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Sharp Error Estimates 
for a Finite Element-Penalty Approach 

to a Class of Regulator Problems* 

By Goong Chen, Wendell H. Mills, Jr.,** Shunhua Sun and David A. Yost 

Abstract. Quadratic cost optimal controls can be solved by penalizing the governing linear 
differential equation [2], [9]. In this paper, we study the numerical analysis of this approach 
using finite elements. We formulate the geometric condition (H) which requires that pairs of 
certain related finite-dimensional approximation spaces form "angles" which are bounded 
away from the " 180? angle". Under condition (H), we prove that the penalty parameter E and 
the discretization parameter h are independent in the error bounds, thereby giving sharp 
asymptotic error estimates. This condition (H) is shown to be also a necessary condition for 
such independence. Examples and numerical evidence are also provided. 

0. Introduction. Consider the optimal control problem: Given the quadratic cost 
functional J, 

J(x, u) _JT[(x, N,x )Rn ? Kx, N2x)Rn + (u, Mu) Rm] dt, 

solve 

(0.1) Min J(x, u) 
(x, u) E Hon X Lr 

subject to 

(0.2) {x(t) = A(t)x(t) + B(t)u(t) + f(t), t E [0, T], 
x )= 0, 

where x(t) E Rn is the state at time t, u(t) E R' is the control at t, A(t) and B(t) 
are, respectively, n X n and n X m time-varying matrices, and f is the inhomoge- 
neous forcing term. 

In the cost functional J, we assume 

NI, N, ~M are constant n X n, n X n, and m X m symmetric 

(0.3) 
positive semi-definite matrices, 

{0K3) x, N1x )Rn > 1PIIXI12 n, (U, MU)Rm 
>. VIIUII|R for all x E Rn, u E R' 

where v > 0, is independent of x and u. 

The standard Sobolev norms and spaces used are as follows. 
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IIIHI jj=1tjj ., J IYv dlJI t , 

Hlk=_ H/k(O, T {y: [0, T ] R' y(l) is absolutely continuous, 

0 i < k - 1, IIYIIHk < x} 

Hol-{y E HI' |Y(O) - ?}, ' IYIIH'Ol =|YIIHl, 

L,- L2(O, T) =_ H?0(O, T), 

forl E Z+ {l,2,3,...} andk E N {0, 1,2,...} 
Using calculus of variations, (0.1) and (0.2) are equivalent to the variational 

formulation 

(0.4) a([u1[v]) =0 for all [Y E Ho', X L 2 Ay + Bv,y(O) = O, 

where 

a([U] LV) T [( NlI)Rn + (X, N2Y)Rn + (U, MV)Rm] dt 

A feasible approach for computing the optimal control u and the corresponding 
optimal state x is by penalizing the governing equation (0.2): we solve the uncon- 
strained problem 

(0.5) Min 2J(x, u, f J(x, u) +-||x-Ax-Bu- L c > 0, 
(x, u)EHo.XL2 L 

and let e tend to zero to obtain convergence. This approach was first introduced by 
A. V. Balakrishnan [2] and J. L. Lions [9]. 

Note that the form of the cost functional J requires that the (weighted) rate of 
change of the state x be minimized, in addition to both the (weighted) state x and 
control u. This is an important technical assumption in our paper. We also note that 
an inhomogeneous initial condition x(0) = xo can be reduced to the zero initial 
condition (as in (0.2)) by the change of variable y(t) = x(t) - xo. 

From the Poincare inequality, the expressions 

J (x.c(t), N,4-t)) dt, 
T 

[(.x(t), Njx(t)) + (x(t), N2x(t))] dt 

in J define equivalent norms in the Hilbert space Holn. We assume A(t) is sufficiently 
smooth such that, fory E Holn 

(0.6) 1Ip -AYIILn (J TI(t) -A(t)y(t)I dt) >cllyllH forsomec>0 

(i.e., the above defines an equivalent norm in Holn). It is trivial to see that this holds 
when A is a constant matrix. 

Let SI, C HOn and S,2, C L2 be two sequences of increasing finite-dimensional 
spaces such that 

lim inf 
hjx-YO|On = 0, lim inf 

S |u- V1 LM. 
= X L . 

hil yE YEShi h ?VShi 
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The finite element approximation is to minimize (0.5) over Sh X Sh2 C Ho, X L2 

(h = h for some i). Let (Xh, Uh) be the unique minimizer of (0.5) in Sh X Sh2. Our 
goal is to analyze the error 

IIXh - X 
Uh14 ?II|2h UIIL2 

with respect to the penalty parameter - and the discretization parameter h. 
Numerical analysis of penalty problems of similar nature has been studied in [6], 

[7], for example. In those works, the penalty parameter - is often found to be 
coupled with (or dependent upon) h. In [4], Chen and Mills give some sharp 
estimates for a primal-penalty-finite element computation scheme which show that, 
in the error bounds for that problem and approach, - and h are actually independent 
of each other. The problem in [4] is simpler than the one being studied here because 
the penalized constraint is finite-dimensional. As we will see later on, for the 
problem and approach considered here, the independence of - and h will not hold in 
general. 

The main result of our paper is as follows. We show that sharp estimates (cf. (3.4)) 
hold if and only if the approximating finite-dimensional spaces {(Sh , S 2 ))? I satisfy 
a certain special property, namely, Condition (H) in Section 3. This condition 
requires that pairs of certain related finite-dimensional subspaces form "angles" 
which are bounded away from the " 180? angle". 

In Section 1, we introduce some basic facts about penalty and study the well- 
posedness of exact solutions and penalized solutions with respect to the inhomoge- 
neous data f. The relations between the solutions and the inhomogeneous data f are 
linear and expressed in terms of certain linear operators C, fE, fh and fh. Basic 
errors between the exact (or, the discretized) solution and the penalized solution are 
estimated. 

It is found in this paper that the validity of sharp error bounds can be studied in 
terms of an abstract approximation problem. This problem has considerable theoreti- 
cal interest in its own right and is thoroughly examined in Section 2. Necessary and 
sufficient conditions are formulated for the solvability of this problem 

In Section 3, we give the main estimates in Theorem 12. Condition (H), which is 
obtained through the study of the abstract approximation problem in Section 2, is 
seen to be necessary and sufficient for Theorem 12 to hold. Error bounds in the case 
without (H) are given in Theorem 20. 

In Section 4, we apply the theory to some examples. Numerical computations 
obtain suggest that the errors indicated in Theorem 12 are sharp. 

As with the penalty method, the stiffness matrix (associated with the quadratic 
form Je in (0.5)) usually has a large condition number, thereby producing consider- 
able numerical instability. This instability can be circumvented by using the stan- 
dard matrix iterative refinement technique. Numerical results indicate that the 
penalty method is quite accurate and efficient when compared with other methods, 
e.g., the primal [4] or the dual [3] methods. 

In the design of optimal regulators, the matrix N1 appearing in J is usually 0 [11]. 
In this situation, computationally, the penalty method also produces accurate results. 
Nevertheless, at this stage, no satisfactory error estimates like (3.4) for such 
problems are available. It remains a challenging research work yet to be completed 
by control theorists and numerical analysts. 
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1. Finite Element Approximations of the Penalized Problem. We consider the 
unconstrained penalized problem 

(1.1) Min J(x, u,f), 
(x, u) E Ho, X L2 

where 

JE(x u, f )(X, NlX) L? KX, N2x) L2 (U, MU) L2 

C~~~~~~~~ +-| -AX - BU - A Ln2, > O, 

and (0.3), (0.6) hold. 
Let (x,, u') be the unique minimizer of (1.1) and let (x, u') be the optimal state 

and control of problem (0.1) and (0.2). From the work of Polyak [10], we see that 

(1.2) IIX. - x||Hl = ?(E), 

(1.3) IIUi - UIIL2 = 0(E), 

as E I0. The analysis of these estimates is central to our development. 
For eachf&E Ln let (x(f), u(f)) E H-o X L2 be the solution of (0.1) and (0.2) 

corresponding to thisf. This induces a mapping E: Ln Ho- X L2 defined by 

(1.4) E(f ) ((Nf), O(f)). 
The following lemma states that the optimal control problem (0.1) and (0.2) is 
well-posed with respect to the inhomogeneous data f. 

LEMMA 1. Let (0.3) and (0.6) hold. Then the mapping f5 defined by (1.4) is a bounded 
linear transformation from Ln into HOInX Lm. 

Proof. This can be easily verified from the variational equation (0.4) satisfied by u', 
using the primal theory. D 

Letfe- A- '- Buz. It is obvious that (x,, u'.) is the unique solution of 

Min J(x, U) 
Subject to 

{ x(t) = Ax(t) + Bu(t) + ?e(t), t e [0, TI, 

x(O) = 0. 

This implies that 

(1.5) S(f ) =(X Ua). 

Therefore, by Lemma 1, 

(1.6) IIx - ellHo. ?IIu - Uell m IILf(ff) -Ie)HOI nXLfm Iff Ln 

Since (x,, u') minimizes J., we have 

(1.7) J(xe7 ze) Je(e e7, f) = e) + e- - -X B lLn 
J J Ix I f ) = J(X U). 
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Thus 

Therefore 

4-iii. fI1ll S K(( A 
A" 

( A)11xL) 

where K is a positive constant satisfying 

I~~~~~~~ ( [ ,][V | ,)1 O 2 J1( J2V 1 O 2 

By (1.6) we obtain 

-e ll. - Al| ? K(fl(Xe, ae)ll + ll(.* - a - e)ll)ll(x -XE, a - a)l 

SO 

( 1 .9) lIfe -fll Ln K(ffl (.* ae S )ll + j (~ - Xe, a - J) A) AE| 
A 

*EE. 

By (1.7), we have 

A[! Kl(.x, a)1121 = v-'/2KA/21(Ax, U)||, 

where v is the positive constant in (0.3). So, using (1.6), (1.9), and (1.10) we get 

llXe XllHln ?+ja6- allL2 <jjfejj Lt -AlL2n 

II 2 
II( AK A[(1 + 2 'l,/2KA/2)II(E, A)II] 

_K ||II(H,U)XIII IH0 K-K(1 + 2V'L/2KM/2) 

We summarize the above in 

THEOREM 2. Let (xe, u) solve (1.1) and (x, u) solve (0.1), (0.2). If (0.3) and (0.6) 
hold, then 

+KX XlHo _ 
llU utL 

_ 
U lx U)I2ll 

for all > 0, where K > 0 is independent of g , a and ?. O 

For any f E Ln2, define f?: L2 -n X L2 by tf?(f) (J a),--( where (XL, ) is 
the unique solution of (1.1) corresponding to thisf. From (1.5) we have f&f) f (J). 
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LEMMA 3. Let (0.3) and (0.6) hold. Then the mapping fE is a bounded linear 
transformation from L' into Ho X L2 . Furthermore, 

(1.11) urn {lltelll < xc. 
?- 40 

Proof. The fact that E. is bounded linear can be verified from the variational 
equation for (1.1), see (1.13) below. By Theorem 2, we have 

(1.12) Ef f--ff as 4 O, Vf e Ln. 

Applying the uniform boundedness principle gives (1. 1 1). 0 
Remark 4. The penalized problem (1.1) is equivalent to the variational equation 

(1.13) a U][] FV] V 0 X Lr 

where 

aEt ui ] [u2 j ) a([ul ] [u2 2 ) lA IB 2B2B 2 )Ln 

and 

O 
([uj)-e(f, x-Ax-Bu)L2. D1 

From [10], we know that 

s- lim x -Ax' -BU - f )=pin L2 '10 

for somep C L2, which is the Lagrange multiplier. In the limit (1.13) becomes 

(. 14) a( j[v + (J)? P AY Bv)Lv V = (y, V) EH XL, 

the variational equation for (x, u2). 
We now approximate the penalized problem (1.1) by finite elements. Let {Sh X 

Sh0 0 h s ho} be a one-parameter family of products of finite-dimensional sub- 
spaces ShI and Sh satisfying 

{ Sh X S CiHOn X Lm, 

lim inf IIY - YhIIHin = 0 for anyy ( Ho' 
(1.15) hIO YhEFSh~ 

lim inf liv-VhL2 = 0 for any v G Lm. 
hIO Vh IIFS 

Vhl 

The approximation is to solve (1.1) over Sh X Sh2. For each E > 0, h > 0 let (4 Uh) 
be the unique solution of 

(1.16) Min Je(X,u,f). 
(X, U) S XSh 

This is equivalent to the variational problem 

lXhl rl \{VI l . , I Sh X, S 
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If {4+i}f~i), { i}f=2I are bases for Shl, Sh2, respectively, (1.17) is a matrix equation 

Meh,,h h= ,,h where 

[AMfh]Li ae('j ) (01,h)j = 
OJOJ) 

and {4i,}!v-1 K2 is the basis for Shl X Sh2 induced by {4i} and {(qP}. More specifically, 

e 
lo - A i,j J A mi ) dt i o( B(pj A+i-Amg) dt 

?JT [ j, N24i)Rn + ( j N1 41)Rn] dt 
jT (K - A4J, B(p )ndt I 

T 
(B BT BT)i ndt 

I ? T jp,,MTi) dt 

and 

F 1 IT (A , ) Rnd 

L e |0 (,B?pi) Rn dt 

Examples in Section 4 show that this matrix is of a block banded structure for 
certain choices of approximating spaces. 

The analysis of the errors in this approximation is quite subtle. We begin by 
introducing certain subspaces of Ln associated with Sh and S*. We define 

(1.18) Vh -{h -Ayh |Yh @ Sh} 

(1.19) Vh2-{BVh I VhE Sh} 

We denote by Vh1 + Vh2 the closed linear span of Vh1 U Vh2. Then Vh, + Vh becomes 
a finite-dimensional subspace of Ln. It is easy to verify that 

lim inf jjW - WhIIL2 = 0 
h Wh E Vh ?Vhn 

is satisfied, for all w C Ln, provided (1.15) holds. 
For a given Hilbert space H with some closed subspace HI, we let PH, denote the 

orthogonal projection of H onto H,. The error analysis hinges on the behavior of the 
operators e: L2 _ Ho X L2 defined by 

( 1.20) th(f)-( xh uh 

where (Xh, Uh ) solves (1.16). 

LEMMA 5. Let (0.3), (0.6), and (1.15) hold. Then the mapping fC defined above is a 
bounded linear transformation from L2 into Ho' X L2 with Range(Ch) C Shl X Sh2. 

(X, 8 ), the image off under fe, is characterized by the variational equation 

(1.21) a hw h Y h I 
for all (Yh V)EShXS where fh= -Pvh + vh 
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Proof. Since ( f, h - Ayh - BVh) f Yh -Ayh - BVh, we replace f by fh in 
(1.17) and get (1.21). C 

An immediate consequence of the above lemma is 

(1.22) (f) = ( 
In solving (1.16), unless f e Vhl + Vh2, it is in general true that 

(1.23) Je(x , f ) - oo, as4O, 

because no (Yh, Vh) in Sh X Sh2 can satisfy the constraint h - AYh - BVh -f = 0. 
This makes one wonder whether the solution (Xh, Uh) in Lemma 5 will converge as 

E 0. However, solving (1.16) is equivalent to solving 

(1.24) Min J(x, u, fh). 
(x, u) & Sh X Sh 

Because solutions (X, Uh) of (1.24) do converge as e I0, we conclude that 

s-lim hx^ h) = h I^ uh) in HOn X L 
E- IO 

for some unique (Xh, uh). This defines a mapping Eh by 

(1.25) Plh Ln HOn X m hD( f ) hx, ha). 

Then Range(fCn) C Sh X Sh2. Arguing in the same manner as in the proof of 
Theorem 2, we have 

COROLLARY 6. Let (0.3), (0.6), and (1.15) hold. Then, for each h > 0, the mapping 

Ch defined above is a bounded linear transformation from Ln into HO X Lm with 

Range(fh ) C Sh X Sh. (Xh, uh), the image off under Ch is the unique solution of 

Min J(x, u) 
subject to 

(1.26) (x, u) C Sh X Sh 
x = Ax + Bu + fh , h v+vf 

x(0) = 0. 

Furthermore, for any f C L , we have 

(1.27) Xh - XhIIH?n +Il/ uhIIL^n 2 K x I(Xh Uh)IH 2nXL^n |lhIE 

for alle>0. D 

It is obvious that the properties 

(1.28) Qa(f) = 
-h(fA), 

xh -Axh -Bua = =f 

are satisfied for all f C L2. Also, the analogue of (1.14) for problem (1.16) is 

Xh] rY~h] 
(1.29) a Uh Vh ] ( PJJh V(Yh I Vh) C Sh 

2. An Abstract Approximation Problem. In order to obtain optimal error estimates 
for solutions of (1.16), it is necessary to consider the following abstract approxima- 
tion problem: "Let {G'}, {G2} be two families of increasing finite-dimensional 
subspaces of a Hilbert space H such that 

(2.1) lim inf IIx - gij| = 0 Vx C H. 
-I' ?? gi E 
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(2) GC G, G C G, for i <j, 

( Gi2k.; G{ k Gi2k; G2 if k1 < k2, for some increasing sequence {ik} c N. 

Then, for any f e H, does there always exist a sequence 

f(gi, g2)1| gl G G 1, gi2 E G 2}). 

satisfying 

(2.3) P1 1f~ ?g2 (2 * 3 ) ~~~~PGL + G f = gi +i2 

such that 

(2.4) lim [JJgiJJ ? gi2JJ] < oo?". 
i- oo 

Since this problem has quite independent interest, we study it separately in this 
section. In Section 3, we will apply these results using G V, 1 and G7 17,7, the 
spaces defined in (1.18) and (1.19). 

We let 

(2.5) 2 G2 e (GI nrG) 

be the orthogonal complement of GI n G7 in G72 and form the orthogonal decom- 
position 

(2.6) G7 2 (GI n G2) D 62 

Then 

(2.7) G' + G>2 = G? +G72 

holds, where the right-hand side becomes a (in general, nonorthogonal) direct sum. 
Definition 7. For any two closed subspaces Hi and H2 of a Hilbert space H, we 

define [8] 

sup Ifl,f2A if HI={0O},H21{0}, 
cos(HI, H2) 1fl11111f2111 

CO if Hi = {O}rH2{= D ? 

THEOREM 8. Let {Gl}i and {G72} be two sequences of finite-dimensional subspaces in 
H satisfying (2.1) and (2.2) For any f E H, there exists a sequence {(g 1, g2) E G X 

G721 (2.3) holds) satisfying (2.4) if and only if there exists some , a 
0 such that 

(2.8) cos(Gil, i) < ,u<1 Vi E Z+. 

Proof. (only if) Assume the contrary that (2.8) does not hold. Then there exists a 
sequence (ij) such that 

(2.9) cos(Gl!j7 G p -, 1 asj oo. 

This is easily seen to be equivalent to 

(2.10) inf |X-PGI X||-ai ? asj oo. 

x2 
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Here we assume that Gi2 is nontrivial (z {0}), thus a. > 0. Because G2 is finite- ii - 1. 1 

dimensional, (2.10) attains its minimum at some x c G72: 

(2.11) lIXij =PG! XJ1 inf IX PGI X|1 = aij IXI = 1- 

(2.12) lim a. = 0. 

For any x C G' + G72, by (2.7), we have a unique representation 

x = gil(x) + g2(X), gl(x) c G', g2(x) C G2. 

We define 

(2.13) PI: G + G72 - G', P1x=gi) 

and let 11 Pill P(G:?G+,G2G!) y,i c Z+ . Note here thatY 1. 
Now we choose a subsequence {ik}keZ+ of positive integers and a sequence 

{fk}kEZ+ of increasing positive real numbers with the following properties: 

pA~ ~~ 1-(3 2k 1/3 i 1 

(2.14) ] tRPk 2 Yi, (I < I < k), k Z+,1 

[Ml Po|k -(1 Yik) 2I3i] = + ?C 

The constructability of such sequences {ik} and {/k} is guaranteed by (2.12). 
Let 

00 

(2.15) fO 2 Ik( - GI Xj), 

where xik 2 G2 is defined through (2.11). Using (2.12)-(2.14), we easily verify that 

fo 0 H. 
Let 

(2.16) #, 13(X j- PG X1),' I )fo 
- 

j=1 

Since G' + G we have 

(2.17) PGI?+G,2 fO PG1= +G ? [41 + hi] + PG? +G 2 1] 

= (I - P ?) fIii + ? x + PGI +G2 2 '1l 

I= i ti t ii =i 
? [P1,I( z f3>Xi + GG,?2, -1 ) / /PG,jix]. 

In the above, the first term belongs to G2 and the second belongs to G11. Thus we 
have the unique representation 

(2.18) PG+G,G2, o = (2.17) -g2(fo) ? g( f ). 
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We wish to show that lim,l, 11 gi(f0)II oo. From (2.16), (2.13), and (2.14), 

00 
00 

00 

(2.19) In|1I s I 13jlxXij- PG! xi1II 
I 

fa i E 22 
j=l+l 11j=l+l j=l+ I 

a1_ a, 1 a1 

Because x e G2, (I - Pi,)xi, = x,,, and because PGI +G is an orthogonal projection, 

(2.13), (2.17)-(2.19) give 

2(f~~~~~~~- 
(2.20) j|g(f 0)| 1 j/lx1iXill_ (I Pi,) fix (I - Pi,)PGi+G 2 'q 

I- 

+ (1 -0i - + 13pi,l) I?l, i 

The bracketed term in (2.20) tends to + oo as 1 xo by (2.14), and II Pi, 2 1 gives 

(I +?PJ)pi,) IJ1Pi,K' 0 asl-4 oo. 

Hence 

(2.21) lim |gi1 (f0)|= 0c. 

For this fo, if there still exist sequences e -il e GJ}, {g72 E G2} satisfying (2.3) and 
(2.4), then 

PG! 2G O (2.17) =g,,(- f) + g,(f0) (2.3) =il + kJ2. 

Therefore 

gt, fo-g, =gtl( fo) EE GI n Gt, 

since the left-hand side belongs to G while the right-hand side belongs to G,2. So by 
(2.5), using g,2( fo) e , we get 

- g,(f0), g2(fo)) = 0, 

tradicting (2.21). Hence the proof of the "only if" part is complete. 
(if) For any x E GI + G2, we have a unique representation 

X= gl(x) + g7(x), (g(x), g2(X)) l Gi X G7i. 

We define PF as in (2.13). Then for any x e GG + G7, we have 

x =P1x + (I -Pi)x. 
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So 

(2.22) i1xX12 = Kx, x)>IIP2xII2 + Il(' - P)x11 - 21 (Pix, (I - Pi)x)I 

>IlPix1l2 +II(I - Pi)xll2 - 2IIPix1l Il(' - P)xll 

(1 - pu2)llpxII2 + (AllpxII-11(I- P)xII) 

(I - A2) lipiXI2. 

For any f F H, we now let 

gi(f) Pi (PGI +G2f) E Gl. 

From (2.22), we get 

1191( f ) || < (1 )I/Z ||PG!+G2 f || ( Il2 |1f || Vf F H, Vi F Z+, 

and 

||gg(f)|-|PG + G2 i -- )|< IIPG!+G? l1 |+||gl9 )|| < |1 + ( ,/ lif 11 jjg7f)j ~GG~I gJf IGG~f I jg()I (I - I2)1/2jtii 

This proves (2.4) [1. 

COROLLARY 9. Let {G }i and {G72}i be two sequences of finite-dimensional subspaces 
in H satisfying (2.1) and (2.2). If they satisfy 

Gl n G2 = {0} Vi E Z+, 

then 

sup cos(Gl, Gi2) = 1. 

Therefore there exist some f F H such that (2.3) and (2.4) fail to hold. 

Proof. Obvious. R 
Remark 10. A careful examination of the proof of Theorem 8 shows that (2.4) 

remains valid under the more general assumption that {G'}, {G72} are sequences of 
closed subspaces only, i.e., {G'}, {G2} need not be finite-dimensional. L1 

Remark 11. According to von Neumann's alternating projection theorem [5], for 
any two closed subspaces G1, G2 in a Hilbert space H, one has 

s- lim (PGI PG 2)kX = PG'nG2X Vx C H. 

Therefore, for any f F H, its component in G' n Gi can be obtained iteratively as 
above. L-I 

3. Finite Element-Penalty Error Estimates. In Section 1, we have assumed that the 
family of products of finite-dimensional spaces {Sh X Sh2 C H,,' X L2 1 ? < h ? ho) 
is a continuous one parameter-family. In this section, we consider instead the simpler 
case, namely, we assume that we have a discrete one-parameter (sub-)family of 
finite-dimensional product spaces {Shl, X Sh2 1 ? < hi i h0, i F Z+ } with the follow- 
ing properties. 
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[urn inf II_hIH= yH~~ 
3.1 J~~~~h h0 y ESh 

IIY Yh illn,, = O VY EO'n 
(3.1) 

~ ~ ~ JOYh ieSh,' (3.1) { 

li~m inf IIV -vhiIL 2O= Vv&CLm, 
l h XO VhESh 

(3.2) h S2 
2 if h > h 

From S^i and S,2., we construct Vhl and V2 as in (1.18) and (1.19). In the sequel, we 
will denote Shli Shi Vh I and Vhi simply as Si', S7, Vi ,and Vi2, respectively. 

Condition (H). We say that the family {Si' X Sj2}i,z+ satisfies condition (H) if the 
associated family {JQ, V7}jEZ+ satisfies 

CoS(VIl, 1i2) S iEZ+, 

where V2 = e2 e (Vil n Vi2) (Cf (2.5)). 
A further auxiliary condition on B will be needed. From now on we assume that B 

and {S72} satisfy the following condition: 

(3.3) for any sequence {wij w1 E i7} satisfying limi 11wi II < 00, there 

exists a sequence {vi I vi E S72} such that wi - Bv, and limi1 11vi 1 < o. 

It is easy to see that if B is 1-1, then (3.3) is valid for any {Sj2}. 
We are now in a position to prove the main theorem in this paper. 

THEOREM 12 (MAIN ESTIMATES). Given a family of finite-dimensional subspaces 
{Si' X S72 i E Z+ } satisfying (3.1)-(3.3), let {( ) (-(Xh Uhi)) iE Z+ } be the 
solutions of (1.16). Let (0.3) and (0.6) hold and let (x, u) be the solution of the optimal 
control problem (0.1) and (0.2). If condition (H) is satisfied, then, for every hi > 0, 
? > 0, andf E L2, we have 

(3.4) jjx- xjjI" + llu - uIIL2 

C 1 ( X, U )En+ C2 IIl YiIIH? O n 
yiGE Si' Vj Si2 

where C1(, iu) depends on lI(x, N)II (or equivalently, on 11 f 11) with a linear growth rate 
and C2 > 0 is a constant independent of x, u', f, E, and hi. 

We first prove the following two lemmas. 

LEMMA 13. Let the hypothesis of Theorem 12 hold. Let i- chi be the mapping 
defined in (1.25), and f& be as in (1.4). Then 

(3.5) Eif&,f-*f inHOnXL ,asht0Vf ELn 

if and only if condition (H) holds. 

Proof. (if) Assume (H). By Theorem 8 there exists a sequence {(wil, w72) e Vil x 

Vi 
i Vl fPv?2 f = wi + wj2} such that 

(3.6) lim [1I Wil 11 + 11 Wi2 1i] < 00. 
i- oo 

Since fi f = (Xi, U1), (1.28) gives 

= PZ vj,2fi = (xi-Ax1) + (-Bua) wl + W-2 
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where (xi, ui) is uniquely characterized by 

J(x1, us) Min J(x, u) subject to -Ax - Bu - f, x(0) = 0. 
(x, u) eSl X S2 

Since (wi', wi2) E Vil X Vi2 there exists (yi, vi) E Si' X S7 such that 

w= -Ay1, wi2 7 Bvi. 

Therefore 

(3.7) Jx, &i) < J(yi, vi)- 
But, by (3.6) and (3.3), we can choose vi such that limll vi 11 < c, so 

lim J(Yi, vi) < C lm{1 1L2 2 
||1|2 < x0 

i- oo i-o00 

for some constant C depending on N1, N2, and M only. Therefore, from (3.7), 
{ (xi, z)A has a subsequence converging weakly in Hon X L2 to some (x~, ii). Because 
of the lower semicontinuity of J in Hon X Lm , it is easy to see that this weak 
convergence is also strong, and the weak limit (xT, ui) satisfies 

x-AAX-B = limfi=f. 
i- oo 

Thus from uniqueness we see that (x, i) (x, u), the unique solution to the optimal 
control problem (0.1) and (0.2). Since every subsequence of (xi, uzi) converges to 
(x, A) strongly, we conclude 

s-lim (xi, ti) = s-limf = (x, u) = Cf. 
i-00 1-00 

So (3.5) is proved. 
(only if) If Ci f converges to ef for everyf, we can choose 

W--X -Ax, Wi = -Bu, 

where (x, ua) = if. Because (x, ui) =if converges to (x, u) = Cf strongly in 
Ho' X L2, we have 

*lim [ii WE 1 L2 + lWi2 lL2j =XA - AA1jLL2 + JIBAjjIL2 < 00, 

proving (H). O 
Remark 14. By the uniform boundedness principle and Lemma 13, we conclude 

(3.8) sup {IIEfl} < oo 
iez+ 

under condition (H). LI 

LEMMA 15. Assume the hypotheses of Theorem 12. Let (xi, ii) G Si' X Si2 satisfy 

(3.9) a A [ -0 

for all (yi, vi) G Si' X Si2. Then we have 

(3.10) IlRI XiIIH _ + I A1 uiIIL2 < C11Ci11 [ inf l* A YIIHOn + inf 2 - vII m 
for some constant C >S VilIL2l 

for some constant C > 0 independent of (u i 
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Proof. Let ji be defined by 

From (3.9) and [1] we have 

(3.11) |X - X2IH1, + IIu - UiIIL2 < C3 inf 1.* YtIIHoi + inf 2 | VEIIL2] 

for some constant C3 depending on N1, N2, and M only. Therefore, by (3.1 1) 

(3.12) IIf-111L2 =||(x- Ax- Bu ) - - A.1 - Ba)Ln 

SI - Xi) -A( - XE)IIL2 +IIB(U~ aI)11L2 

C inf II|| YxiIHo + inf II| - ViLj 

for some constant C4 independent of x, u, f, Si' and S2. 

From (1.14) and (3.9), we see that (.i, ii) is characterized by the variational 
equation 

a xi 
][v]) + 

( P, ly -Bv) L2O v(yi, v1) E Si' X Si2. 

Therefore (xi, ii) is the unique solution in S1' X Si2 of 

Min J(x, u) 
(x, u) e Si x Si2 

(3.13) subject to 

X-Ax-Bu-=f, x(O)=0. 

Now, consider (ii, f1i). Letfi i f. We have 

(3.14) Ilf filL2- inf Ilf- gilIL2 
gi EE Vil + yi 

inf II(X-AX-BU)- (Y -AYt-BvI)IL2 
Yi, Vi 

inf [(X - i) - A(x Y-)] L42 + inf IIB(U - Vi)IL2 
Yi Vi 

C c5 inf II x YIIHOn ? inf 2 - ViIIL2l 

for some constant C5 independent of x, a, f, S,' and Si2. Hence, (1.26), (3.13), (3.12), 
and (3.14) give 

IIxi xIIH'" ?IIui u a,L2 llt(A) -i( 

< lleill | fi l t|Ln 11il lli A1|Ln + Ilf filILn] 

< C61IKill [inf Ix YillHl1 + inf Ia - ViL2jL 
yiw6 aSi'mOT viaET1Si2 p 

with C6 _ max(C4, Cs). Thus (3. 10) is proved. O 
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We now give 
Proof of Theorem 12. We use the triangle inequality 

(3.15) llHi - ? ll- + IIL2 

X XillHl ? lxi XillHjl + K-Xllj4i + llui u1112 

6 

+ ll i- illL2 + li UIIL2 - Ti- 
i=l 

By Corollary 6, we have 

(3.16) T1 + T4 
"" K Xi, ui) E E > 0. 

By Lemma 15, we have 

(3.17) T2 + Ts s c7llfjlr inf llxJ -YillHion + inf 2 

for some C7 > O. 

By (3.11), we have 

(3.18) T3 + T6 ? C4inf |x yijj0 + inf |iu villL2j 
Y' Si vi Si,! 

for some C8 > 0. 
We define 

(3.19) lx, u)-uK * lx, u)l II2. 

By (3.8) and the strong convergence of (x&, i) to (x, u), we see that C1(x, u) is 
finite, and it depends on lI(x, i )I with a linear growth rate. We also define 

(3.20) C2 C8 + C7 SUp lipill 

Then C2 < oo by (3.8). 
Combining (3.15)-(3.20), we conclude (3.4). C1 
Remark 16. One might try to prove Lemma 13 (and Theorem 12) from the 

boundedness of the multiplier ph in (1.29). Actually, our argument above shows that 
if condition (H) is not satisfied, then not all multipliers Ph are bounded as h 10. [1 

As in [1], we say that Sh C H, is an (r, s)-system if for all v E H/k(0, T), there 
exists vh E Sh such that 

|IV - VhIIHP ? ChILIvIIHrP+? VO ? iq < min{k, s}, q E N, 

where j = min{r - -, k - q} and C is independent of h and v. 

COROLLARY 17. Let (Xi Uiz) solve (1.16). Let (0.3) and (0.6) hold and (x, u) solve 
(0.1) and (0.2) with x e Hn' and u e Hl2. Let Si' C Ho be an (rl, 1)-system and let 

Sj2 C L2 be an (r2, 0)-system such that (3.3) and condition (H) are satisfied. Then for 
each hi > 0, f E Ln, and - > 0, there exist constants C1(x, u) (depending on II(x, u)II) 
and C2 such that 

(3.21) lxi XIIHn +llUi UL2 ? c1(1, U)E + CM[hy'lL*ll + hi2llallHf2], 

where ,u = min(r1 - 1, 11 - 1) and 2 min(r2, 12). L 
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From (3.21) we see that optimal error bounds are obtained when ILI = t2 and 
e = O(hV'). Therefore, if (x, u) E (Hl+ l n HO") e Hl for some / E Z+, we usually 
choose 

(3.22) r - 1 r2. 

Condition (H) is a very strong assumption. If it is not satisfied, one can show that 
sharp error estimates like (3.4) are impossible. 

THEOREM 18. Let (0.3) and (0.6) hold, and let {Shl X Sh2}h be a discrete (or 
continuous) one-parameter family of closed subspaces of H X L, satisfying (3.1)-(3.3) 
(or (1.15)). If (H) is not satisfied, then there cannot exist nonnegative error estimation 
functions E1(e, X, U') and E2(h, x, u) satisfying 

(3.23) limE(E,., A) =0, limE2(h,x,&) =0 
E4lo hiO 

such that 

(3.24) jjX - XIIHI + hUh - UIL 2 S E1(E, A, A) + E2(h, A, A). 

Proof. Assume the contrary that (3.23) and (3.24) hold. By Corollary 6, we have 

IXh 
- 

XIIH0n + 11Uh -UAL2 li -h XIIHi + Lh UIIL2] 

S limO [E1(e, X, A) + E2(h, A, a)] = E2(h, A, a). 

Hence 

(3.25) lim [Ixh -h XIIHOn + IUh UIIL2J] imE2(h, X, U) = 0. 
hIO m hiO 

Let 

W~Xh - AiE , Wh2-B Ahe 
Whl - xh -Axh GE Vhl E --uh E =-Vh . 

For anyf E L2, (1.26) gives 

PVI+fV w + Wh2, 

and (3.25) gives 

lim I,WhiL2 +2II WhIL2] =Ijx - AA122 +JIBIAL2 2 < 

This means that (H) is satisfied, a contradiction. LI 
From the proofs of Theorems 12 and 18, we conclude 

COROLLARY 19. Let (0.3), (0.6), and (3.1)-(3.3) hold. Let (xi a') and (x, u) denote, 
respectively, the solutions of (1.16) and (0.1), (0.2), and let Fi be defined as in (1.25). 
Then the following conditions are equivalent: 

(1) Condition (H). 

(2) supjE~z+ {ltl}< ??. 
(3) There exist Cl(xZ, u) > 0 depending on (X, u) only and C2 > 0 independent of x, 

u, f, hi, and e such that, for all hi > O and e > 0, 

||X - X||H l+ II| - 
U llL2 ? Cl( XaU)e + C2 en11 AY v HOI L j 
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(4) There exist two error estimation functions E1(E, X, Ui) and E2(h1, x, u') such that 

limE1(e, x, u) O, lim E2(h , x, u) = 0, 
e 0 hi 

2 

and 

IIe 2 ,- XIIH, + IIUi - UIL2 El(C,X,U) + E2(hiS,X, a). [ 

Theorem 18 tells us that, without (H), e and h appearing in error estimates must be 
coupled in general. The following gives one of the simplest type of such errors. 

THEOREM 20. Let (0.3) and (0.6) hold. Let (xe, ua) solve (1.1) and (x, u) solve (0.1), 
(0.2). Assume that (X, U) converges to (x, u) in (Hnl+l nHo) E H, for some 
1 G Z+ . Let Sh C Hon and Sh2 C Lm be (r1, 1)- and (r2, 0)-systems, respectively. Then 
there exist constants C1 > 0 and C2 > 0 (both depending on (x, u)) such that, for E > 0 
sufficiently small, 

(3.26) KXh - XIIHo ?IIa I - aIIL2 S C1I + -|[IIXIH?+' + IluaIIHmn], 

where I = min(l- 1, r - 1, r2). 

Proof. We use the triangle inequality 

(3.27) KXh IIXHIHn + IIUh _ 
U Lm 

S |Xh XjIHln ?llXe U XIIj4 ?IIUh U eIL2 +IIe - 

UIIL2- 

From Theorem 2, we have 

(3.28) - 1 XIIHOn +? e -aIIL,2 S C1E VE >0, 

for some constant C1 depending on (x, u). 
We use the bilinear form a8(., ) in (1.13). It satisfies 

|ae ul I u C [g2 ]RI U) 1e| ,ul)ll H0'n xLt l ( x2, U2) l lH0nx L2M 

for all (xl, ul), (x2, u2) G Ho X L2. Since (Xh, U), U .) satisfy the variational 
equation 

it follows from [1] that 

(3.29) IIlxe - xhIIHIn ?IIae - ahIIL4 

s ( ) [ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~inf ||x- yhIIH',n + inf jja 6 ll2 
x X [YhE Sh Vh 5/S 

-a 2 

U _ [ h 'II. IIH?1 + h I IaVIH)] - 

Letting ,u = min(f , ,U2) choosing C2 properly from a/2, and combining (3.27)- 
(3.29), we get (3.26). [ 
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4. Applications. We apply the theorems in Section 3 to several types of problem 
(0.1), (0.2) and its penalized finite element approximation (1.16). We produce a class 
of problems and approximating subspaces for which condition (H) (and Theorem 
12) holds, and specific examples for which it does not. 

The approximating subspaces we consider are piecewise polynomial spaces. Let 
0 = to < tl < ... tN T be a uniform parition of [0, T] with mesh length h = 

T/N = ti+- ti. Let Shr,s) = {p G CS[0, T]: p is a polynomial of degree r - 1 on 
each subinterval [ti, ti+I], i = 0,. .. ,N - 1). In the approximation (1.17), Sh and Sh2 
will be the (r, s)-systems of n-fold and m-fold products of subspaces of S(r,S), 

respectively. If locally supported B-spline bases for Shr,s) are used, then the matrix 
equation resulting from (1.17) will have the symmetric block banded structure 

(4.1) |Ann nm 
.Amn IAmm, 

where each 

B11 B12 ... B** 

B21 B22 

Akl 

Bkl ... Bkl, 

and Bij are banded matrices according to the choice of S(r,s). 

Example 1. Consider the optimal control problem 

tS(t) = Bu(t) + f(t), 0 s t s T, f E L2(0, T), B = a constant n X m matrix, 
x(o) =o0 eW 

( Min 
2 

J(x, u) =f|[(x, Nb+ (x, N2x) + (U, Mu)] dt. 
( x, u) C Hon X L2 

We let Sh = -ll 1 {I E Shk+ 1l) 1 p(O) = 0) and Sh = IIim Sh(ko). All hypotheses of 
Theorem 12 are evident except condition (H). To show this let Vhl = Sh E l, 

Vh = {BqD I E Sh2). We claim Vhl n Vh2 = Vh2. Then jVh2= vh2 3(Vhl n Vh2) = 
{0), and y cos(Vh1, V2) = 0 giving condition (H). 

For each vector-valued function i e Vh2, any of its components is a scalar 
function 4 which can be represented piecewise as 

k-I 

(4.2) 2 aij(t -ti)j, ti st s ti +I i= 0, 1,. . .,N -1, 
j==O 

and 

(4.3) ,( ti+) = O(tiy)- 
We wish to find a vector-valued function if e Sh, such that g = 4. 

Any component q of 
- 

satisfies 
k 

=2 bij(t -ti)j, ti s,- t stj+,, i = 0,...,IN-1, 
j=O 

(4.4) (to) = (0) = 0, 

(4.5) p(t- ) = m(t+ ), i 1 .. ,N- 1, 
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(4.6) A'(ti ) = T'(tt ), i = 1,...,N-1. 

From (4.4), (4.5), and (4.6), we get, respectively, 

(4.7) b0,0 = 0, 
k 

(4.8) 1 biihJ = bi+s o i = O,.. N-2, 
j=O 

k 

(4.9) 2 jbijhj- l = bi+ l l, i = 0,. . .,N -2. 
j=1 

In order that (p = A, we must have 
k k-I 

2 jbij(t t-ti )j- 2 aij(t t-ti )j, t i -1 t -1 t i+ l 
j=l j=O 

or 
k-I k-I 

2 (j+ I)bi,j+l(t -ti)j= 2 aij(t -ti)j 
j=O j=O 

From the linear independence of polynomials over each subinterval, we must have 

(4.1) (j + I)bi,j+1 = aij, j = 0,...,k-1, i = 0,...,N-2. 

Substituting (4.10) into (4.8) and (4.9) gives 
k I 

(4.11) bi+,o = bi,o + 2 -.ai,J_IhJ, i = 0, ...,N -2, 
j=l 

k 

(4.12) 2 ai,i-,hj = ai+1s,0 i = 0, ...,N -2. 
j=l 

Note that in (4.11), the expression can be also made valid even for i = 0 by choosing 

(4.13) Tp(t) = jt4(T) dT, t e [0, t1]. 

Relations (4.7), (4.10) and (4.11) (with (4.13)) define b's in terms of a's. Relation 
(4.12) is automatically satisfied because it is just (4.3). Therefore b's can be 
determined from a's in a unique way. 

Therefore for any 4 E Vh2 there exists a j5 E Vh' such that p = A. That is, 

Vh2 C Vh'. Hence Theorem 12, Corollary 17 and estimate (3.21) hold with [lI = ,= 

k. 
Computational solutions of (1.17) were obtained for the specific problem 

(4.14) { + cost, 0 < t < 1, 

(4.15) Min J [x2(t) + u2(t)] dt, 
(x, u)CHO' XL2 0 

with Sh = {q E Sh4"): p(0) = 0), Sh = Sh '0) (C'-cubics and Co-quadratics) [12]. 
The dimension of both Sh, and Sh2 is 2N + 1 and hence the matrix (4.1) is of order 
4N+ 2. 

Table 1 and Figure 1 give the errors between ( Uh) and the exact solution 
(x(t), u(t)) = (2 sin t, - 2 cos t) for various h and E. Note that the slopes obtained in 
Figure 1 indicate the sharpness of Corollary 17. 
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TABLE 1 

IXh -X"HI + hUh-UIIL2 error for Example 1, (4.14), (4.15) 

Xh H o2 o+ iL 

1 -~ ~ ~~~~~~2 -3 -3 -3 
2 .461 x 10 .263 x 10 .259 x 10 .252 x 10 

1 -2 -4 -4 -4 
4 .461 x 10 .607 x 10 .394 x 10 .350 x 10 

1 -2 -4 -5 -5 
1 .461 x 10 .466 x 10 475x10 .472 x 10 

1 2 -4 -5 -6 
16 .461 x 10- .463 x 10 .468 x 10 .612 x 10 

'1H h 
T. 

2 

10 - '4j T Ti 4- - -f 44 1 

[11 I -1+- r-i'H r T, H I 11 HI 

--j 

M 

slope-tX0 ~ 1 ;1 1 ~-ft-IX - 

10 - r 2- 3 4 56789 2 7 | 56789 2 3 - 5 67-8 

io6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, 

X~~~~~~~~~~~7 + 4 --4- W H-1 '-f 

' 4 [ 1FG 1 4- 

Example 1 ro v.( 16 

Example 1 error vs e(h 1/) A A A I 

lo S Ililililfillil~A I W TfI I -fil--l- 

,6 / 111 1 1111 Iiiil- T IF HI -H4 I 111 

Hg WX~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~H 

10 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 

12 10- 10 h 10 
10- 6 lo-5 1 

0o- 
4 

lo 

10 

FIGURE I 

Example I errorvs h( io1-6 ) 0 0 0 

Example" 1 1 errr3 E(h =-, -- ,- 1 / 16)I A A A 
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Example 2. Consider the same optimal control problem as in Example 1, with the 
matrix B invertible (m = n). But, we now choose 

Sh 

n n 

$1 k (0 , Sh = I Sh 
i=l1 i=l1 

In this case, 

Vhl= {TL E Sh Vh =Sh. 

Arguing in the same manner as in Example 1, we can verify that 
n 

v' n VV2 = f k S,0) 
i=l1 

thus Vh2 # (0). In order to be able to apply the theory in Section 3, we must find 
V2, the orthogonal complement of Vhl n Vh2 in Vh2. Unfortunately, there does not 
seem to be any simple representation for basis elements in jh2. This points out a general 
difficulty in applying the theory of Section 3. If there exist convenient representations 
(e.g., as piecewise polynomials) for basis elements in Vh2 then cos(Vh, Jh2) can be 
computed by optimization techniques. O 

Example 3. Let the optimal control problem be 

[x(t) -(1 + Cos t)x(t) + u(t) + f(t), 02 t T,fE L2(0, T), 
]x(O) = 0 ER , 

lMin J(x, u) = (x,t Nlx) + ( x, N)92X) + (u, Mu)] dt. 

Let 

(4.16) Sh -S(kil) n HOn s9 -k2,S2), kh, k2, 9j, J2 E N, kl, k2 > 1. 

Then 

Vh= -(1 + Cost>1 m E Shl}, Vh = S*. 

It is a simple exercise to verify that Vhl nVh2 (0). Therefore Corollary 9 holds. In 
this case, no asymptotic sharp error estimate like (3.4) is possible. 

If the governing equation is changed to 

x(t) = x(t) + (2 + cos t) u(t) + f(t), 

for example, the same conclusion also holds. L 
Example 4. Let the control system dynamics be autonomous: 

x(t) = Ax(t) + Bu(t) + f(t), 

where A and B are constant matrices, and let Sh, Sh be chosen as in (4.16). Consider 

Vh nV V2- If Ph E Sh and Ah E Sh2 satisfies 

(4.17) (Ph - Acph = Bh Evhl n Vh2 Mh() = 0, 

then 

(4.18) TPh(t) =Xe- ( ^S3ds- 

If the constant matrix A has only simple eigenvalues which are nonzero, then all the 
entries of exp(At) consist of (scalar) linear combinations of exponential functions 
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c eXit (X1 = an eigenvalue). We see that (4.17) and (4.18) can hold only for ch and 

h which are constant vectors. Hence the dimension of Vh' n VhV cannot exceed a 
bounded integer. It is not hard to see that condition (H) fails. 

If A has zero eigenvalues with high multiplicity, then some entries of exp(At) are 
polynomials. Thus, the dimensions of Vh, nl Vh may increase somewhat, but in 
general are still bounded by a fixed integer. Hence condition (H) fails. D 

In fact, Examples 3 and 4 indicate that except in very special circumstances (i.e., 
special choices of A and B) such as Example 1, sharp error estimates do not hold 
and e, h must be coupled. 
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