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A Posteriori Improvements for 
Interpolating Periodic Splines 

By Thomas R. Lucas* 

Abstract. A method of a posteriori improvements of interpolating periodic splines of order 2 r 
and their derivatives over a uniform mesh is developed using polynomial-type correction 
terms. These improvements enhance the order of convergence by several powers of the step 
size h and are convenient and inexpensive to implement. The polynomials are specified in 
closed form using the Bernoulli numbers. That the first of these is related to the Bernoulli 
polynomial of degree 2 r is due to Swartz [10], but no general development beyond the first has 
previously been made. These polynomials are multiplied by high order derivatives of the 
function evaluated at the mesh points. Some recent results by Lucas [8] are used to accurately 
estimate these values. Some numerical results are given which correspond closely with the 
predictions of the theory. 

1. Introduction. For notation let Cn[a, b] denote the class of all functions 
f E Cn'(-x, so) such that f is periodic of period b - a. S is said to be a periodic 
spline of order 2r over a partition of [a, b], Tn: a = xo < xl < ... Xn = b, if S 

restricted to (xl1, x1) is a polynomial of degree 2r - 1 (1 -/ 1? n), S(a) = S(b) 
and SE C 2r-2 [a, b] where S is the periodic extension of S. If also S(x,) = f(x), 
1 ? 1? n for f E C?[a, b], we say that S is the (smooth) periodic interpolating 
spline to f of order 2r over the mesh iTn. Throughout this paper the mesh vn will be 
uniform, hence xi = a + lh, 0 - 1 - n where h = (b - a)/n. The function f will be 
in various spaces Cpm[a, b]. S(s)(xl) and f(s)(x1) will be denoted by S(') and fj(S). 

It has been known (Ahlberg, Nilson and Walsh [2]) for many years that if S is the 
periodic interpolating spline of order 2r tof E CG2r[a, b], then 

(1.1) f(j)(x) - S(')(x) = O(h2r-j), 0 j 2r - 1. 

In Section 2 a method is developed for increasing the global accuracy of such 
periodic spline approximations by several powers of h by adding to S certain 
polynomial correction terms. It is shown that if f E C2r+4[a, b], then 

3 h 2r+i-j 
(1.2) f(')(x1 + Xh) = S(i)(x1 + Xh) + (2 i) i 

j=O (2r + i)! 

+O0(h 2r?4j), 0 ] j ?- 2 r, 0?-- X ?, 1, 
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where Pi is a polynomial of degree 2r + i depending only on r. Here, 

2r-2 2r - 
(1.3) P0(X) = (2r)BX2r-i = B2r(X) - B2r, 

i=O 

where the Bi are Bernoulli numbers (see [1], where for reference Bo = 1, B I-1/2, 
B2 = 1/6, 84 = -1/30, B6 = 1/42, B8 = -1/30, etc. with Bi = 0 for i > 1 and 
odd), and B2r(X) is the 2rth Bernoulli polynomial [1]. The polynomials PI, P2 and P3 

are also given in closed form in terms of Bernoulli numbers. 
Next, a recent result of Lucas [8], that forf E C4r[a, b], 

S(2r-2) - 2S(2r-2) + S(2r-2) 
(1.4) h (2r) - = 0(h ) 

will be used to develop practical estimates of f(2r),g2r+1) and f(2r2). Together these 
results lead to a powerful but computationally simple method of a posteriori 
corrections to (1.1) which improve the order of convergence by three powers of h. 
These methods could be extended to give even higher orders of improvement. 

The polynomials Pi will be derived in general closed form using some results 
previously developed by the author [8] concerning asymptotic expansions of periodic 
interpolating splines. The main results will be given in Section 2 where (1.2) will be 
developed using (1.4). Some numerical results will be given in Section 3 which 
conform very closely with the predictions of the theory. 

The first term of the expansion (1.2), 

f(x1 + Xh) = S(x1 + Xh) + h 2rP0(IX)(2r)/ (2r)! +O( h2r), 

with the closed form formula (1.3) for P0, was found by Swartz [10], [11], but he did 
not have (1.4) available. Fyfe [4], considering quintic splines only (r= 3), found 
both P0 and PI in numerical form using the heuristic methods of Curtis and Powell 
[3]. He did not develop or apply (1.4) as specialized to quintics. Rosenblatt [9] has 
recently rediscovered a form of (1.3) as B4(X) - B4 for the special case of cubic 
splines. Innes [6], in working with quintic splines, rediscovered Fyfe's P0 and PI and 
developed for the first time P2 and P3 in numerical form. Using heuristic methods, he 
developed (1.4) as specialized to quintics and applied it to estimate the derivatives in 
(1.2). 

While these results have been developed for periodic interpolating splines, it is to 
be expected that for end conditions of sufficiently high order (for some good choices 
for cubics, see Lucas [7]; for quintics, see Innes [6]) similar results will hold for 
(smooth) interpolating splines over a finite interval, and this will lead to some 
interesting applications of these results. 

2. High Order Approximations to f and Its Derivatives. Theorem 1 below uses some 
recent results by Lucas [8] concerning asymptotic expansions of periodic interpolat- 
ing splines to display correction terms, in the form of polynomials, which increase 
the accuracy of the spline approximate by four powers of h. A practical and effective 
way of estimating the terms ,2r?k) for low values of k will be presented later. 
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THEOREM 1. If S is the periodic interpolating spline of f of order 2r, r > 2, over a 
uniform mesh of [a, b], then forf E C2r?4[a, b], and O ? A - 1, 

3 
3 hh2r+k 

- S(xlk- (2r+Xk) 2r+k)pk(X) + O(2r+4) (2.1) f(xl + Ah ) = S+Ah ) + (2 + k (2rtP( 0 ( h2r 

where 
2r-2 

2 - 
(2.2) PO(X) - E (2r)BX2r-i B2r(X) - B2rq 

i=O 

B2r(X) is the 2rth Bernoulli polynomial and Bi is the ith Bernoulli number, 
2r 

2r+I2 
(2.3) PJX) = 2 BAl i)A2r+l-i _ 2 B2rVI 

i=0 2r4 2Pr 3 (I i)(2 - i)(23r+2-i) 2r+2 

(2.5) P3(X) 2 B3 

(2r+3)B 3-(2r+3)(2r+1)B21 

Remark 1. If f E p2r+qa, b] for 1 C q ? 3, then f(x1 + Xh) may be approxi- 
mated by use of the first q correction terms and will be of order 0(h2r+q). 

Proof. Expanding f and S at x = x, + Xh about x, gives 

2r- I 
Xih j j (j) 2rE 3 Xjh j t()+O 2+ (2.6) f(5~) - S(5~) 2r-1 X'h - ?Ij) 2r?3 I'h h) 

j=1 J * j=2r 

By Theorem 1 and Remark 1 of Lucas [8] 

(2.7) 
f(j)- Sj) = 

-A(2jk)h2r+2k-jf (2r+2k+j-j) (2.7) f1(J) - S/I() - - r f 
k=O 

+O(h2r+4-j) 1 ??j 2r - 2, 

where 

I (2k -f )!1 (2r - 1! (2.8) 
12k,r(2k(2rJ- 1i! -2k1- (2r - I-j)!] 

B2r+2k-i 
X (2k +j - )!(2r + 2k-f)' 

andf equalsj forj even and] - 1 forj odd. By convention the term 

(2k + j- )!/ (2k -J)! 
is taken to be zero if > 2k. From Lucas [8, Theorem 2], 

(2.9) f (2r-1) _ 5(+2r-1) h _f (2r)- 2 h2f(2r+I) 
2' 2! 

B4 
+3rh4f (2r?3) + 0(5), 
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where 3rk is the Kronecker delta. Substituting (2.7) and (2.9) into (2.6), and noting 

that B, = - I, gives 
2r-2 

t(-) S(-) = 7 A _ A(j),h2rh2k?-jfJ(2r+2k+j-j) 
j=l k=O 

- _________ (-BRh2rf (2r) + h2r+ If (2r+ 1) 

B 
41 r2 )h2r+3f (2r+3)) 
+ 4(1 I 

r) 

2r+? 3 X'h 
+ : 

XJh 
Jgli) ?O0(h 2r4). 

j=2r J 

This can be rewritten considering the cases k = 0 or 1; j even or odd as: 

(-) ( S()-) s(r_) 1 + BI _2r-I + B0 xr2r h (2r) (2. 1 0) f((2j)! (2r - 1)! (2r)! 
h 

Ir-2 A(2j+ 1) B2 x2r-I 
+ 2 0,Or ________I___2 

\j=0 (2? + 1)! (2r- 1)! 2! 

+ Bo )Jr+ 1 2r+ If (2r+ 1 + 
(2r + 1)! h2'r+ 

) h2r r 

( -1 A 2'2j2 B0 
+ (- z (2 j2'+ I) 2, r (2 r X2) hf12r2r 

_ 1 (2])! (2r + 2)! 2r+2(2r+2) 

fr-2 A (2j' 1) 1+r2 4 
2 2, r _ -2j I (1 +Sr2) B A? r 

_= (2j + 1)! (2r - 1)! 4! 

+ (2r + 3)! Xr)h2r3(r3 

+ O(h 2r+4) 

3 h 2r+k 
f(2r+k)pk(X) + O(h2r+?4) 

k-0 (2r +k)!' 

Using (2.8) to evaluate A(2jk)/r for k 0 and 1 gives 

(2.lla) ~~ B2r-2j (2.11la) A (2 j) =- _ j) 0,r (2r -2j)!' 

(2.llb) A~~2'~'~ = B2r-2j + B2r-2j -1- 

0, r (2r - 1)!(-2j)! (2r-2j) (2r - 2j), 

,2 r (2r -1)!(2- 2j)! (2r + 2-2j) 

(2r - 2j)(2r + 1 - 2j), 
(2r + 2 - 2j)!2! 
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(2r-1) B2-r )! 2r2-2j ) (2 .1 I d) A(2 jr+ 1) = 2-I)!(2j) (r+22 ) 
2 +r 2 B- r+ (2 - 2j (2r - 1 - 2j)(2 1(r?1-2) 

+ (2r + 2 - 2j)!3! (2r-I-2j)(2r-2j)(2r + I-2j). 

Applying (2.11) to the polynomials Pk(X) defined by (2.10), and recalling the 
convention on negative factorials, will lead to (2.2)-(2.5): 

(2) (2r )B1X2r-1 + (2r)BX2r 

j=1 

2r-2 2 r - - 

(2r)Bi2r-i B2r(X)-B2r' 

P (XA) (2-r( I1)B2rX rI-2 ( 2~ 
1 
l) B2 r.2i(2r1-I- 2j 

( 2r+ IB 2r-2 + 2r+ IBX2r?1 

2 /2 ( i /0(-)A - )2 

PM() (2 22 (2rj+ I2 B2r?2j(2r - 2I)(2rj? -2) 

I (2r+2)B( ( i)(2 - )2r?2-i- (r 2)B2rX, 

P3(A )= -(2r- 1 )!2 ! (2r + 2) B2r?2X' - (2r - 1)!3!2r Br -r 

_2 ( 2r+3)AB (2r- 1-2j)(2r-2j)(2r+ 1 -21)x2J?l 

j=o02 2+-j3 

- (2r 4 + Ir2)X + (2r+ I r1 

2 (2r + 3) B( i)(2i)(3i )2r+3 i (2r3)B3 

i=O I 

- (2r+3)(2r -1)Bj)(r?2X12j 

+?[( 2r+ 3 )B2 r3 (2r + 3 )B 22r2-]82 

The last term in P3 iS zero for all r. 
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Remark 2. For cubic (r = 2) and quintic (r = 3) splines, the polynomials of 
Theorem 1 are: 

for cubic splines 

PO(X) = - 2V3 + X2 

p (X) =X SA3+ 1O 

P2( X) =6 6- VA 

P3 (X) X7 + 
7 0 

X; 3 3' 

for quintic splines 

3 5 2' p1(X)= 2-3 ,5+5),4_>2 2 

P2(X) - - 7,4 + 6X2, 

P3(X) = X9 + - 22X3 + X. 
5 5. 

THEOREM 2. Under the hypotheses of Theorem 1, for 0 S X S 1 and 0 sj s 2r, 
3 h 2r k-j 

(2.12) f (')(xl + Xh) = S(i)(xl + Xh) + 2 fI(2r?k)P$j)(X) 
k-0 (2r + k)! 

+ O(h2r+4-i). 

Proof. We will first consider the casej ] 2r. By Taylor's Theorem 

(2.13) f (2r)(xl + Xh) - E (k))f,(2r+k) + 0(h4), 
k=O 

while a direct calculation from (2.2)-(2.5) gives 

(2.14) pk2 r) ( X) = (2r + k)! A! 0 k -,:: 3 . Xk 

Solving (2.14) for Xk/k! and substituting into (2.13) gives 
3 hk 

(2.15) f(2r)(x + Ah) (2 + k)!fi )P)() + 0(h 4), 

which is (2.12) for j ] 2r. The result now follows from (2.15) by induction using 

successive definite integrations: suppose for somej, 0 <j < 2r, 

3 h2r-j+k 
(2.16) f (')(xl + Xh) = S(i)(xl + Xh) + Y, f2rI+?k)P i)(k 

k=O (2r +k)! 

+ 0(h2r+4-j). 

Integrating with respect to X from 0 to X gives (2.16) for] - 1 provided that 

3 h2r-s+k 
(2.17) f(s)(x) S(s)(xl k (2r + k)! 

k0 2 )!f ( )+ (2+s 
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with s j - 1. But from (2.10) 

p(2r-l)(o) = (2r)!B,+ 

pk(2r- )(0) = (2r + k)! (I + 8r,k-I)Bk+ 
1 1 ? k - 3, 

which validates (2.17) for s = r - 1 by (2.9). From (2.10), for 0 ? s 2r - 2, 
k = Oor 2, 

p(s)(o) = f-A(s) (2r + k)!, s even, 
O~~~~s odd. 

For k = 1 or 3, 

[s) 05 s even, 
P(s)(0) ={-A(kil,r(2r + k)!, sodd. 

So (2.17) is established by comparison with (2.7). 

COROLLARY 1. Under the hypotheses of Theorem 2, for f e C(2r+ 1)[a, b], and s odd, 
1 s - 2r - 1, 

f(s)(x + .5h) = S(s)(xI + .5h) + 0(h2r+l-s). 

Proof. P(s)(.5) = Bs)(.5) = 0, for odd s, 1 ? s ? 2r - 1. 
Note. This result was first proven by Swartz [10]. 
Theorem 2 is an extremely practical result as f (2r)(X1) can be very accurately 

estimated by use of (1.4), and f(2r+i)(x1) can be estimated from these results for low 
values of i: 

THEOREM 3. If S is the periodic interpolating spline of order 2r of f E C 2r+3[a, b], 
then 

S,(2 r- - 2) 2r-2) + S(~2r-2) 
(2.18) 0(2r) = S+ - 2 + ? (h3), 

S(2r-2) - 2S(2r-2) + 2S(2r-2) - S(2r-2) 
(2.19) f(2r?l) = 1+2 2h3 + 0(h2), 

84S(2r-2) 
(2.20) f(2r?2) = + 0(h). 

Proof. Equation (2.18) is a consequence of Theorem 3 and Remark 5 of Lucas [8]. 
Equations (2.19)-(2.20) follow from (2.18). 

THEOREM 4. If S is the periodic interpolating spline of order 2r off E C2r+3[a, b], 
then for 0 j -1 2r, 

f (')(xl + Xh) = S(')(xl + Xh) 

+ 2r(j 2+ 8 2Sf(2r- 2) - 82S(2r-s2)) h 
2S/(2r-2)P(I)(X)I_ . 

+(2r)! 
o )+ 2(2r + 1) P'(X). 

(2r + 1)(2r + 2) 2J(X)3 

+ 0(h2r+3-j). 



250 THOMAS R. LUCAS 

Proof. This is a direct consequence of Theorems 2 and 3. 
Remark 3. If only the first (first two) of the above three correction terms is used 

the error will be O(h2r? 11) (O(h2r+2-j)). In this case f need only be in p i[a b] 

(C2r2[a, b]). 

3. A Numerical Example. Consider the smooth periodic cubic (r= 2) spline 
interpolant S of f E C7[a, b] with uniform mesh T*. S may be expressed as 

n? 1 

(3.1) S(x) = ciS((x -xjlh), 
i=-l 

where S is the standard B-spline basis function for smooth cubic splines with 
support in [-2, 2]. Since S(- 1) = S(l) = 1/6 and S(O) = 4/6, the interpolation 
condition leads to the circulant system 

ci-I + 4ci+ ci+ = 6f(xi), 0 i n - 1, 

which, along with the periodic end conditions c-I Cn1I and co = c,n leads to a 
symmetric, strictly diagonally dominant circulant matrix equation in {ci}. (In (3.1), 

cn+I = c1.) This sparse system may be conveniently and rapidly solved using the 
Cholesky method with storage required for just the diagonal, subdiagonal, bottom 
row and right-hand side. For purposes of repeated evaluation of S and its derivatives 
the results may be reexpressed in terms of the polynomial pieces S J[x,,x +.1 for 
0 n i n- 1. In any case, from (3.1) 

S(2) C(C_ - 2c1 + cl+)/h 2, 0 ? 1 - n, 

as S(2)( 1) = (2)(1) = 1 and S(2)(O) -2. An alternate method of computing S is 
given in Golomb [5]. 

Thus the expressions 82S(2), 8 2S(2)l - 82S321) and 84S(2) required for the applica- 
tion of Theorem 4 may be easily evaluated and stored in arrays. If the polynomials 
Pi(j) are only to be evaluated for a small set of X's, this could also be done before use 
of a general evaluative routine. Alternatively the piecewise cubic polynomial used to 
approximate f may be replaced with a piecewise polynomial of degree 4, 5 or 6 
according as to how many levels of correction are desired, with a similar procedure 
for estimating derivatives of f. 

Table 1 below illustrates the quality of these results by considering the function 
f(x) = sin x over the interval [0, 2 ] using respectively 0, 1, 2 and 3 levels of 
correction and n = 20. The observed error rates for f, f ' and f " were experimentally 
computed, sampling the error at intervals of h/12 and comparing with the observed 
errors for n = 10. These observed rates are given in parentheses after the observed 
errors with n = 20 for f, f' and f". A comparison with Theorem 4 and the remark 
following it shows excellent agreement with the asymptotic rates. 
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TABLE 1 

Maximum errors and asymptotic rates for periodic 

cubic splines interpolating sin x 

periodic cubic one corr. two corr. three corr. 
spline (no corr.) term terms terms 

f 2.57E-5 (4.1) 4.40E-6 (5.1) 5.16E-7 (6.1) 1.48E-7 (7.0) 

fl 2.44E-4 (3.1) 5.48E-5 (4.1) 8.67E-6 (5.0) 1.53E-6 (6.0) 

f 8.25E-3 (1.9) 1.59E-3 (2.9) 2.58E-4 (3.9) 1.57E-5 (5.0) 

4. Conclusions. A method of a posteriori corrections has been developed for 
(smooth) periodic interpolating splines over a uniform mesh. After the interpolating 
periodic spline has been computed, a few simple additional calculations allow for an 
improvement by a factor of h3 in the error of both the spline and its derivatives at all 
points. 
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