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Abstract. A new orthogonalization technique is presented for computing the QR factorization 
of a general n X p matrix of full rank p (n 2 p). The method is based on the use of 
projections to solve increasingly larger subproblems recursively and has an O(np2) operation 
count for general matrices. The technique is readily adaptable to solving linear least-squares 
problems. If the initial matrix has a circulant structure the algorithm simplifies significantly 
and gives the so-called lattice algorithm for solving linear prediction problems. From this 
point of view it is seen that the lattice algorithm is really an efficient way of solving specially 
structured least-squares problems by orthogonalization as opposed to solving the normal 
equations by fast Toeplitz algorithms. 

1. Introduction. The QR decomposition (also called the orthogonal decomposition, 
factorization, and triangularization) of an n X p matrix, X (n > p) 

(1.1) X= QR, 

where Q is n X p with orthonormal columns and R is p X p and upper triangular has 
proven to be useful in solving a number of linear algebraic problems [2], [10], [18], [19]. 
The standard algorithms for computing this QR decomposition include reductions 
by orthogonal transformations (Householder and Givens methods) and Gram- 
Schmidt orthogonalization (including the modified Gram-Schmidt method) [18]. All 
these methods use 0(np2) arithmetic operations. 

In this paper, a new method of computing the QR decomposition is described. 
This algorithm in fact explicitly computes a Q with only orthogonal columns and the 
corresponding R-1, which represents only minor differences with the standard 
algorithms since Q can be easily normalized while R-1 is of interest in many 
applications, and R is computable from R-1 in 0(p3) operations. The method is 
based on the recursive solution by projection to least-squares problems involving 
contiguous blocks of columns of X, and as such, bears resemblence to the construc- 
tion of forward and backward innovations processes as described by Kailath in the 
context of time series and signal processing [13]. This method is also closely related 
to a novel method of matrix inverse triangular decomposition [7] in that the method 
described in that work is the normal equations analogue of our algorithm for 
orthogonalization. 
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Time and space complexities of this method for general matrices, X, are of the 
same order of magnitude as the above-mentioned standard algorithms, but with 
larger constants. In light of this fact, the algorithm presented here is not recom- 
mended as a means of computing QR decompositions of general matrices with 
conventional computing machinery. However, it will be seen that if the matrix X has 
a Toeplitz structure with "zero boundaries" (to be explained in the following) or 
more generally, is circulant, the algorithm reduces to an extremely efficient O(np) 
method taking full advantage of the circulant structure. In the special Toeplitz case, 
it will be shown that the streamlined algorithm is precisely the so-called Itakura- 
Saito-Burg lattice method recently popularized in the study of linear predictive 
coding of speech and deconvolution of seismic data [4], [12], [14]. That algorithm was 
independently derived by De Meersman in [8]. Another possible advantage is the 
degree of parallelism to which the algorithm seems amenable. 

In a sense it is unfair to measure the complexity of this method with other 
algorithms computing the QR decomposition, since this algorithm explicitly com- 
putes the orthogonal decompositions of all subblocks of contiguous columns of the 
matrix X and as such gives much more. Potential application of this aspect towards 
the problem of subset regression [9], [1] demands attention, although no significant 
results are available now, save the observation that [9] uses a branch-and-bound 
method on the partial order of all regression subsets so that a significant amount of 
pruning may be done early given the large number of computed subset least-squares 
solutions obtained by our algorithm. 

Section 2 contains a description of the algorithm for a general matrix together 
with a time and space complexity analysis. In that section, a method for solving 
least-squares problems is presented also. In Section 3, the algorithm is refined to 
deal with special matrix structures, where columns are unitarily related. It will be 
seen there that the algorithm simplifies significantly, but when the unitary operator 
is given by the circular shift, the economization is even more dramatic. The case of 
the circular shift operator, which gives rise to the circulant structure alluded to 
above, is taken up in Section 4 which describes the application to the linear 
prediction of stationary time series. That section contains a brief comparison with 
respect to conditioning and complexity between this method and the autocorrelation 
method for solving linear prediction and Wiener filtering problems. Section 5 is a 
summary. 

2. An Algorithm for Computing QR Decompositions. Let X be an n X p matrix of 
full rank p (n - p) with columns xl,x 25 ... ,xP. The matrix consisting of the 
j - i + 1 columns (i sj) xi,xi+ ,..., xi in that order is denoted by X(i, j). The 
span of the columns of a matrix M is denoted by L(M). 

From the theory of least-squares approximation, it is well known that the 
following two problems have identical solutions: 

-Determine aj - i + 1 vector a so that 

(2.1) X(i, j)a + xj+1 

is orthogonal to L(X(i, j)). 
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-Determine aj - i + 1 vector a so that the 2-norm of 

(2.2) X(i, j)a + xj+ 

is minimal over all such vectors a. 
Since the vector a simultaneously solves both problems uniquely, both characteri- 

zations will be used without further explanation in the following. 
Now define fk? Ias the vector in (2.1) and hence (2.2), with f1 = xl. We then have 

that 

fk E L(X(1, k)), fk I L(X(1, k - 1)), 
and so f1 I fj providing i :: j. 

Thus the matrix 

Q = (fjl.. fp) 

has orthogonal, but not necessarily orthonormal, columns. 
Furthermore defining the upper triangular matrix T as 

1 a11 a22 a 
o 1 a2 a 

O 0 1 

P-1, 

o 0 1 

where a (ak,k, ak,k-1 - ak,l)T iS the solution to (2.1) and (2.2) with i = 1 and 
j = k, it is evident that 

(2.3) XT= Q 

or, equivalently, 

(2.4) X = QT-1. 

This last equation shows that Q and T-1 yield a QR decomposition of X once the 
columns of Q are normalized and T-1 is scaled appropriately. This discussion has 
shown that the QR decomposition is intimately associated with least-squares prob- 
lems involving contiguous blocks of columns of X. The basis of the method 
described here rests on the ability to piece together solutions to such least-squares 
problems to form solutions to larger least-squares problems. 

In particular, it will now be shown that by considering a larger class of least-squares 
problems, a class containing (2.2), the entries of T and the residuals fk are easily 
computable. In order to delay the introduction of indices and subscripts, we shall 
present the basic idea in the form of a general theorem. 

THEOREM. Suppose that A is an n X k real matrix and that b and c are n-vectors so 
that the augmented matrix (b, A, c) has full rank k + 2. Let x and w be k-vectors such 
that the n-vectors r and s given by 

r=Ax+b and s=Aw+c 
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are the residuals in solutions to the least-squares problems 

minliAx + bll2, minllAw + Cli2, 

respectively. (In case A is vacuous, we let r = b and s = c.) Defining 

r Ts r Ts 

rTr sTs 

we have that 

Z w + ax] 

solves the least-squares problem 

(2.5) minll(b, A)z + CII2, 

while 

x + Awl 

solves the least-squares problem 

minll(A,c)v + b112. 

The residuals for the above two least-squares solutions are 

s + ar and r + /3s, 

respectively. 

Proof. Notice that (b, A)z + c = ar + s. Since r and s are residuals in least-squares 
solutions involving A, both r and s are orthogonal to L(A) and so the residual 
ar + s is also orthogonal to L(A). Thus in order that ar + s be the residual in the 
least-squares solution to (2.5), it is only necesssary to show that ar + s is orthogonal 
to b. 

This is the case, providing 

Vs 
a = T_ 

Noting the definition of r and the fact that r is orthogonal to L(A) shows that 

W'r = rTr and WVs = rTs, 
thereby establishing the result for the augmented matrix (b, A). The same argument 
gives the result for the augmented matrix (A, c). D 

It is straightforward to see now how the method of the above theorem fits into our 
computation of the factorization XT = Q. As observed before, T and Q are obtained 
from least-squares solutions to problems of the type 

minll X(l, k)v + Xk+ 112 2 

The theorem tells us how to use solutions to 

minIIX(i,j)u+ xj+11I2 and minIIX(i,j)v+xi_1II2 

to compute solutions to 

minil X(i-1, j)w + xj+ 1 112 and minll X(i, + l)y + xi- j2. 
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The algorithm essentially consists of sweeping across the columns of X solving the 
least-squares problems involving single columns of X (this is the initialization). These 
solutions are then combined according to the theorem to give solutions to the 
least-squares problems involving pairs of contiguous columns of X, and these in turn 
are used to construct solutions to problems involving triples of contiguous columns 
of X and so on. 

In order to make the algorithm's formal description more meaningful, we shall 
describe the roles of the various quantities in it first. 

For each pair of integers (i, j) with 1 < i ?j s p there are two least-squares 
problems determined by the columns of X. 

-The (i, j) backward approximation. This is the least-squares problem of ap- 
proximating xi by a vector from L(X(i + 1, j)). Specifically, we wish to find 
coefficients /,B(ij) so that the residual 

-,j) xi + 1( j)x,?l + + .. j)x 

has minimal 2-norm (or equivalently, is orthogonal to L(X(i + 1, j))). 

-The (i, j) forward approximation. This is the least-squares problem of approxi- 
mating xi by a vector from L(X(i, j - 1)). Specifically, we wish to find coefficients 

so that the residual 

f(i, j) - ji ii)xi + * i.j)x._. + xi 

has minimal 2-norm (or equivalently, is orthogonal to L(X(i, j-1))). 

The algorithm described below is based on the properties and observations 
detailed above. The computation of the coefficients /3$i), +$i) and residuals f ('j), 
bWJ) is then summarized as follows: 

Initialization: f (i,i) b(ii) = xi for i =1,.. . ,p. 
Fork = 1,. . . ,p-1 

For i = 1,.. .,p-k 

V(i, i+k) f (i+ Il,i+k)Tb(i,i+k- 1) 

fll b(i,i+k-I)Tb(i,i+k-1) 

K(i,i+k) = -f (i+ I,i+k)Tb(i,i+k- 1) 
b f (i+ l,i+k)Tf (i+ l,i+k) 

f(i,i+k) - f(i+l,i+k) + K(i,i+k)b(i,i+k-1) 

b(i,i+k) - b(i,i+k-1) + K(i,i+k)b(i+l,i+k) 

Form= 1,...,k-1 

,(i,i+k) - (i+ 1,I+k) + K( i,i+k)#(i,i+k-1) 

_/(ieik) =3('i+k-1) + Kbi,i+k)i+ l,i+k) 

;(i,i+k) = K(i,i+k) 

, _(i,i+k) K(i,i+k) 
k b 
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The complexity analysis of this algorithm is straightforward. In order to solve the 
problem determined by a pair (i, k) using solutions to the "smaller" problems 
(i + 1, i + k) and (i, i + k - 1), a total of 5n multiplications and 2 divisions are 
required, independently of the indices i and k > 2. Thus the operation count for 
finding the orthogonal columns of Q is obtained by summing over the number of 
such problems to be solved, giving 

5np(p - 1)/2 multiplications 

p(p - 1) divisions. 

The computation of the coefficients is easily seen to involve aboutp( p - 1)( p - 2)/3 
more multiplications. In cases where n >? p, as is common in least-squares problems, 
the computational complexity is dominated roughly by a term of the form 5np2/2. 
By comparison, classical methods for orthogonalization have complexities of cnp2 ? 
(lower order terms), where c s 1. Once again, it is important to note that the above 
algorithm actually computes QR factorizations of all contiguous subblocks of 
columns of the matrix X, so that comparisons of the complexity should seriously 
weigh this point. 

In terms of the quantities computed in this algorithm, we have the factorization 

1 +(11,2) (1 ... A0l, 

0 1 +(1,3) 

0 X 1 ~~~~~~~~~= (f (1, 1), f (1,2) f (1,P 

x~~~~~~~~~~~~ 

and the factorization 

1 0 0 
f3(l,p) 1 

x = (b(P'P), b(2P),.. . ,b(P'P)). 

1 ~~~0 
P0,P) . .. (p-1,p) 1 

In terms of space requirements, it can be readily seen that a total of 2n( p - 1) + 
p(p - 1) locations are sufficient for computing and storing the QR factorization. 
More location is required, of course, for keeping all the factorizations. 

It is interesting to note that this algorithm has a simple and in fact, very tempting, 
recursive description which could be easily programmed. That is, the solution to a 
block of k contiguous columns is easily obtained from solutions to two subblocks of 
k - I columns. Unfortunately, such a recursive algorithm would result in repeating 
the solution to a number of subproblems and thereby significantly increase the total 
operation count. 

At this point we suggest an approach for using this algorithm to solve linear 
least-squares problems of the type 

minll Xa -Zll 2- 



A GENERAL ORTHOGONALIZATON TECHNIQUE 329 

The described method explicitly computes a factorization 

XT= Q, 

where Q has orthogonal but not necessarily orthonormal columns. The matrix 
p = Q(QTQ)-1/2 will have orthonormal columns, so the minimization is solved by 

(2.6) a = T(QTQ)l IQTz. 

Now one of the basic discoveries about solving least-squares problems by ortho- 
gonalization was that the computed Q in the QR decomposition is not guaranteed to 
have orthonormal columns and that one should not use the formula (2.6) for solving 
the problem (this is the case for Gram-Schmidt and modified Gram-Schmidt 
algorithms, but not for orthogonalization using Householder or Givens' transforma- 
tions). In spite of this, it has been shown that it is possible to obtain an accurate 
solution by the modified Gram-Schmidt orthogonalization applied to the augmented 
matrix (X, -z). The details of this are in [2] while a brief discussion and summary 
can be found in [ 18]. 

We suggest the same method for using the orthogonalization method of this paper 
in solving linear least-squares problems. That is, we suggest forming the augmented 
matrix X' = (X, -z) and computing the factorization X'T' = Q' as above. The last 
column of T' will then determine the least-squares solution to the original problem. 
Equivalently, we could adjoin -z to the right of X to form (-z, X) and then use the 
lower triangular decomposition to obtain the solution, since this factorization is 
explicitly computed also. An intriguing composition is to apply the described 
method to (-z, X, -z) and thereby obtain two explicit computed solutions and then 
combine them by say averaging. At present, we have no results or suggestions in this 
direction apart from these observations. 

3. Orthogonalization of Matrices With Special Structure. Since the algorithm 
presented in this paper builds the QR factorization of a given matrix from QR 
factorizations of submatrices of that matrix, it is reasonable to expect that the 
algorithm simplifies if the submatrices were in some way related by some structure 
imposed on the full matrix. In the spirit of greatest generality, it will now be seen 
how the method simplifies if the columns of X are unitarily related. This yields an 
algorithm with the same structure as that given by De Meersman in [8], but we 
expect that our method has better stability properties. A further specialization is 
presented in the next section, showing that this method also gives the well-known 
Itakura-Saito lattice algorithm for linear prediction. 

Suppose that X has columns x1x2,... ,x p with xj= UJ- xI, where U is an 
orthogonal transformation on Rn. This structure imposes the following simplifica- 
tion on the solution to the subproblems: 

LEMMA. Let X be a matrix as described above. Let r and s be k-vectors which are 
solutions to 

(3.1) HX(j, j + k- )r + xj+kH12 = minimum, 

(3.2) II X(j + 1, j + k)s + xiII 2 =minimum. 
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Then r and s are independent ofj and, furthermore, if 

r = (r,. . ,rk), s = (s1,. * *) 

then in fact r. = Sk-i?1 

Proof. We begin by noting that 

N = X(], j + k -l)TX(j, j + k - 1) X(j + 1, j + k)TX(j+ 1, j + k) 
and that these matrices are independent of j. Furthermore, these matrices are 
Toeplitz, symmetric and positive-definite. These facts follow from the observation 
that for orthogonal U we have 

Ti X=Xli(Ui)TUTm X1 = x -UirnXI - XlUm-i. 

Now if E is the k by k exchange matrix, that is 

0 *.. 0 1 

E = 0 / 
0 1 0 10. 
10 0 0 *-J 

then we have similarly 

c = X(j, j + k- -)Txj+k = EX(j + 1, j + k)Tx . 

Thus the normal equations for (3.1) and (3.2) are respectively 

Nr = c and Ns Ec. 
Since E2 - Ik' the k by k identity, and ENE = N for Toeplitz N, we actually have 
that s satisfies 

ENs = ENEEs = NEs -E2c = c, 

so that Es = r which is precisely the final claim of the lemma. C 
One of the immediate consequences of this lemma is that 

K(i,i+k) K(i,i+k) = K(l,l+k) = 
f b ~~~~~f 

where these are the quantities occurring in the algorithm of Section 2, and from the 
definition of these quantities it follows that 

(3.3) f (i,i+k)Tf (i,i+k) = f (lj +k)Tf (1,1 +k) 

= 
b(,,i+k)Tb(i,i+k) 

= b(l 

,l+k)TbWI,l 

+k) 

which is a relation that can be used to reduce the multiplication count. There is 
however substantial evidence [6] indicating that a more stable version of this 
algorithm uses the denominator 

Vf (Ijl +k)Tf (l,lI + k)b(l, I + k)Tb(l, I + k) 

in the computation of the coefficient Kk. 

Furthermore, we note that 

f(i,i+k) = Ui f ( k) - Ui fk and b(i,i+k) Ui-lb(l,l+k) U''b 

as a simple calculation shows. 
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Clearly all of the required inner products involving the residuals, f i k) and 
b(i,i+k), are computable from the basic residuals fk and bk according to 

f(i+1,i+k)Tb(i,i+k-1) = (ulfk1)TU 1-bk = fkT lU1lbk 

The final columns of Q = (q1,.. ,qP) are then 

qj = f (lj) = fj l, 

where we define f (1'1) = xi = f0 = bo = ql 
Hence the algorithm for computing Q and T for such a structured X may be 

summarized as follows: 

Initialization: x 1 = f = bo 
Fork = 1,...,p-1 do 

Kk- (Ufk )T bk- 

(klk-l k-l k-I) 

fk= Ufk-I + Kkbk-I 

bk = bk-I + KkUfk-l 

For k= 1,. ... ,p-1I 

For i = 1,.. ., k- 1 

aL 
k = ak. 

I + Kk-I 

a a ak = K?K 

Then with Q = (f0,fI,. . . ,fp_1) and 

a' a2 ap"1 1 1 2 - 

0 1 aI 

0 0 1 

the desired factorization is obtained. 
A similar algorithm was derived in [8] but using a less general approach. The 

above method has more promising stability properties as will be discussed in the 
next section. 

In the complexity analysis of this specialized algorithm it is assumed that the first 
column xl of X and the orthogonal U are the only quantities given at the start, and 
therefore the vectors Ufk need to be computed as they are required by the algorithm. 
In general an evaluation of Uf will require n2 multiplications, but we shall simply 
assume that Uf requires m(n) multiplications. Thus the operation count is 

m(n)(p - 1) + 5n(p - 1) multiplications, 
p-i divisions, 
p-1 square roots. 

By comparison, the computation of the columns of X one by one from xl and U 
would alone require m(n) (p - 1) multiplications. If a general purpose algorithm 
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for computing the QR factorization is then used, it would involve another O(np2) 

operations so that savings are felt only in lower order terms. In the next section, the 
case where U is the circular shift operator is discussed in which case m(n) = 0 since 
U involves reindexing only. We postpone discussion of least-squares problems of this 
type to the next section where this particular structure is commonly used in 
applications and is usually referred to as Wiener filtering. 

4. Applications to Time Series Prediction. The most important application of this 
specialized structure and specialized algorithm is fortunately a case where U is 
extremely simple. If U is the circular shift operator defined by 

Ux = (Si-1(mod n))I X = (Si) 

then the computation of Ux involves no arithmetic computations but only reindex- 
ing of the arrays, and the matrix X is circulant vertically. In that case the algorithm 
requires only 

5n (p - 1) multiples and p - 1 divisions 

to compute Q and the Kk coefficients. The computation of the entries of T involves 

1/2 (p - 1)(p - 2) multiplies. 

The situation where U is the cyclical shift operator is precisely the situation 
encountered in the linear prediction of stationary time series. Let (si) be a time series 
with only finitely many nonzero terms, say si =# 0 for 1 < i < n. Then the linear 
prediction problem of order p for the series (si) is to find the coefficients a a,...p, 
which minimize the mean-squared prediction error 

(4.1) Ep (si + alsi-I + +a ps p)2- 

This may be formulated as a matrix least-squares problem by writing X'= 

(Xl,. ... I,Xp) 

xo = (Si)' 1 , . .. ,In + p, 

Xi = Uixo, i = 1,.. .,p. 

This special form is clearly circulant, but, furthermore, has zero boundaries in the 
obvious sense. A descriptive name for such a structure would therefore be "Toeplitz 
with zero boundaries." The problem then becomes 

(4.2) minimizeEp = E 1 X'a-Xo 11 2- 

By the previous comments the desired coefficients a,..._,ap appear in the last 
column of the unit upper triangular matrix T defined by the condition that XT have 
orthogonal columns, where X = (x0, x, ..., xp) = (x0, X') and 

a, a2,2 a 

0 1 ala 

0 a1 



A GENERAL ORTHOGONALIZATON TECHNIQUE 333 

The algorithm for computing XT and T is then: 

The Lattice Algorithm [4], [8], [12]. 
Initialization: fo = bo = xo. 

For i = 1,... do 

K jfi_1,j_1bi_l,j 

(E,jbi_ I,j i- I, 
1/2 

Forj=1,...,n+pdo 

f,j+l =Ifi-,j + Kibi- ,j+?, 

bi j+l= Kifi?,j + bi-,,j+, 

fij, Kibi-=,, 

_bi'l =bi- III 

For i = 1,. ..,p do 

Forj 1,-.. I, ido 

aiJ = ai_ ,1 + Kiai-? , 

At the end of the computation 

1 al1 a2,2 ... a 

O 1 a21 ... a 

0 0 1 

T== 

0 * 1 

with ai = ap i as desired. Furthermore, 

(4.3) XT= (f f Q 

has orthogonal columns. 
It is interesting to note that the Itakura-Saito-Burg algorithm has its historical 

roots in the construction of difference schemes and continuity conditions for the 
one-dimensional wave equation in a nonhomogeneous medium. (The name "lattice" 
comes from the algorithm's flowgraph which resembles a lattice or ladder.) 

The projection coefficients K, are precisely the partial correlation coefficients and 
as such are extremely significant in testing hypotheses concerning the order, p, of the 
autoregressive process fitting the series {s(i)} [3], [16]. In some applications, such as 
data compression for speech transmission [17] only the K, coefficients are used. Note 
that from (3.3), and the Cauchy-Schwartz inequality, it follows that I K,I < 1. (The 
strict inequality follows from the fact that X has full rank p.) 

Furthermore, since 

lif 112 = lb, 112 = EJ, 



334 GEORGE CYBENKO 

it follows that 

(4.4) 11f,l11 2 = II + K+ lb, 1112 

IIUf1II2 + 2K? 1(Uf1)Tb + K1+ IIlb, 112 

Ilf I11 2(1-K2 1) E,(I -K,2 

by (3.3) and (4.2). 
Thus E. has a simple recursive form convenient for computation: 

E, = E_ 1(I - K2). 

A classical result [ 1] is that 
p 

det(XTX)= L E, 
1=11 

and that the eigenvalues of XTX are contained in the range of the power spectral 
density of the series {s(i)} so that the singular values of X are contained in the 
square root of the range of this power spectral density. Furthermore, as was shown 
in [5], the 2-condition number of XTX satisfies 

K2XTX) <PH 1+1K )=C, K2(xT)P1IIC 

so that the 2-condition number of X satisfies 

(4.5) K2(X) < C 

It is well known that least-squares problems are better solved by orthogonalization 
than by passing to covariance matrices [10], since the error analysis of the former 
reflects closer the perturbation theory of the least-squares problem itself [18]. This is 
a point much overlooked in the arguments for using this lattice method. Most 
arguments center on the method's computational convenience and robustness [14], 
while the accuracy properties are extremely good both empirically [15] and analyti- 
cally [6]. 

Solutions by solving the covariance normal equations are usually discouraged [3], 
and it is evident that this lattice method offers an alternative. 

By way of an error analysis, it can be shown that if Q is the computed version of 
Q in (4.3), then 

(4.6) IIQ-Q II22 np 2 C 

which compares favorably with the condition number bound (4.5). Inequality (4.6) 
holds only for the algorithm in which the partial correlation coefficients Ki are 
computed according to the form in the Lattice Algorithm, even though (3.3) suggests 
there are algebraically equivalent forms which involve fewer computations and no 
square roots. If the square root formulation is not used, the forward stability as 
expressed by (4.6) is lost [6]. 

If Si is replaced by some other series yi so that the object is to minimize 
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the problem is called the discrete-time Wiener filtering problem. This least-squares 
problem can be solved exactly as in Section 2, that is, by adjoining the vector 

y = (yi) 

to matrix X'. In this way, the structure of the problem can be exploited in the 
solution of all subproblems except for subproblems involving the column y. This 
approach would result in an operation count with a leading term of 8np. 

5. Summary. This paper has presented an orthogonalization technique based on 
projections which computes orthogonal factorizations of all contiguous subblocks of 
columns of the matrix. The algorithm uses fewer computations than required by 
updating factorizations otherwise. This general orthogonalization procedure sim- 
plifies significantly when the underlying matrix has a circulant structure, a structure 
important in time series and engineering applications. The streamlined algorithm 
thus obtained is the known "Lattice Method" for linear prediction. This shows that 
the Lattice Method is a legitimate orthogonalization algorithm for solving the 
least-squares problem arising in linear prediction of time series. Together with the 
previous work of the author in [5], this shows that for small residual linear prediction 
problems, the lattice algorithm is to be much preferred over solving the covariance 
equations since the condition number of the underlying matrix is on the order of the 
reciprocal of the residual sum of squares. 
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