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Odd Perfect Numbers Not Divisible By 3. II 

By Masao Kishore* 

Abstract. We prove that odd perfect numbers not divisible by 3 have at least eleven distinct 
prime factors. 

1. N is called a perfect number if u(N) -2N, where o(N) is the sum of positive 
divisors of N. Twenty-seven even perfect numbers are known; however. no odd 
perfect (OP) numbers have been found. 

Suppose N is OP and o(N) is the number of distinct prime factors of N. 
Gradstein (1925), Kuihnel (1949), Weber (1951), and the author (1978, [5]) proved 
that w(N) - 6. Pomerance (1972, [7]) and Robbins (1972) proved that w(N) ? 7. 
Hagis (1975, [2]) and Chein (1978, [ 1]) proved that (NA) ? 8. 

Hagis and McDaniel [3] proved that the largest prime factor of N ? 100129, and 
Pomerance [8] proved that the second largest prime factor of N 7 139. 

If 31 N, then Kanold (1949) proved that o(N) : 9, and the author (1977, [4]) 
proved that c(N) > 10. 

In this paper we prove 

THEOREM. If N is OP and 31 N, then w1N) > 1 1. 

2. In the remainder of this paper we assume that N is OP and 
10 

N fi pit 
i I 

where pi's are primes, 5 <p P < < p 10 and ai's are positive integers, and we will 
get a contradiction. We writep'i 1 N and ai -Vp,(N). 

The following lemmas were proved in [4] and [7]: 

LEMMA 1. Suppose pa II N. Then 
(a) All a's are even except for one a in which case a _ p- 1(4). We write S for p. 
(b) If p = 1 (3), a E 2 (3). 
(c) If p _ 1 (4) and p-2 (3), then p #= r. 

LEMMA 2. Suppose q = 5 or 17 and pa 11 N. Then 

0 V4(aZ + 1) if p 1 (q), 

Vq(a( Pa)) p + 1) + V(a + 1) if p---l (q) andp = 
0 O otherwise. 
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LEMMA 3. Suppose pa II N, q is a prime and qb II a + 1. Then N is divisible by at 
least c distinct primes 1(q) other than p, where c = b if qb a + 1, and c = 2b if 
q#b 7 a + 1. 

The proof of the next lemma is similar to that of Lemma 6 in [4]. 

LEMMA 4. p I= 5, P2 = 7, P3 1 = 1, P4 -< 17, Ps < 23, p6 < 37, P7 < 107, pq ,> 139, 
PIo 2 100129. If p7 > 103, then P8 < 1 3. 

LEMMA 5. Suppose p, q are odd primes, a, b are positive integers, pb I q + 1, p ? 5 
and 2b 2 a. Then qt a(pa). 

Proof. Since p and q are odd primes, q 2 2pb -1. Suppose a(pa) mq for some 
integer m. Then a 2 b and 

a(pb-1) + m- a(pa) + m - m(q + 1)-o(pb). 

Hence 

m > pb - a(pb-1) (pb+1 - 2pb + 1)7 (p - 1), 

and 

C(pa) = mq2 (2pb - 1)(pb+l - 2pb + 1)/ (p - 1) 

= (2p2b+1 - 4p2b_ pb+1 + 4pb - 1)/(p - 1) 

> ( p2b+1 - 1)7 (p - 1) = a(p2b) 2 ,(pa), 

becausep 2 5 and 2b > a, a contradiction. Q.E.D. 
Remark. Lemma 5 also holds if p = 3 and 2b > a. 
The next lemma is due to Hagis. 

LEMMA 6. Suppose p = 5 or 17 andpa is a component of an OP number. Then a(pa) 

has at least one prime factor 2 100129 except 
(a) ifp = 5, a = 1,2,4,5,6,8,9, 13,14, 17,26,29. 
(b) If p = 17, a = 1,2,4,5,9. 

COROLLARY 6. Suppose p = 5 or 17 and pa 11 N. Then a( pa) has at least one prime 
factor > 100129 except 

(a)ifp 5,a= 2,4,6,8, 

(b) if p 17, a = 2,4. 

Proof. We can easily show that 514 IY N and 526 Jl N because a(514) 
11-13 71 181-1741 and a(526)= 19 31-109 271-829 4159 31051. Then 
Corollary 6 follows from Lemmas 1 and 6. Q.E.D. 

LEMMA 7. If 17a11 N and a 2 8, then p lO 100129, Plo > 2- 17a3 -1 > 2 106, 
and 17a-31 + 1. 

Proof. If p is a prime and p < 1 3, then p Z ? 1 (17) except for p = 103. Hence by 
Lemmas 1, 2 and 4 if 171 i(p7) for 1 < i < 7, then i - 7, p7 

- 103 and 17t a(p88) 

Suppose p7 #: 103. Then 17a I a(p8 6Dpgp,o). Since a 2 8, 173 1 G(pai) for some 
8 < i < 10. If pi -1 (17), then 1731 ai + 1, and by Lemma 3 N would have at least 
three more primes -1 (17), a contradiction. Hence pi -1 (17) and pi 

- 7T. Then 
by the same lemma 172; a(p) for-j# - i, 8? j- 10, 17a-2i a(pa.i), 1721 -i+ 1, 
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and 17a-3 pi + 1 by Lemma 2. By Lemma 5 pi t a(17a), and by Corollary 6 a(17a) 
has at least one prime factor 2 100129. 

The same arguments hold if p7 = 103 because 171 a(p'8). Q.E.D. 

LEMMA 8. If 5a 'I N and a 2 14, then a 2 16, pq 2 100129 and p10 2 579281. 

Proof. We showed that a # 14 in the proof of Corollary 6. Suppose pb II N, p- 1 
(5) andp < 107. Then p = 11, 31, 41, 61, 71, or 101. If 5 a(p b), then by Lemma 2 
a(p4) 1 a(pb). Since 131 21491 1 a(614), 211.22211 a(714) and 31 391 
1381 1 a(1014), it is easy to show that if 51 a(pb), p #& 61, 71, or 101. 

Suppose 51 a(41b). Then 579281 1 a(414). Since the order of 5 mod 579281 is 72410 
and a is even, 579281 1 a(5a), and a(5a) has at least one prime factor 2 100129 by 
Corollary 6. Hence we may assume that 51 a(41b). 

Since 3001 3221 -2415 1 0(1124) and 101 4951 -173511 a(3124), 5210(llb) and 
52 ta(31 b). 

Suppose 51a(llb). Then 32211a(114), and if 3221c11N, 521a(3221c) because 
151 -601 1301 1601 1 a(322124). Similarly, if 51 a(31b), then 173511 G(314), and if 
17351C 11 N, 521 a(17351c) because 101 -2351 I.a(1735124). 

Suppose pb N, p -1 (5), and p < 107. Then p = 19, 29, 59, 79, or 89, and by 
Lemma I p #& 7. Hence by Lemma 2 51 a(pb). 

In summary if pb 11 N, p < 107, and if 5I1 a(pb), then p = 11 or 31, in which case 
qc 1 N where q = 3221 or 17351 and 52 1 J(qC). 

Now we will show that 5a-8 I 7T + 1. Suppose threepi p 1 (5) for 1 < i < 7. Then 

P3 = I1, p6 = 31 and p7 = 41, and it is easy to show that 41 <P8 s 61. Hence 
5t1 8(p8). Since plo 2 100129, the above summary shows that 521 a(I=-p i). 
Suppose 5a 1 p(apa9palo). By a similar argument used in the proof of Lemma 7 we 
have for i = 9 or 10 5a-4 (pai), pi = , and 5a-6 1 7 + 1. Suppose 
5a-1 1 (p9plo). Thenp9 = 3221 or 17351 and 521 G(ps9) sa21 (PIao),Pio a q 

and 5a-41 .+ 1. 
Similar arguments show that if two pi 1 (5) for 1 < i < 7, then 5a-8 1 7T + 1 and 

that if pi-1 (5) for 1 < i s 7, then 5 + 1. 
Since a 2 16 and 5a-8 1 7T + 1, 7T a(5a) by Lemma 5, ST 2 5a-8-- 1 > 7 105 

> 579281, and Lemma 8 follows from Corollary 6. Q.E.D. 

COROLLARY 8. Suppose 5a" I N, a 2 14, and 5792811 N if 411 N. Then a 2 16, 
p9 2 100129, plo 2 2 5a-8 -1 > 7 105, and 5a-81 q+ 1. 

The next lemma is due to McDaniel [6]. 

LEMMA 9. Suppose a 2 2, a + I is a prime, andp is a prime. 
(a) Ifp2I a(5a), then p > 229. 

(b) If p2I a(17a), then p > 227 or p = 48947. 

LEMMA 10. Suppose pall N, qIa(pb), b+lIa+1, ql107, and q, b+1 are 
primes. Then 

(a) Ifp =5, q = 11, 31, 59, or 71. 

(b) If p 17, q = 47, 59, or 83. 

Proof. Suppose p = 5 or 17, and d is the order of p mod q. Then pd 1 (q), and 
dI b + 1. Sincep Z 1 (q),d > 1, and d b + 1 because b + 1 is an odd prime. The 
order d is not an odd prime except for those q stated above. Q.E.D. 
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LEMMA 11. Suppose 17a 11 N, a ? 8, and 3071 N. If P8 < 1000, then a > 10, 
p9 > 25646167, and p1o > 8 108. 

Proof. Since 3071 a(178), a> 10, and by Lemma 7, 17a-31 7 + 1 and pi> 
2- 17a3 -1 > 8 108. Suppose P8 < 1000 and 100129 ?p9 < 25646167 < 227. 
Choose b such that b + 1 is a prime and b + I I a + 1. Then a(17b) I a(17a), and 
b 2, 4, or 6 because 3071 a(172), 887411 a(174) and 256461671a(176). Hence 
b> 10. If 1 < i <7 andpi I a(17b), then by Lemmas 4, 10 i = 7 andp7 = 47, 59, or 
83. Since 7T = Plo t a(17a) by Lemma 5, we have a(17b) I P7P8Pg by Lemma 9. Then 
a(1710) ? 83 1000 -pg, or p9 > 25646167, a contradiction. Hence pq > 25646167. 
Q.E.D. 

COROLLARY 11. If p7 < 29 and P8 < 6203, then a > 10, p9 > 25646167, and 

Pio > 8. 108. 

Proof. As in Lemma 11 a(176) I P8P9. Then a(1710) < 6203 pg, orp9 > 25646167, 
a contradiction. Q.E.D. 

LEMMA 12. Suppose 5a 11 N, a > 14, 579281 tN if 41 1 N, and p I N if p = 31, 71, 
191, 409, or 19531. If P8 < 41, then a > 22,p9> 12207031, andp1 > 2- 5a8-21 > 
1010. 

Proof. a > 22 because a 7# 14 as before, 409 1 a(516), 191 1 a(5'8), and 
195311 a(520). The rest of the proof is similar to that of Lemma 11 using a(510) = 
12207031 and a(5 12) = 307175781. Q.E.D. 

COROLLARY 12. If p7 < 29 and P8 < 6203, then a > 22, p9 > 12207031, and 
Pio > 2. 5a-8 - 1 > 1010. 

LEMMA 13. Suppose 5a II N, a = 10 or 12, P8 < 151, p9 > 3011, at most two pi- 1 
(5) for 1 ? i < 8, pi = 11, 31, 41, or 151 if pi=1 (5) and 1 < i < 8, pi = 19, 29, 59, 
79, 89, 109, or 149 if pi --1 (5) and 1 < i < 8,pI N if p = 131, 3221, or 17351, and 
579281 1 N if 41 1 N. Then p9 > 3 106, andplo > 12207031. 

Proof. Suppose 3011 <p9 < 3.106. Thenp 1 = q(5a) = 12207031 or 305175781, 
and 5 t a(p ajo) because 131 1 a(122070314) and 30111 a(3051757814). Suppose 
51 J(pai), 1 < i < 8. Since 3221 1 ac(114), 17351 1 a(314), 579281 1 a(414) and 
1046703011 ia(1514), pi Z 1 (5). Since pi # ?T if pi = 19, 29, 59, 79, 89, and 149 by 
Lemma 1, we have p8 109 = s7 by Lemmas 2, 4. If 54 a(pa8), then 53 a8 + 1 by 
Lemma 2, and N would have at least six prime factors 1 (5), a contradiction. 
Hence 54t (p8), and so 5a-3 a(pg9) p9 , p9 _ 1 (5) and N would have at 
least 7 more prime factors = 1 (5), a contradiction. Hence 5 1 a(pf2) for 1 ? i < 8. 

Then 5aIa(pa9) p 7T, 52fa9+ 1, 5a-1lp9+ 1 and p9>2.5 1a_I 1 > 
3 106, a contradiction. Q.E.D. 

Definition. Suppose M =I. 1pi . Then 

S(M) - (M)/M, 

a(p1) = min{ai I pa + I > 1010 wherepa satisfies the restrictions 

implied by Lemma 1), 
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b = ati if ai <a(pi), 
[ a(pi) if ai > a(pi). 

LEMMA 14. Suppose M = fl pb;. Then 0 b log2 - log S(M) < 10 10-10. 

Proof. Suppose pa 11 N and a > a(p). Then 

O < log S(pa) - log S(pa(p)) < log 
a 

log p) < log P = log pa(p) (p 

p ap)+ l I I 

p -1 

Hence 

0 s log S(N) - log S(M) 

10 

s logS(pai) - logS(pbi) I< 10.10-10. 
i=l1 

Q.E.D. 
The proof of the next two lemmas is easy. 

LEMMA 15. If q is a prime, q I a(pai) for some 1 s i s 7 with ai <a(pi), and if 
q s p7, then q = 2 or q = pi for some 1 s i s 7. 

LEMMA 16. Suppose M= flI7pb i and L = M.I r=I qjS where qj is a prime, 

q1 > 7, q1j la(p1bi) for some 1 i s 7 with bi < a(pi), q1 < ...< qr, and cj is the 
minimum allowable power of qj determined by Lemma 1. If there is no such qj, then 
r = 0 and the product is defined to be 1. Then 

(a) r S 3 and log S(L) S log 2. 

(b) If r 3, then p8 = ql,p = q2,p10 = q3 and 
3 

log 2 < log s( M) + 7. Io - 10 + 2 log qjl ( qj- 1) . 
j=1 

(c) If r 2 and q2 < 100129, then P8 = q1, p9 = q2 and 
2 

log 2 < log S(M) + 7 10-10 + E log qjl (qj- 1) + log 100129/100128. 
j=1 

LEMMA 17. P8 < 301 1. 

Proof. Suppose P8 > 301 1. We used a computer (PDP 11 /70 at the University of 
Toledo) to find M = FI7l pbi satisfying Lemmas 1, 4, 15, 16, log S(M) < log 2, and 

log2 < log S(M) + 7 10-10 + log3011/3010 

+log 3019/3018 + log 100129/100128. 
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The results were: 

5147121 11013917823a6296 

5147121 11013917623a6296 

5147121 11013617823a6296 

5127121 11013917823a6296 

5107121 11013917823a6296 

where a6 = 6 or 8. Since 

5 7 11 13 17 23 29 6203 6211 100129 
4 6 10 12 16 22 28 6202 6210 100128<2 

3011 'P8 < 6203. By Corollaries 11 and 12 p9 > min{25646167, 12207031) and 

Pio 2 min{8. 108, 1010). Then N is not OP because 

5 7 11 13 17 23 29 3011 12207031 800000000 < 2 Q.E.D 
4 6 10 12 16 22 28 3010 12207030 799999999 

The proof of the next lemma is also easy. 

LEMMA 18. Suppose M = l9_ pbi, q = max{p I p is a prime and log S(M) + 
log S( pa) 2 log 2 where a is the minimum allowable power of p} and r = min{p I p is 
a prime and logS(M)+9-10-9+logpI(p- 1)<log2}. Then q <pIo< r; in 
particular, if there are no primes between q and r, N is not OP. 

LEMMA 19. pq < 3011. 

Proof. Suppose P8 < 3011 < pg. We used a computer to find M = fi8 I pbi satisfy- 
ing Lemmas 1, 4, 7, 8, 15, 16, log S(M) <log 2, and 

log2 <logS(M) + 8- 10-10 + log3Oll 3010 + log100129/100128. 

There were seventy-two such M 's. However, none of them satisfied Lemmas 11, 12 
and 13 except 

527121 11013101910238316596. 

It is easy to show that 7753 ?pg < 8389, a2 > 22 (a(712) is a prime), a3> 16, 
a4> 16, a5 = 10 or > 16 (if a(1910) is a prime, a5 > 16), a6 > 12, a7 > 12, and 
a8> 12. Then for each pg with 7753 < pg < 8389 Lemma 18 is not satisfied. Hence 
N is not OP. Q.E.D. 

Proof of Theorem. By Lemma 19 pg < 3011. We used a computer to find 
M = fI9 pb satisfying Lemmas 1, 4, 7, 8, 15, 16, log S(M) < log 2, and 

log2 < log S(M) + 9 10-10 + log 100129/100129. 

There were thirty-nine such M 's; however, none of them satisfied Lemma 18. Hence 
N is not OP. Q.E.D. 
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