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Odd Perfect Numbers Not Divisible By 3. 11
By Masao Kishore*

Abstract. We prove that odd perfect numbers not divisible by 3 have at least eleven distinct
prime factors.

1. N is called a perfect number if o(N) = 2N, where o(N) is the sum of positive
divisors of N. Twenty-seven even perfect numbers are known; however. no odd
perfect (OP) numbers have been found.

Suppose N is OP and w(N) is the number of distinct prime factors of N.
Gradstein (1925), Kithnel (1949), Weber (1951), and the author (1978, [5]) proved
that w(N) = 6. Pomerance (1972, [7]) and Robbins (1972) proved that w(N) = 7.
Hagis (1975, [2]) and Chein (1978, [1]) proved that w(N) = 8.

Hagis and McDaniel [3] proved that the largest prime factor of N = 100129, and
Pomerance [8] proved that the second largest prime factor of N = 139.

If 34+ N, then Kanold (1949) proved that w(N) =9, and the author (1977, [4])
proved that w(N) = 10.

In this paper we prove

THEOREM. If N is OP and 3} N, then w(N) = 11.

2. In the remainder of this paper we assume that N is OP and
10

N=1I p.
i=1

where p;’s are primes, 5 < p, < --- <p,, and qg,’s are positive integers, and we will
get a contradiction. We write pf' || N and a, = V,(N).

The following lemmas were proved in [4] and [7]:

LemMa 1. Suppose p® || N. Then

(a) All a’s are even except for one a in which case a = p = 1(4). We write 7 for p.

®) Ifp=103),a=2(3).

©)Ifp=1@)andp =2 (3), then p # m.

LEMMA 2. Suppose g = S or 17 and p* || N. Then

V(a+1) ifp =1(q).
Vlo(p) = v(p+ 1)+ V(a+ 1) ifp=-1(q)andp =,
0 otherwise.
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LEMMA 3. Suppose p° |l N, q is a prime and q°|| a + 1. Then N is divisible by at
least c distinct primes = 1(q) other than p, where c = b if g° =a + 1, and ¢ = 2b if
q®#a+1.

The proof of the next lemma is similar to that of Lemma 6 in [4].

LEMMA 4. p, = 5,p, =T, p; = 11, p, < 17, ps < 23, p, < 37, p, < 107, py = 139,
Do = 100129. If p, = 103, then py < 113.

LEMMA 5. Suppose p, q are odd primes, a, b are positive integers, pb1 g+Lp=5
and 2b = a. Then qt o( p°).

Proof. Since p and g are odd primes, ¢ = 2 p® — 1. Suppose o( p*) = mgq for some
integer m. Then a = b and

o(p’ ) +m=0(p®) +m=m(q+1) =o(p?).

Hence

\
m=pb—o(p®')=(p**' - 2p*+1)/(p—1),

and

o(p?) =mg=(2p> — 1)(p**' = 2p*+ 1)/ (p— 1)
= (2p2*1 — 4p2 — pb*1 4 4pb — 1)/ (p — 1)
>(p**1 = 1)/(p— 1) = o(p**) = o( p%),

because p = 5 and 2b = a, a contradiction. Q.E.D.
Remark. Lemma 5 also holds if p = 3 and 26 > a.
The next lemma is due to Hagis.

LEMMA 6. Suppose p = 5 or 17 and p® is a component of an OP number. Then o( p?)
has at least one prime factor = 100129 except

@ifp=15,a=12,4,56,8,9,13,14,17,26,29.

b Ifp=17,a=1,2,4,5,9.

COROLLARY 6. Suppose p = 5 or 17 and p° || N. Then o( p®) has at least one prime
factor = 100129 except

(@)ifp=5,a=2456,8,

®)ifp=17,a =2,4.

Proof. We can easily show that 5"} N and 5% )f N because o(5'%) =
11-13-71-181-1741 and o(5%) = 19-31-109-271-829-4159-31051. Then
Corollary 6 follows from Lemmas 1 and 6. Q.E.D.

LemMA 7. If 17°| N and a > 8, then py = 100129, p o =2-17°"3 — 1 > 2. 106,
and 17°7 | = + 1.

Proof. If p is a prime and p < 113, then p = + 1 (17) except for p = 103. Hence by
Lemmas 1,2 and 4if 17| o( p{") for 1 <i <7, theni =7, p, = 103 and 17} o( pg®).
Suppose p, # 103. Then 17| o( pgpsopiy). Since a = 8, 17°| o( pf) for some
8<i=<10.1If p, =1 (17), then 17°| @, + 1, and by Lemma 3 N would have at least
three more primes = 1 (17), a contradiction. Hence p, = -1 (17) and p, = 7. Then
by the same lemma 17%} o( pf) for j #i, 8 <j <10, 17°72| o( pf), 17%} a, + 1,
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and 17°7%| p, + 1 by Lemma 2. By Lemma 5 p;} 0(17%), and by Corollary 6 o(17¢)
has at least one prime factor = 100129.
The same arguments hold if p, = 103 because 17} o( pgt). Q.E.D.

LeMMA 8. If 5% || N and a = 14, then a = 16, py = 100129 and p,, = 579281.

Proof. We showed that a # 14 in the proof of Corollary 6. Suppose p° || N, p = 1
(5) and p < 107. Then p = 11, 31, 41, 61, 71, or 101. If 5| o( p®), then by Lemma 2
o(p*)| o(p®). Since 131-21491| o(61*), 211-2221| o(71*) and 31-391-
1381 0(101%), it is easy to show thatif 5| o( p®), p # 61, 71, or 101.

Suppose 5| 6(41%). Then 579281 | 6(41*). Since the order of 5 mod 579281 is 72410
and a is even, 579281} 0(5¢), and 0(5¢) has at least one prime factor = 100129 by
Corollary 6. Hence we may assume that 5} 0(41%).

Since 3001 -3221-24151| 6(11%*) and 101-4951-17351| 6(31%*), 5%} 6(11%) and
5241 6(31%).

Suppose 5| o(11%). Then 3221|0(11*), and if 3221°|| N, 5%} 0(3221¢) because
151601 - 1301 - 1601 | 6(3221%**). Similarly, if 5| ¢(31%), then 17351 0(31*), and if
17351¢|| N, 5%} 6(17351¢) because 101 - 2351 | 0(17351%*).

Suppose p?Il N, p = -1 (5), and p < 107. Then p = 19, 29, 59, 79, or 89, and by
Lemma 1 p # 7. Hence by Lemma 2 5} o( p?).

In summary if p® || N, p < 107, and if 5| o( p®), then p = 11 or 31, in which case
g° |l N where g = 3221 or 17351 and 52} 6(g°).

Now we will show that 5“7 8| # + 1. Suppose three p, = 1 (5) for 1 <i < 7. Then
p3; =11, po =31 and p, =41, and it is easy to show that 41 < p; < 61. Hence
5t o(pge). Since p,, = 100129, the above summary shows that 5%} o(I[%, p&).
Suppose 5| o( p§°pSy). By a similar argument used in the proof of Lemma 7 we
have for i =9 or 10 5°°%| o(p%), p; =m, and 5 °| 7 + 1. Suppose
5971 o( p&op3p). Then py = 3221 or 17351 and 524 a( p§?), 57 %| o( pi¥), P1o = ,
and 54| 7 + 1.

Similar arguments show that if two p, = 1 (5) for 1 <i <7, then 5 %| 7 + 1 and
thatif p,=1(5)for1 <i<7,then5° %| 7 + 1.

Since a > 16 and 5* 8|7 + 1, 74 6(5%) by Lemma 5, 7 =258 — 1> 7-10°
> 579281, and Lemma 8 follows from Corollary 6. Q.E.D.

COROLLARY 8. Suppose 5°|| N, a = 14, and 579281t N if 41| N. Then a = 16,
Py =100129,p,, =2-5"8—1>7-10° and 57| 7 + 1.

The next lemma is due to McDaniel [6].

LEMMA 9. Suppose a = 2, a + 1 is a prime, and p is a prime.
(@) If p*| 6(5%), then p > 2%.
(b) If p*| 0(17%), then p > 2*" or p = 48947.

LeMMA 10. Suppose p°|l N, q| o(p®), b+ 1|a+ 1, g<107, and q, b+ 1 are
primes. Then

@Ifp=>54=11,31,59,0r71.

®) Ifp =117, qg=47,59, or 83.

Proof. Suppose p = 5 or 17, and d is the order of p mod g. Then p¢ =1 (g), and
d|b+ 1. Sincep Z1(g),d>1,andd = b + 1 because b + 1 is an odd prime. The
order d is not an odd prime except for those ¢ stated above. Q.E.D.



408 MASAO KISHORE

Lemma 11. Suppose 17°|| N, a=8, and 307t N. If p, <1000, then a = 10,
Po = 25646167, and p,, > 8- 108,

Proof. Since 307| 6(17%), a =10, and by Lemma 7, 177 3|7 + 1 and p,, =
2-17°73 — 1>8-10% Suppose py <1000 and 100129 < p, < 25646167 < 277,
Choose b such that b + 1 is a prime and b + 1| a + 1. Then (17°) | 6(17%), and
b2, 4, or 6 because 307| 0(17%), 88741| 6(17*) and 25646167 | 0(17°). Hence
b=10.1f 1 <i<7andp,| 0(17%), then by Lemmas 4, 10 i = 7 and p, = 47, 59, or
83. Since 7 = p,t 6(17%) by Lemma 5, we have 6(17%)| p,psp, by Lemma 9. Then
0(17'%) < 83-1000 - p,, or py > 25646167, a contradiction. Hence p, = 25646167.
Q.ED.

COROLLARY 11. If p, <29 and pg <6203, then a =10, p, = 25646167, and
Pio> 8- 108

Proof. As in Lemma 11 6(17%)| pg po. Then 6(17'%) < 6203 - py, or p, > 25646167,
a contradiction. Q.E.D.

LEMMA 12. Suppose 5°|| N, a = 14, 579281 N if 41| N, and p} N if p = 31, 71,
191, 409, or 19531. If pg < 41, then a = 22, p, = 12207031, and p,, = 2-5"8 — 1 >
10'°.

Proof. a =22 because a # 14 as before, 409| o(5'¢), 191] o(5'%), and
19531 6(5%). The rest of the proof is similar to that of Lemma 11 using 0(5'%) =
12207031 and o(5'%) = 307175781. Q.E.D.

COROLLARY 12. If p; <29 and py <6203, then a =22, p,= 12207031, and
Pro=2-5"%—1>10"

LeEMMA 13 Suppose 5°|| N, a = 10 or 12, pg < 151, p, > 3011, at most two p, = 1
O)for1<i<8,p,=11,31,41,0r 151 ifp,=1(5) and 1 <i <38, p,= 19, 29, 59,
79, 89, 109, or149ifp,=-1(5)and 1 <i<8, pt N ifp =131, 3221, or 17351, and
579281t N if 41| N. Then py = 3-10°, and p,, = 12207031.

Proof. Suppose 3011 < py < 3-10°. Then p,, = 6(5%) = 12207031 or 305175781,
and 5{o(pfy) because 131|0(12207031*) and 3011]| ¢(305175781*). Suppose
5|e(pf), 1<i<S8. Since 3221|0(11*), 17351| a(31%), 579281 | o(41*) and
104670301 | 6(151*), p, = 1 (5). Since p, # 7 if p, = 19, 29, 59, 79, 89, and 149 by
Lemma 1, we have p; = 109 = 7 by Lemmas 2, 4. If 5*| o( pg#), then 5°| ag + 1 by
Lemma 2, and N would have at least six prime factors =1 (5), a contradiction.
Hence 5t o( pg#), and so 5973 | a(p&°), py # 7, py =1 (5) and N would have at
least 7 more prime factors = 1 (5), a contradiction. Hence 5} o( p/) for 1 <i < 8.

Then 5°|o6(p§®), po=m, 5%tag+1, 5 ' ps+ 1, and pg=2-5""1—1>
3-10%, a contradiction. Q.E.D.

Definition. Suppose M = II/_, p#. Then

S(M) =o(M)/M,
a(p;,) = min{a,.| P& > 10" where p? satisfies the restrictions

implied by Lemma 1 },
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i

a; ifai<a(pi)’
a(Pi) ifa,> a(Pi)'

LEMMA 14. Suppose M = T1!2, p?. Then 0 <log2 — log S(M) < 10-107'°.
Proof. Suppose p? || N and a = a( p). Then

a(p)+1 _ 1
0 <log S(p) — log S(p*») <log p 5 1 log ;(p)(p —1)
o PO —
= log Pa(p)+1 -1 - log 1+ pa(p)+1 -1
=10
Hence
0 <log S(N) — log S(M)
10
< ¥ |log S(p?) — log S(P?") |<10-107".
i=1
Q.ED.

The proof of the next two lemmas is easy.

LeMMA 15. If q is a prime, q| o(p]") for some 1 <i <1 with a; < a(p,), and if
q<p, thenq=2o0rq=p,forsomel <i<T.

LEMMA 16. Suppose M =11_, p? and L= M- I'-1q5" where q, is a prime,
q;,> P 4] o( pt') for some 1 <i <17 with b;<a(p,), ¢, < -+ <gq,, and c; is the
-minimum allowable power of q, determined by Lemma 1. If there is no such q;, then
r = 0 and the product is defined to be 1. Then

(@) r <3 andlog S(L) <log2.

(b) If r = 3, then ps = q, pg = 45, P19 = 45 and

3
log2 <logS(M) +7-107°+ 3 loggq;/(g,— 1).
j=1
(©) If r = 2 and q, < 100129, then pg = q,, py = q, and
2
log2 <logS(M) +7-107"°+ 3 loggq,;/ (g, — 1) + log100129,/100128.
j=1
LEMMA 17. pg < 3011.

Proof. Suppose pg; = 3011. We used a computer (PDP 11 /70 at the University of
Toledo) to find M = II7_, p’ satisfying Lemmas 1, 4, 15, 16, log S(M) < log 2, and

log2 <log S(M) + 7-107'° + 1og 3011 /3010
+1og 3019 /3018 + 1log 100129 /100128.
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The results were:
514712111013%1782396296
514712111013%1762326295,
5147121110136178239629°¢,
512771211101391782396296
51071211101391782396299,
where a, = 6 or 8. Since

57 11 13 17 23 29 6203 6211 100129 _
4610 12 16 22 28 6202 6210 100128

3011 < pg < 6203. By Corollaries 11 and 12 py = min{25646167, 12207031} and
P1o = min{8-10%,10'°}. Then N is not OP because
5 7 11 13 17 23 29 3011 12207031 800000000

2610 12 16 22 28 3010 12207030 799999999 — 2= QE-D.

The proof of the next lemma is also easy.

LeMMA 18. Suppose M =1I}_, pb, q = max{p| p is a prime and log S(M) +
log S( p?) = log 2 where a is the minimum allowable power of p} and r = min{p| p is
a prime and log S(M)+9-10° + log p/(p — 1) <log2}. Then q<p,,<r; in
particular, if there are no primes between q and r, N is not OP.

LeMMa 19. py < 3011.

Proof. Suppose pg < 3011 < p,. We used a computer to find M = [[%_, p’ satisfy-
ing Lemmas 1, 4, 7, 8, 15, 16, log S(M) < log?2, and

log2 <log S(M) + 8-107'° + log 3011 /3010 + log 100129 /100128.

There were seventy-two such M ’s. However, none of them satisfied Lemmas 11, 12
and 13 except
52712111013101910238316596,

It is easy to show that 7753 < p, < 8389, a, =22 (0(7'?) is a prime), a, = 16,
a, =16, ag =10 or = 16 (if 0(19') is a prime, a5 = 16), az = 12, a, > 12, and
ag = 12. Then for each p, with 7753 < p, < 8389 Lemma 18 is not satisfied. Hence
Nisnot OP. Q.E.D.

Proof of Theorem. By Lemma 19 p, < 3011. We used a computer to find
M =T1}_, pti satisfying Lemmas 1, 4, 7, 8, 15, 16, log S(M) < log 2, and

log2 < log S(M) + 9-107'° + 1og 100129 /100129.

There were thirty-nine such M ’s; however, none of them satisfied Lemma 18. Hence
N is not OP. Q.E.D.
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