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Quadratic Pencils and Least-Squares 
Piecewise-Polynomial Approximation* 

By Boris Mityagin 

Abstract. For a partition ( (O = .o < .. < < (n < + 1) of the unit interval, Stkt, 
k > m, denotes the space of piecewise-polynomials of order k and of smoothness m - 1; this 
space can be represented as the graph of the appropriate linear operator between two 
finite-dimensional Hilbert spaces. It gives an approach to the C. de Boor problem, 1972, on 
uniform boundedness (with respect to {) in the L.-norm of the orthogonal projections onto 
stm, and we give the detailed analysis of a quadratic pencil (matrix-valued polynomial of the 
second degree) which appears in the case of a geometric mesh ( if 2m ? k. The explicit 
calculations and estimates of zeros of the "characteristic" polynomial show that in the case 
SbX), {(x) the geometric mesh with the parameter x, 0 < x < oo, the orthogonal projectors 
are uniformly bounded. 

0. Introduction. For any pair of integers k, m, k > m > 0, and any partition 
= ((aX,)n of the unit interval [0, 1], 
(01 

(0. 1) ? = (0 < (1 < < (n < (n+i 1 

we define the piecewise-polynomial subspace 

(0.2) S t km = n C(m1 )[0, 11, 

where 
P~~{feL[01VfIA ~~k-I 

Pk, e f EJ L [?, Il: f Ia,, iS a polnom1ial caxi of order k, 0 s a s n 

Each interior breakpoint (,,a 1 < a < n, generates m continuity conditions 

(0.3) ( IA C)=af-IA ( YA)(i) ), 0 <in, 

to make a functionf E Pkt be an element of Scm. 
Let Q = QS be the orthogonal projection onto S in L2[0, 1], i.e. with respect to the 

inner product 

(f, g) f(x) g(x) dx. 

We are interested in Q as a map in C[0, 1] or L' [0, 1] and we would like to get the 
estimates of its norm 

IIQIIOO = sup IIQflI/lflfloo, 
f 

where Ilf 11K0 = esssupo_x_ If(x)I ,f E L??[O 1]. 
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The general problem (C. de Boor, 1972) on uniform boundedness of these 
projectors in L? over any partition ( (for fixed k and m) remains unsolved. The 
series of important particular cases was treated by Z. Ciesielski [1], C. de Boor [2], 
J. Douglas, T. Dupont and L. Wahlbin [5], S. Demko [6] and others [11]. 

We now consider the case k > 2m. It seems that with respect to the smoothness 
conditions this case is a degenerate one; however, for our approach (see Section 1 
below) this is the only nondegenerate case. We represent the space S Skm as the 
graph of a certain linear operator / between two Hilbert (finite-dimensional) spaces 
so the projections can be written explicitly in terms of / and 1*. In the case of the 
geometric mesh, i.e. 

Aa+1I a+2 a+ I 
(0.4) /la _ a for any a, 0 < a < n, 

this construction produces (m X m)-block Toeplitz operators, and the analysis of 
the corresponding quadratic pencil (see [7], [8]) is the crucial point to get the 
estimates of norms of Qs. In particular, we prove that least-squares approximants by 
quintic splines on a geometric mesh with triple knots (the case Pe63, ' of (0, 1)) are 
uniformly bounded in L'-, or C-, norm independently on the mesh-ratio [L in (0.4) 
or the number n of breakpoints in (0.1). 

I want to thank Professor C. de Boor and Professor S. Demko who directed my 
attention to the problem and told me of previous results and Professor I. Gohberg 
for discussions on factorization of holomorphic operator-valued functions. 

I started this work in the Summer of 1979 during my visit to Bonn University, 
SFB-72. I appreciate the help and support of SFB-72, and the nice atmosphere of the 
Institute that I felt very much, in particular, in my contacts with Professor H. Unger, 
Professor H. Konig and Professor K. Scherer. 

1. Reduction of the Problem to an Analysis of a Finite-Dimensional Vector- 
Sequence Space. For the partition (0.1) let us define for any a, 0 < a < n 

I0, t = (,aS 

p)J0 = 1, t = (a+I 

tlinear on A a, 

so pi: Aa I, and for any function f E LI[0, 1] we put Itf = (fa)y, fa E LI[0, I] 

fa(x) = f( 1(x)). This operator eDt maps L2[0, 1] isometrically onto I,+l(L2(I), A), 
the Hilbert space of sets g = (g,)n, E L2(I), with the inner product 

(g, h) A f'g(x) h(x) dx, 
a=o 

and the same operator ID gives the isometrical isomorphism 

L?? 
[O, 

10]0n? I (L?? [O, 1I]) 

the Banach space of (n + 1)-triples g = (ga)g, g, e L?(I) 

with the norm 

lIgIl = max esssup-|ga(x)|. 
0O<oa--n xEI 
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Remark. This cutting does not work if we consider the spaces of continuous 
functions, i.e. ?(D(C(I)) is a proper subspace of 100 I(C(I)), of codimension n. But 
we do not need the special analysis in C because the norm of the projection Qs is the 
same in Lo. and C by the general argument: S is a finite-dimensional subspace of 
continuous functions so Qs is an integral operator f -* fI (Ed hi(x)hi(y))f(y) dy, 
where (hi)d is an orthonormal basis in S and the continuity of these function h's and 
the Lusin theorem imply that 

llQ:L. -L.Ol=I 1Q: C-* CGi. 
What is the image of St (see (0.2) and (0.3)) under the mapping (D? The continuity 

conditions (0.3) after the isomorphism PD have the following form: 

(1.1) Ai--gfi)(l) = g (0 i < m), 0 < a OO n. 

(Recall that g,(x) = (fl Aa)(I a + X(a- Ia))) Instead of the projection Q = Qs 
in the original spaces L2(I) or L?(I) we have to analyze the orthogonal projection 
Q: l,2+1(L2(I), A) 3 S {g (g)n: ga are polynomials of Pk and (1.1) holds) as 
an operator in ln? 7(L??(I)). 

These spaces are infinite-dimensional but instead of the entire space L2(I), or 
L?(I), as a coordinate one, we can consider only polynomials Pk; more precisely, 
for (any) fixed a 

(1.2) L 2(I) = Pk (D Pk-L 

so 

(1.3) 12 (L2(I); A) - 12+1(pk; A) 1i2+1(Pk; A) 

and if pk: L2(I) Pk is the orthogonal projection onto the subspace of polynomials 
of order k and 

Pk lnn(L2( I); ) -2?(Pk; A) 

is the orthogonal projection generated by the decomposition (1.2), (1.3), then 

(1.4) IIIioIIPL: In +(L??(I)) -*0 

IlPk: Lo(I) -> Pkll IIPkIl0 = CI(k) < xc, 

and this constant Cl does not depend on the partition (, i.e. on the number n of 
breakpoints and weights A = (Aa)n. The space pk {= E ck-Ixi} is finite-dimen- 
sional and the norms 11 * 11 0. and II 11 2 are equivalent: 

(1.5) llf 112 < lif 1oo _<: k/,2llf II2 Vf EE Pk.- 

For this reason we can consider the L2-norm in the coordinate space Pk in both the 
10? I(Pk)- and 1 2+l(pk; A)-cases; it will change the L??-norms of operators under 
consideration by some factors which are uniformly bounded with respect to n and (. 
The piecewise-polynomial subspace St is a subspace of L - 12+ (Pk; A), or, what is 
the same, l' ?(Pk), so Q (Q I L) fin and 

(1.6) 1lIQlKo <1 Q I L||O. * |Pknlloo = c1(k)IIq'II. 
by (1.4), where q' I L. 

And we can consider the finite-dimensional space L with two norms 1n2? (Pk, A) 
and l'?1(Pk), and the projection q' only. 
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2. Representation of Sg as a Graph of a Linear Operator. For a given m, 0 < 
m < k, 2m < k, we splitPkby 

(2.1) Pk = A E B, B = linear span{xj; k-m m < k) 

andA {fEPk:fLB}. 
We choose the special basis {ei} k-m- l in A: 

(2.2) e =xi/i!+fi (x), f3 E B, 0 i < k-m. 

Then 

(2.3) e')(0) = 6ij, 0 i,j < k-m. 

Put 

(2.4) sji = ei()(1) 

so 

k-m-I m-I 

(2.5) S: a-c, cj= 2 sjiai, c = E cjej 
0 0 

is a mapping A A. For any a = 1ai1e1 and a' = 1aide1 in A their inner product is 

(2.6) (a, a')= (Ta, a'), whereT=: {(ei,ej)})rnI 

is the Gramian of the basis (2.2) and (, * is the canonical inner product in the 
coordinate 12-space. 

In the subspace B we choose the basis (vi)1m- in such a way that 

(2.7) v(j)(l) -- 8ij, 0 < i, j < ml 

and then B is isometrically isomorphic to 12 [V], i.e. for b, b' E B, b = Em- 1 v 

(2.8) (b,b')= (V1,E'), whereV={(vi,vj)} m . 

The results of explicit computation of these polynomials and matrices are presented 
below, k = 2m, for m 1,2,3. 

(2.9.1) m 1, eo = 1 -3/2x; vo = x, S -1/2; T = 1/4; V= 1/3. 

(2.9.2) m = 2, 

eo = 1 x2 + 7x3; vo = 3X2 - 2x3; 

2 3 

e=x-X2 + 
21 

3; v -2 + x3; 
ej~x-3x 10 ' V X X 

si /2 1/101 Tr 1/4 1/401 V_[ 13/35 -11/210 
- 6 13/10]' [1/40 1/300]' [-11/210 1/105 j 

(2.9.3) m = 3, 

1O - 1-42x3 + 90X4 -99X5 

72 3 x192 4 99 5 
elx x + -x x - x; 7 72x+4X_ 

1 2 '-29-3+ 45~ 4 165 
e2x 4 14 112 
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- 1/2 -4/35 - 1/112 1/4 1/35 1/672 
S = -27/2 -16/5 -29/112j, T= 1/35 16/3675 1/3920 

- 162 - 1404/35 -95/28 1/672 1/3920 1/62720 

to = lOx3 - 15x4 + 6x5, 

VI = -4x3 + 7x4 -3x5, 

1 3-4 + 5 

181 311 281 
462 4620 55440 

V= _ 311 52 23 
4620 3465 18480 
281 23 1 

55440 18480 9240 

Any element (or function) f = (f E L = 1 (pk; ) can be decomposed as 
=) 

C 
aL 

= 
~ A'n Be aromoed the 

f= {(aa; bax)}S, where aa = PrA fa, ba = PrB, < a < n, and PrA, Pr are the 
orthogonal projectors to the first and second components in (2.1), correspondingly. 
Therefore, 

n n 

(2.10) L=9IG3QV, %I= E A,; ' = E Be; Aa =_ A, B =_ B. 
a=O a=O 

Iff E St, then by (1.1) 

(a,a(x) + ba(x))(')IxI = ( + ) ? ba+I (x))( Ix ,=v 

and by the definition of B in (2.1) 

(2.11) ai)(1) + ba')(a) = a() O < i < m0, 0 -<,' a < n. 
a+1! 

These conditions, in terms of canonical bases (2.2) and (2.7) in Aa and B., the 
same for any a, 0 < a < n, mean that 

(2.12) Saof + baf = Naia+i, 0 < a < n, 

where S is the matrix (2.4) (or the mapping (2.5)) and N. is the diagonal matrix 
(visij -1, v = C a/ I = A a/A a+i, 0 < a < n. We can rewrite (2.12) as 

(2.13) ba= Seai + Nfia,+i, 0 < a < n. 

The coordinate bn PrBfn in St does not have any contact restriction and can be 
chosen in an arbitrary way. More precisely, we can forget this component of f E St 
because the projector on Bn is (PrB)n * Pkn and it is of local character, so its norm in 

Lo. is not bigger than C2(k, m) = IIPrB II .o Cl(k) and this estimate does not depend 
on (. So instead of the entire St in L (see (2.10)) we are interested in Et as a subspace 
of L' = W ) , A = En=0 Aa, e = Dn-I B.. The contact conditions (2.13) can be 
interpreted as the fact that Et coincides with the graph of the operator 

(2.14) 1: 9t -* Q, 1: (a.) n_(b)n -1, a -Saa + N,a,+, 0O a < n. 
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And for the estimate of the norm 11 q'll I,, see (1.6), we have to analyze the orthogonal 
projector 

q: L' = n l 1(B) St graph / = {(a, la): a E l}. 

Recall that the inner products 
n 1n 

(2.15) (a, a') = a f|aa(x). a'(x) dx 2 \a - (Tac, ti 
o 0 

and 

n-I I __ n-I 

(2.16) (b, Y)98 2B y by(x)* b,(x) dx= Ay - Vby, bY) 
o 0 

depend heavily on (, or A, so the notions of "orthogonality" and "adjoint operator" 
do depend on (. 

3. Explicit Form of the Projector q. The projection q: D -> 
eE can be given 

explicitly in terms of the operator 1. First of all let us recall that 

G' = (graph /)' = graph(-1*), 

i.e. ({u, v}; {x, y}) (u, x)w + (v, y) - 0 for any {u, v} E G iff x -I*y, 
where 1*: e -- 9f and "*" is determined by (2.15) and (2.16). 

Therefore, if 

{a; b} ={x; lx} + {-I1*y, y} 

is the (only) orthogonal decomposition of the element f = {a, b} E L', with respect 
to the splitting L' = G ED G'; G -, then 

x-l*y=a; lx+y=b 

and 

y (1 + 1*1)'la + (1 + 

y -(1 + 11*)'1la + (I +*)? b, 

or 

x ( -1*(l + ll*)'l1)a + 1*(l + 11*) lb 

lx + (I + 11*)-'la + (1 - (1 + 11*) I)b. 

Hence, the projection q: {a, b} {x, lx) has the block representation 

((1 + 
/*/) 

(1 + 1* 
(3.l1(a) + 1*1) (1 + 

(3.1b) [1/*(1 ?+ *)-Vi 1*(l ?+ *)1 1 [ (+ /J)/ 1-1+ *)j 

with respect to the decomposition SC ED . The last one (1 = Pr, E Pr,) is orthogo- 
nal for each coordinate a (see (2.10) and (2.1)) so IIPr, I , I I Prr ll oo c3(k, m), and 
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this constant c3 does not depend on (. In particular, it means that 

(3.2a) ~C4(k,m) (3.2a) -lQllo1 q max of 10-norms of four operators which are 

entries of the block-matrix (3.1 a), 

or 

(3.2b) IlqllO. 
c 

max of 100-norms of four operators which are entries 

of the block-matrix (3. lb). 

(a - b means as usual that 1/c - a s b s c - a.) The second representation is more 

preferable because dim e < dim W and the operator 11*: e -e 0 is invertible itself 
(1*1 is not invertible). 

-S No 0 

O -S Ni 

(3.3) 1 0 -S N2 
O -S N3 

.... 
. . . 

-S. N_. 
. 

in particular, if n = 3 

- S No 0 0 

1t O -S N1 01. 
O O -S N2 

The entry l' in the -yth row and the ath column acting from Aa to B, a =yor 
y+l1. 

To avoid misunderstanding recall that by the definition (2.5) S acts in A; however, 
because of the special choice (2.7) of the basis (vi)m-' in B we can redefine this 
operator as acting from A to B analogously to (2.5) 

k-m-1 m-1 

(3.4) S: A ->BS S: a *b, bj= 2, sjiai, b=- 2 bjvj. 
0 0 

The operator (2.5) gives the extension of a to the right side with the contact 
conditions, and by (2.7) and (2.3) the operator (3.4) gives such an element b E B that 
it has the same restriction at the point "I" as a, till the order < m. We use the same 
notation S for both these operators; their matrices- m X (k - m) are the same under 
our choice of the canonical bases (2.2) and (2.7) in A and B. 

By a standard argument l* = (ma), m, - (la)*; however, by (2.15), (2.16) we 
have nonstandard inner-products in these components Aa and By: 

(a, a'). = (a, a')A,= I\-Taa 

where a(i) = a(i)(0), 0 s i < k, and 

(b, b')y = (b, b')By = (Vb, b')A 

where b(j) = b(i)(l), 0 - j < m. 
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Therefore, if d: A -By, aA ,a' b e BY, then 

(da, b)-y = . S(Vda, A.= -\ (d, d'Yb) 

or 

- (a, d*b) A= K Td, d*b>) = A,K ( a, Td*b), 

and 

A dtVb = iA Td*b, Vb,V b e BY 

so 

d* = r T-'dtV, 

where dt (dji) if d = (dij). 
In the case of the operator / we are interested in pairs (a, a) and (a, a + 1) only; 

in these cases 

(dc)* = T-Jd'V and (da+l)* = vaT 1(d`+1)fV; va = a 

These remarks explain that the block-matrix representation of the operator 1*: 
Qe = ef= - 1 

By ( = A, has the form 

-T- StV 0 0 
v0TN- 0XV -T- 1StV 0 

(3.5) 1* vIT-1NIV -T-'St V 0 
.................................. 

- T- IS'V 
O VnT~~~~~- 77StV 

0 vT-77StV 

in particular, if n 3, 

-T- 'StV 0 0 

vOT-'NOV -T-'StV 0 

0 v1T71N,V -T- StV 

0 0 v2T-1N2V 

By the statement (3.2a,b) we need to give the estimates of lo.-norms of the operator 
H1 = (1 + 1*1)-1 and its three colleagues in (3.1a) or 100-norms of the operator 
H (1 + //*)-1 and the other three entries in (3.1b). By (3.3) and (3.5) the 
block-matrix of the operator C =1 11*: Q -* Q has the form (n 3) 

1 + S ST- 'SV -NOT-JStV Q 
+ voNOT- 'NOV 

(3.6) 1 + -vOST- 'NOV 1 + ST-1StV -N1T-JStV 
. ~~~+vINIT-'NIV 

-vIST-1N1V 1 + ST-1StV 

+ v2N2T- 1N2V 



LEAST-SQUARES PIECEWISE-POLYNOMIAL APPROXIMATION 291 

and for any n 

{ KE =(C1?N; O, la 
- 
=y > 

iN 

(3.7) Cc= I + ST- StV + aN-T V, O a<n, 

lCac,+ 
I N= -NT- 1STV, Cac,- I = -Pa- 1ST- lNa- 1V. 

Of course, the operator H = C- = (1 + 11*)-l is of norm < 1 for any mesh t 

as an operator in the Hilbert space e = ln(Ba, {I\a}); however, we need to esti- 
mate the norm IIHIK = IIH: ln (Ba) -* /n(Ba)II. Recall that this norm IIHIK = 

max an iHayH , where hK h: BY -Ba, is a norm of an operator (matrix) in 
m-dimensional Hilbert space. It could be useful to consider Ht as an operator in 

ln(Ba); then (Ht)" = (H.")t and II HtIl = II HI 

4. Blocks of q and Their Invertibility. Now we would like to use all the advantages 
of the representation (3.6)-(3.7) to get the estimates of 1I HI , I I Hl I I 1, II*H IlI o and 

1I*I First of all, instead of H itself we will analyze Vi H, where D: (ba)n- 
(Dba)n-1 denotes the block-diagonal operator for any D: B -* B. So we are inter- 

ested in the block-matrix C = C V-1 (n = 3) 

V-' + ST-'St -No T-St 0 

+ PoNoT- 'No 

PO ST1 No V-' + ST- St -NIT-'St 
(4.1) +v N T-1N 

0 -v1ST 1N1 V-1 + ST-'St 

+v2N2T-1N2 

The general case (3.7) needs the appropriate adjustment. So 

(4.2) H= C-1= (CV)l=- C-1 

(4.3) 1*H = (fT-1(N- t)Ji)(J7l * C1) = i-1 * (vN- 

where 

0 0 *.. 0 
Po 
rNo o 

(4.4) vN =vN1 

O Vn-INn-I 

and if the matrix does not depend on t the symbol P means the corresponding 
diagonal matrix (n by n, or n X (n + 1), or (n + 1) X n) with entries P on the 
diagonal. 

(4.5) Hl = -l C (-S + N), where (compare (3.3)) 

(46 NNo 

(4.6) 0 N 
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and l*Hl can be decomposed by the same way: 

(4-7) 1* = t-(vN- gt)C-_1(- + N). 

Many terms of these operators (4.2)-(4.7) do not depend on (; these factors or 
terms have the same norm as their generators T- 1, V-1, or S and St in the 
block-space A or B. (T- 1 and V- 1 do exist as inverses of Gramians.) It means that 
their estimates do not depend on the mesh t but on k and m only. 

Therefore, if we know a good estimate of the norm p= C l then we can 
(have to) analyze instead of the three operators 

l*(l + //*)-1, (1 + //*)1/, 1*(l + ?l*)- 

only their " parts" (see (4.3), (4.5), (4.7)) 

(4.8) vN-C1, C- .N vN C-1 N. 

Now we can formulate the main problem. Let T, V and S be matrices (2.6), (2.8) and 
(2.4), correspondingly. For any mesh (0.1) they produce the block-matrix C by (4.1) 
and (3.7) and we consider it as an operator in lf(C') In (Cm). 

Problem. Find good estimates for the norm p = IIC . and norms of its 
relatives (4.8). Does there exist such a constant C(k, m) that these norms do not 
exceed it for any choice v = (vo0, v . n- X 

In this question vi could be "zero" too. It is not a more general question than the 
initial one. Indeed if these operators are uniformly bounded for any v, 0 < vi < xc, 
0 < i < n, then by the compactness argument, for any fixed n, the operator C has to 
be invertible if some vi = 0 and II C- has the same bound. 

For further explicit calculation we need to know the matrices V- + ST- iSt and 
ST- 1. We give now the results of this computation in the cases k = 2,4,6; m = k/2. 
Recall (2.9.1)-(2.9.3) in Section 2. 

(4.9. 1) k = 2; V-1 = 3; T-1 =4, V-1 + ST-1St = 4; ST1=-2. 

(4.9.2) k = 4; det V 1/1260; det T = 1/4800, 

V-1 =[12 661 T- 1 = 16 -120 
L66 468 ' 1 -r120 1200 

ST- =[_64 8 ]60 V- + ST- S' 16 120 
60 840] 120 1200 

(4.9.3) k = 6; detV= 474320'- (55440) 3; det T= (62720 27 .4900) 1, 

[ 27 351 2722 [ 36 -630 6720] 
V = 351 6003 52596 T-1 -630 14700 -1764001, 

2772 52596 484272] 6720 - 176400 2257920] 

[ 6 -210 3360 
-ST-'1 = 210 -7140 -110880, 

3360 -110880 1673280' 

[ 9 279 3948] 
ST- 1St = 279 8697 123804, 

3948 123804 1773648' 

36 630 6720] 
V-1 + ST-S1 =j 630 14700 1764001. 

6720 176400 2257920] 
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Remark. Put J: Rm -* R"1, J: (x) m -I 
((-l)ix1)o1. Our numerical data show 

that 

(4.10.a) V-1 + ST-1St = JT-1J 

and 

(4.1o.b) T + StVS = JVJ, 

if k = 2m 2,4, or 6. I conjecture that (4.1Oa,b) hold for any m > 3, k = 2m, also 
(see (5.7) below). 

5. The Case of the Geometric Mesh. If the partition ( = (4 = 0 < < < ... 

< ( +l = 1) is a geometric mesh, i.e. Aca = (ta+2 - +a1)/( a1+- a) j for any 

a, 0 s a < n, then Pa = = v= 1/il in (4.1) and all the operators 

v 

Na --N ={isix}M 
1 = X,2 

m-1 

V~~~ 

are the same. The matrix C becomes a Toeplitz block-matrix with three diagonals, 
and its common row is 

0 ... "O-PST-1N V-1 + ST-1St + vNT-1N -NT-1StO*O 

with (m X m)-matrix entries. 
The uniform boundedness (for a fixed v with respect to n) of the inverses C-j1 

depends heavily on the structure of singularities of the rational (or quadratic) pencil 

(5.1) W(z) = -vFz + D -Ft, 
z 

where 

F= ST-1N, D = V-1 + ST-1St + vNT-1N. 

For a detailed analysis see I. Gohberg and I. Feldman [8, Chapter 8]. Now we will 
use some general results in this connection. 

LEMMA 5.1. Let 

(5.1.0) V(z)=Dlz+Do+D .1 z 

be a pencil, where Dj, j I ? 1, are (m X m)-matrices. The following conditions are 
equivalent: 

(a) there exist both left and right factorizations of special type 

(5. .a.l) V(z) = (N,z + l)No ( + N_ I 
I 

where spectr N, 1 C D = { I z I< 1) and No invertible, and 

(5. .a.r) V(z) = I M + ) Mo(MiZ + 1), 

where spectr M+ 1 C D and MO nonsingular; 
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(b) for n sufficiently large the system 

Doxo + D_ x y = YO, 

DIxO + Dox, + D_1x2 =Y1, 
(5.1 .b) 

DlXn-2 + DOXn- 1 + DlXn =Yn-1, 
DlXn- 1 + DOXn = Yn I 

has a solution x = (xi)n, xi E Cm, 0 ? i ? n for any y = (yi)n, y E Cm, 0 ? i < n, 
and there exists a constant R such that 

(5.l.b.xo) ljxjloo = sup xi| < R - IlYll.O for any n > no, 
O<i?n 

i.e. R does not depend on n > nO. 
(c) The same is true for the 12-norm also, i.e. the inequality 

n 

(5.1.b.2) I |xi| < R2E lyi|,2 n n0, 
o 0 

holds for the solution of (5. .b). (The constant R in (5.1 .b.2) could be different than in 
(5. l.b.oo).) 

We can transform these inequalities to the case of the weight spaces 12 or 1?. If 
,u > 0 andy1 iyji72, x1 = x'p//2, 0< i n n, then the system (5. l.b) becomes 

Do'x + DQ1x' =Yo 

(5.uIb') Dsx' + x + C, 0 =y ', a < i < nc 

I*I u I.I*.L'x 2 I R* sp DR xn n ( on = Yn 

where 

Hence, (5d) impliDe =t th/2e Dop = Do( D' + = D_ D1/2 

factriztios o typ ( Ia and (5lar,adby(.." tmen ht( 

Therefore, the conditions of Lemma 5.1 are equivalent to the following condition 
(5.l.d) for n s> nt, n sufficiently large, for any j< > } the system (5.1.b') has a 

(unique) solution x' = (Xp)n, XtM= C c, 0 S i S n, and there exists a constant R such 
that 

SUp |X,Ii''/2 - R.sup jyjtti/2' 
0O--i,--n 0< i <n 

and 

2 lx,i2A' < R2 . 2 jyj2jLi' 
o o 

R does not depend on n (or on ,i). 
Hence, (5.1.d) implies that the pencil D(z) = Diz + Do + D_ ll/z has both the 

factorizations of type (S.1. a.l1) and (S.1. a. r), and by (S.l.b") it means that (g =A 1/2Z ) 
the pencil D'(D) = Dj'; + Do' + D' I 1/t has the factorizations of the same type with 
conditions 

(5.1.d') spectr N' 1,spectr M' C CD, {z: I ZI<[LI /2), 

snectr N ,snectr M'. C_ D1, {z- 1 7 1 < IL-1/21 
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This form (5.1.d) of Lemma 5.1 will be used to realize why the condition (5.3.b) 
below is too important (and maybe the only concrete fact that we do need). 

LEMMA 5.2. The pencil (5.l.U) has both the factorizations (5.1.a.l) and (5.1.a.r) if 

(5.2.a) Re(V(z)W, (,,)<0, Vz, IZj= 1; co E C,co :#0. 

These results on the discrete multi-dimensional Hopf-Wiener equation (see [8, 
Chapter 8]) help us right now. In [10] I give independent analysis of the pencil that 
appears in our problem on the piecewise-polynomial approximant and its generaliza- 
tion; there I get some new results on factorization of rational pencils that can be 
useful for other applications. 

LEMMA 5.3. The pencil (5.1), if v = 1, has the property (5.2.a). Indeed, in this case 

( (-ST- lz + V- 1 + ST- 1st + T' - T- 'StF) 3, O ) 

= (V-1w,co)+ (T-1St,co)+ (T-1w,co)-2Rez(T-1c,S,). 

Both V- ' and T- 1 are strictly-positive definite, so <V- lx, c )> 0, and by the 
Cauchy inequality for the inner product, 

[u, v] = (T-1u, v) 12RezK(ST-l,St) T < (T-lco,co) + (KTlStS,) 

and the lemma holds. 
In the case of the geometric mesh we can be interested in v E (0, 1] instead of 

Y E (0, oo) because the original problems for Y and 1/Y (or M and l/,l) are 
equivalent; this change means only that we run over [0, 1] from 1 to 0. And if 
v E (0, 1], the factors N and vN as operators in 1n(Ck-m) have norms 1 so we only 
have to consider (see (4.8)) C and C-l. The operators depend on the parameter 
v E [0, 1]; by Lemmas 5.1-5.3 it is nice if v = 1 (the uniform mesh). 

We could complete the analysis of the geometric mesh if we knew that 

(53.a) C(0) is invertible for any n and I&C-1(0)L ? R(0) < x 
independently on n, 

(5.3.b) w,(z) = det W(z), W as in (5.1), does not vanish on {z: I z =} 
for any ;, 0 <v 1. 

Indeed, if v is small enough (see (4.1)), we can consider C as a perturbation of 
C(0); more precisely, if v < (3(0) (I I T-1 + 2 11 TSt II)f1 = t , then by the 
Neumann-series C is invertible and 11 C- < 2 R(0). 

For v E [v*, 1] we will use essentially the fact that the pencil (5.1) is generated by 
the orthogonal projection in 12(Pj; A) ) {f= (fa) : 0 If llf }, Y 

= 1. This projection is certainly bounded and its norm is 1. It implies that all the 
operators in (3. la), (3. lb) and so on are uniformly bounded with respect to n or ,u if 
we consider them in the Hilbert weight spaces An+A(Cm; zA(,u)). In particular it 
means that the system (5.l.d) for D -=-vF, Do = D, D' .-Ft, -see (5.1) for 
the further concretization of these matrices, -are uniformly solvable, n > no(MA), in 

In + (Cm; A\(i)) i.e. (5 . .d) holds. 
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Therefore, by Lemma 5. l.d and the subsequent remarks there exist two factoriza- 
tions 

(5.3.c) V(z) (N'z + I)No(' + N_ = (I +Ml ?Mo(M,Z 1) 

with conditions (5.1 .d') where No, Mo are nonsingular (m X m)-matrices. 
At the initial moment v = 1 the determinant wl(z) by Lemma 5.3 has m zeros 

inside the disc 6D1 and m zeros outside it. When v changes the coefficient of zm is 
equal to (- 1)"'v det F and is not zero (all the factors S, T-1 and N of F are 
nonsingular matrices), so the zeros of wj(z) depend continuously on the parameter v 
and by the condition (5.3.b) m of them will stay inside 6D1 and m others will be 
outside 6D1 for any v, 0 < v p 1. By (5.3.c) we do know that m singular points of V 
are outside the disk 6D@, y I/v > 1, so we can be sure that VJ has no singular 
points in the annulus {z: 1 < I z I < I7/2}; indeed, their number is 2m and m of them 
belong to ( 1 and m others are outside 6l Therefore, the factors (1 + N' I 1/z) and 
(1 + M' 1l /z) are invertible not only for I z i >/j but for any z, I z | 1; indeed, by 
(5.3.c) (1 + N' 1l/z)-1 = V(z)-l(Nl'z + l)NO for 1 ?I z I < because det VJ(z) =# 
O in this annulus. (The analogous formula could be written for the factor of the 
second factorization.) It shows that the first line of (5. l.d') could be changed to the 
stronger form 

spectrN' , spectrM' C D1 = {z: I z < 1) 

and together with the second line (v < 1 so I > 1, -1/2 = v1/2 < 1) it means that 
the spectra of all four matrices N+ 1, M+ 1 satisfy the conditions (a) of Lemma 5.1. 
Hence, by this lemma the condition (b) holds also for D1 = VST- 1N, D_1 = 
-NT-St, Do = V-1 + ST-1St + vNT-'N and it is precisely what we do need. So 
all the operators C, ? v ?1, are invertible, IIC-llloo < R(v), n > n*, and the 
Neumann-series argument shows that for the closed interval [v*, 1] the upper bound 
R* > R(v), v* < v < 1, could be chosen as finite and independent on v and n. Now 
C(k) = max{2R(O); R*} gives the bound of L.-norms of orthogonal projectors in 
the case of the geometric mesh. 

However this conclusion depends heavily on the assumptions (5.3.a) and (5.3.b). 
And now we check these conditions in the case m = 1, 2, 3; k = 2 m, by explicit 
analysis of our concrete matrices. 

If v = 0, the matrix C in (4.1) loses its lower diagonal, the entry on the main 
diagonal is Do = V- 1 + ST- St, and on the upper diagonal the entry matrix 

1~ 

G= -NOT-'St= 0 T-St=( *. ) 

0 
has one nonzero row only. Do does not depend on v or n, so 

D0 Do G 
I GD 1 Go o D0 

G~~~~~~ G~ 
CMo) o 0 Do G o 1 GD& 

.. ... . .. . . .. .. GDo' 

0 0 Do 
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and these operators are certainly uniformly invertible if the spectrum a(GDG-1) < 1. 
This operator GDJ-' is one-dimensional, its matrix is 

70Yo,Y1 , -SYm-1I 

and the only nonzero eigenvalue is 

m-1 

'yO = (T-YS)oj(D~_O-l. 
j=O 

The computations show that for k = 2m, 

(5.4.1) k 2, Yo 

(5.4.2) k 4, yO -4 +(-6 ) 40 2 

(5.4.3) k=6, yo=6 I+210 (- ) +3360 6- 2 - 

This suggests that in the general case yo ( l)k/2. , and it would be interesting to 
check this fact. 

The last step is to examine the property (5.3.b). We present explicit computation 
of these rational functions (k = 2, 4, 6) and then it is clear that (5.3.b) holds. 

k = 2. 
(5.5.1) w,(z) = 2vz + 4(1 + v) + 2 - 

z 

and z 1 =I w(z) I>4-2Wz- +4v - 2vz 2(1 + v) > 2. 

(5.5.2) k =4.1 16(1 + v) 120(1 - V2) 

w^(z) =det{2v(60 -_840v)+ 120(1 - v2) 1200(1 + 3)) 

4 ( 4 60 )L1} 
\60v - 840v zJ 

v z + 4(1 + v) + I * - - 15v2 z + 30(1 - v2) + 15 - { 

= 240 det 
z 

1 
- 

t{v z + 2(l - v2) - 1 
I - 14v2 z + 20(1 - v2) - 14 - J 
z l 

and 

2 4 

i=-2 k=O 

where Pik are given in Table 1. 
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TABLE 1 

\k 
i \ 4 3 2 1 0 

0 20 65 92 65 20 
+1 -10 -26 -26 -10 
-1 -10 -26 -26 -10 
+2 1 
-2 1 

IfT 10 28 40 28 10 

The last row 7Tk = POk -O<i?s2 Pik I contains strictly positive scalars only, and it 
implies for I z 1 that 

4 

IwV(z)l > 240 po(v) - lpi(0)1 = 240 2 VkVk > 2400 > 0. 
c<lil j2 k=O 

(5.5.3) k = 6 

5 { 6 -210v 3360v2 
wo(z) =det +vz 210 -7140v 11088v2 

3360 - 110880v 1673280v2 

36(1 + v) 630(1 - p2) 6720(1 + V3) 

+ 630(1 - V2) 14700(1 + v3) 176400(1 - V4) 

6720(1 + V3) 176400(1 + V4) 2257920(1 + v5) 

1! 6 210 3360 
+ - -210P -7140v - 110880v 

z 3360v2 110880v2 1673280 V2I 

vz + 6(l + v) +- -35v2z + 105(1-v2) + 35 . 
z z 

6 210 3360 vz + 3(1 - v2) - vI -34v2z + 70(l + v3) - 34v 
I 

vz + 2(I + v3) + v2. 
I 

-33v2z + 52.5(1 -v4) + 33v2_1 z z 

560v3z + 1120(1 + V3) + 560 -- 
z 

528v3z + 840(1 - V4) - 528v 1 
z 

498v3z + 672(1 + V5) + 498V21 
z 

3 3 9 

Y * 2 Pi(p). zi = y. 2 2 Pik Vk zi, 
-3 i=-3 k=O 

where y = 2 - 6 - 210 3360 = 8,467,200, and the polynomials pi, I i I < 3, are given in 
Table 2. 
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TABLE 2 

Table of the Coefficients Pik Of 2 3 Pi (X)z = i 
3(29PikX)z 

i/k 9 8 7 6 5 4 3 2 1 0 

0 980 6860 22792 47058 66426 66426 47058 22792 6860 980 
+1 490 3136 9401 17153 20799 17153 9401 3136 490 
-1 490 3136 9401 17153 20153 17153 9401 3136 490 
+2 0 56 245 461 461 245 56 
-2 56 245 461 461 245 56 0 
+3 1 
-3 1 

(1i Pik) Pok 490 3682 12782 27072 38651 38651 27072 12782 3682 490 

-k POk 

POk = .5 .537 .561 .576 .582 .582 .576 .561 .537 = .5 

This table shows that for any z, I z 1=1, and v > 0, 

9 

|WV(Z)| > -y PAP) E Pi(M t -Y 
- 

k > -YTO = 8,297,856,000. 
OC<li1<3 k=O 

It means that (5.3.b) holds. Hence, in particular, we proved that 

The orthogonal projectors Q(St;3) are uniformly bounded in 
(5.6) Loo[0, 1], i.e. II Q(S 03)IK A < ox for any geometric mesh (, 

where A is an absolute constant. 

We made all these computations to show how the approach of Sections 1-4 
works. One can repeat the analogous computations (from the very beginning) to get 
the same results for St4 or s505 with geometric meshes (. But it would not give us 
an understanding of the general situation. What we really need is to consider the 
following series of conjectures and statements in the case 22m,m. 

(5.7) V-I+ST-lSt=JT-lJ and T+StVS=JVJ 

(compare (4. 10.a,b)). 
(5.8) The polynomial 

wj(z) det{ -vST- 1Nz + (V- 1 + ST- 'St) + vNT- N- NT-'St 

m m m 
= 

Pi(v)Z 
= 

I Pik 
Vk Zi 

i=-mP1(=)-m k=O 

has coefficients such that Pok > 0, 0 s k S i2, and moreover POk > O<Jil m Pik 
(Compare Tables 1 and 2 or (5.5.1)-(5.5.3).) 

(5.9) The coefficients Pm2;k = 0 if k # 0 or 1 (it is almost evident), and Pm2; 

(- I * jPm2;O or, equivalently, po; -1 = (Il)m - 1*p0;0; compare (5.4.1)-(5.4.3). 
(5.8) would give the analog of (5.6) for any m. But now we are interested in 
(5.7)-(5.9) because of the close connections with the theory of Toeplitz block-matrices 
rather than the analysis of piecewise-polynomial least-squares approximants. 
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Later we will consider these statements and conjectures, and other (particular) 
cases of piecewise-polynomial approximation, in the framework of the approach of 
Sections 1-4. 
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