on (%, &) only and C, > 0 independent of X,
a, f, h,, and € such that, for all h, > 0 and ¢ > 0,

%5 = &llgy, + a5 — allz, < C(%, @)e + G| inf |I% = yllmy, + inf 2 — of|zz|.
yes;} vES?
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(4) There exist two error estimation functions E (e, %, @) and E,(h;, X, &) such that
LimE, (e, £,2) =0, lim E,(h;, £,2) =0,
el0 h; 10

and
I%f = £y, +lla; — all2, < E\(e, £, 8) + Ey(h;, £,2). O

Theorem 18 tells us that, without (H), € and h appearing in error estimates must be
coupled in general. The following gives one of the simplest type of such errors.

THEOREM 20. Let (0.3) and (0.6) hold. Let (%,, &) solve (1.1) and (%, &) solve (0.1),
(0.2). Assume that (X,,14,) converges to (%, %) in (H*' N HY,) ® H!, for some
l€Z". Let S; C H}, and S? C L2, be (r,,1)- and (r,,0)-systems, respectively. Then
there exist constants C, > 0 and C, > 0 (both depending on (X, #)) such that, for e > 0
sufficiently small,

C,h*

Ve

(326)  ||%s — Hllay, +lag — a2 < Cre + [1%llm +all ],

where p. = min(/ — 1, r, — 1, r,).
Proof. We use the triangle inequality
(3:27) %5 = £z, + a5 — allz,
<I%; = £llm, 1%, = 2, +a5 — a2, +lla, — alz,.-
From Theorem 2, we have
(3.28) 1%, = %llm, +lla, — a2 < Cie Ve>0,

for some constant C, depending on (%, @).
We use the bilinear form a (-, ) in (1.13). It satisfies

x 1 [x G
ae([ui]’ [”i])|< 72“("1’ ul)”H}),.xLi, “(xz, uz)“ﬁ},,.XL%,.

for all (x,, u,), (x,, u,) € Hy, X L. Since (Xf, &f), (%,, #,) satisfy the variational
equation

Y
]a [0:]) = 0 V(yhaoh) € Sl} X Sl%9

it follows from [1] that

(329 %, = %illay, +la. — #5llzz,

1,2
<[] [ 1o+ it o, ol
YHES) v, ES?

ar
< 5 (A2 g + Be2) )
€

Letting p = min(p,, p,), choosing C, properly from C,/2, and combining (3.27)—
(3.29), we get (3.26). O
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4. Applications. We apply the theorems in Section 3 to several types of problem
(0.1), (0.2) and its penalized finite element approximation (1.16). We produce a class
of problems and approximating subspaces for which condition (H) (and Theorem
12) holds, and specific examples for which it does not.

The approximating subspaces we consider are piecewise polynomial spaces. Let
0=1t,<t <---<ty=T be a uniform parition of [0, T'] with mesh length h =
T/N =t —t.Let S = {p € C*[0, T]: p is a polynomial of degree r — 1 on
each subinterval [¢,, ¢,,,],i = 0,...,N — 1}. In the approximation (1.17), S} and S}
will be the (7, s)-systems of n-fold and m-fold products of subspaces of Si™*),
respectively. If locally supported B-spline bases for S§™*) are used, then the matrix
equation resulting from (1.17) will have the symmetric block banded structure

A ' 4
(4.1) Ty
Apn 1 Ay
where each
B,, By, B,
B,, B,
Ay =
By, By,

and B,; are banded matrices according to the choice of SErs),
Example 1. Consider the optimal control problem

x(t) = Bu(t) + f(t), O0<t<T,feL%0,T),B = aconstant n X m matrix,
x(0) =0 e R,
Min (e u) = [ [( Mg+ (x, Npx)+ (u, Mu)] de.

(x,w)EH},XL2, 0
We let S} =117, {p € SF* D] ¢(0) = 0} and S7 = 172, S{¥9. All hypotheses of
Theorem 12 are evident except condition (H). To show this let V! = {¢| ¢ € S},
V?={Bp|p € S}). We claim V) N V2=V2 Then VZ=V2O (V) NV} =
{0}, and p = cos(V}!, V}?) = 0 giving condition (H).

For each vector-valued function ¢ € V2, any of its components is a scalar
function ¥ which can be represented piecewise as

k—1 ]
(4.2) v= X a,(t—1), 4<t<t,,i=01,.. ,N—1,
j=0
and
(4.3) (&) =9(17).

We wish to find a vector-valued function § € S, such that § = .
Any component ¢ of ¢ satisfies

k
o= 2 b,(t—1), ,<t<t,,i=0,. ,N—1,
j=0

(4.4) ¢(2)) = 9(0) =0,
(4.5) o(t; )=9(s}), i=1,...,N—1,
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(4.6) (7 )=9¢ (), i=1,...,N—1.
From (4.4), (4.5), and (4.6), we get, respectively,
(4.7) boo =0,
k .
(4.8) > b ;h! = b, 10, i=0,...,N—2,
j=0
k

(4.9) > jbuhj_ =bii1s i=0,...,N—2.

Jj=1

In order that ¢ = ), we must have
k k—1

> jbij(t - ti)j_l =3 aij(t - ti)j’ LSES
j=1 j=0
or
k—1 k-1 .
2 (j+ l)bi,j+1(t - ti)j = 2 a;\t— ti)j'
j=0 j=0

From the linear independence of polynomials over each subinterval, we must have
(4.1) (j+1)bi,j+,=aij, j=0,...,k—1,i=0,...,N— 2.
Substituting (4.10) into (4.8) and (4 9) gives

(4.11) byro=bio+ 2 Fah, =0, N=2,
Jj=1
k
(4.12) Sa, W =a,,, i=0,... N-2.
j=1

Note that in (4.11), the expression can be also made valid even for i = 0 by choosing
t
(4.13) (1) :f()¢(¢)d¢, te0,1,].

Relations (4.7), (4.10) and (4.11) (with (4.13)) define b’s in terms of a’s. Relation
(4.12) is automatically satisfied because it is just (4.3). Therefore b’s can be
determined from a’s in a unique way.

Therefore for any y € V}? there exists a ¢ € V;! such that ¢ = ¥. That is,
V2 C V,!. Hence Theorem 12, Corollary 17 and estimate (3.21) hold with p, = p, =
k.

Computational solutions of (1.17) were obtained for the specific problem

X =u-+ cost, O0<r=<l,
(4.14) {x(O) —0,
(4.15) Min [ "22(e) + u?(e)] at
(x,u)EHLXL? YO

with S} = {p € S¢*D: ¢(0) =0}, S2 = S>9 (C'-cubics and C°-quadratics) [12].
The dimension of both S} and S? is 2N + 1 and hence the matrix (4.1) is of order
4N + 2.

Table 1 and Figure 1 give the errors between (Xj, ) and the exact solution
(£(2), 4(2)) = (3 sin ¢, — % cos ¢) for various 4 and e. Note that the slopes obtained in
Figure 1 indicate the sharpness of Corollary 17.
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TABLE 1
%5 — £l ;o + llétg — @l ;2 error for Example 1, (4.14), (4.15)
1072 1074 107° 1070
1 - - -3 -3
3 461 x 10 .263 %10 .259 x 10 .252 x 10
% 461 x1072 | 607 x 1074 | . 394 x 107 | .350 x 107
% 461 x1072 | 466 x1074 | L475 x 107 | 472 %107
- - - -6
1—16 461 x107 2| L463x 1074 | 468 %1077 | 612 x 10
llag - &l 4 + llag -all ,
1
10‘4 A_»T RSS2 '?' J:"' jand .: ; I LT 1 555 E,‘[ / r”, aa
] T : 5 , T T
T T T T N
- B L L ikl Sl
= x 4 : Hi
n g
£ B =i
Eses i
_ T
107° BRARIIi
: T HHH
s i
i Y = e EaEaE
pEsEs ‘y-- ESEas BERAE
107%s
8
7
5 ey
slope 3 H
.
; )
2 T
:
O T
-7 1 1
10 _ 3 4 5 6 789 _1 2 3 4 5 6 789 2 3 4567531
1072 10 10 h 10
1070 1070 1074 e 1073
FIGURE 1

Example 1 error vs h(e = 1076) o o o
Example 1 errorvse(h = 1/16) A A A
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Example 2. Consider the same optimal control problem as in Example 1, with the
matrix B invertible (m = n). But, we now choose

n n
Si=1I {pesF ' e0) =0}, SZ=]I5F", keZ' k>1.
i=1 i=1

i=

i=

In this case,
Vi={eleESi}), =S

Arguing in the same manner as in Example 1, we can verify that

n
Vi 0 V2= 11 889,
i=1
thus 72 # {0}. In order to be able to apply the theory in Section 3, we must find
V2, the orthogonal complement of ¥}! N ¥;? in V;2. Unfortunately, there does not
seem to be any simple representation for basis elements in V2. This points out a general
difficulty in applying the theory of Section 3. If there exist convenient representations
(e.g., as piecewise polynomials) for basis elements in V;}, then cos(V,}, V?) can be
computed by optimization techniques. [l
Example 3. Let the optimal control problem be

%(t) = (1 +cost)x(t) +u(t) +f(t), 0<t<T,feLX0,T),
x(0) =0 € R",

(I}:I’izl).f(x, u) =f0[<x, Nix )+ (x, Nyx )+ (u, Mu)] dt.

Let
(4.16) Si=S{ken N H, SE=SH, ki, ky,ji g ENkL k> 1.
Then
Vi={¢—(Q+cost)p|p €S}, V=S5
It is a simple exercise to verify that V) N V;> = {0}. Therefore Corollary 9 holds. In

this case, no asymptotic sharp error estimate like (3.4) is possible.
If the governing equation is changed to

x(t) =x(t) + (24 cost)-u(t) + f(¢),

for example, the same conclusion also holds. O
Example 4. Let the control system dynamics be autonomous:

x(t) = Ax(t) + Bu(z) + f(¢),

where 4 and B are constant matrices, and let S}, S7 be chosen as in (4.16). Consider
vl n Vi If g, € S} and y, € S} satisfies

(4.17) ¢, —Ap, =By, €V, NV2,  ¢,0) =0,
then
(4.18) ?u(1) = [Py (s) ds.

If the constant matrix 4 has only simple eigenvalues which are nonzero, then all the
entries of exp(At) consist of (scalar) linear combinations of exponential functions
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S ¢;eM? (A; = an eigenvalue). We see that (4.17) and (4.18) can hold only for ¢, and
Y, which are constant vectors. Hence the dimension of ¥,! N ¥;2 cannot exceed a
bounded integer. It is not hard to see that condition (H) fails.

If A has zero eigenvalues with high multiplicity, then some entries of exp(A4t) are
polynomials. Thus, the dimensions of ¥;! N ¥;? may increase somewhat, but in
general are still bounded by a fixed integer. Hence condition (H) fails. [

In fact, Examples 3 and 4 indicate that except in very special circumstances (i.e.,
special choices of 4 and B) such as Example 1, sharp error estimates do not hold
and &, h must be coupled.

Acknowledgement. We wish to thank F. Deutsch and W. Hager for motivating
discussions.

Department of Mathematics
Pennsylvania State University
University Park, Pennsylvania 16802

Department of Mathematics
Pennsylvania State University
University Park, Pennsylvania 16802

Department of Mathematics
Sichuan University
Chengdu, Sichuan

People’s Republic of China

Martin-Marietta Company
Denver, Colorado 80200

1. I. BaBuskAa & A. K. Aziz, The Mathematical Foundations of the Finite Element Method with
Applications to Partial Differential Equations (A. K. Aziz, ed.), Academic Press, New York, 1972.

2. A. V. BALAKRISHNAN, “On a new computing technique in optimal control,” SIAM J. Control., v. 6,
1968, pp. 149-173.

3. W. E. BOSARGE & O. G. JOHNSON, “Error bounds of high order accuracy for the state regulator
problem via piecewise polynomial approximation,” SIAM J. Control, v. 9, 1971, pp. 15-28.

4. G. CHEN & W. H. MiL1s, “Finite elements and terminal penalization for quadratic cost optimal
control problems governed by ordinary differential equations,” SIAM J. Control Optim., v. 19, 1981, pp.
744-764.

5. F. DeutscH, “The alternating method of von-Neumann,” in Multivariate Approximation Theory
(W. Schempp and K. Zeller, eds.), Birkhauser Verlag, Basel, 1979.

6. R. S. FALK, “A finite element method for the stationary Stokes equations using trial functions
which do not have to satisfy divo = 0,” Math. Comp., v. 30, 1976, pp. 698-702.

7. R. S. FaLk & J. T. KING, “A penalty and extrapolation method for the stationary Stokes equation,”
SIAM J. Numer. Anal., v. 13, 1976, pp. 814-829.

8. I. C. GOoHBERG & M. G. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators,
Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969.

9. J. L. L1ONS, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag,
Berlin and New York, 1971.

10. B. T. PoLYAK, “The convergence rate of the penalty function method,” Zh. Vychisl. Mat. i Mat.
Fiz., v. 11, 1971, pp. 3—-11. (Russian)

11. D. L. RUSSELL, Mathematics of Finite Dimensional Control Systems, Theory and Design, Marcel
Dekker, New York, 1979.

12. G. STRANG & G. FI1X, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.
1., 1973.



