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Numerical Methods Based on Additive Splittings for 
Hyperbolic Partial Differential Equations 

By Randall J. LeVeque and Joseph Oliger* 

Abstract. We derive and analyze several methods for systems of hyperbolic equations with 
wide ranges of signal speeds. These techniques are also useful for problems whose coefficients 
have large mean values about which they oscillate with small amplitude. Our methods are 
based on additive splittings of the operators into components that can be approximated 
independently on the different time scales, some of which are sometimes treated exactly. The 
efficiency of the splitting methods is seen to depend on the error incurred in splitting the exact 
solution operator. This is analyzed and a technique is discussed for reducing this error through 
a simple change of variables. A procedure for generating the appropriate boundary data for 
the intermediate solutions is also presented. 

1. Introduction. Splitting methods for time-dependent partial differential equations 
have been most frequently studied in the context of spatial splittings, as in the 
approximate factorization techniques for efficiently implementing implicit algo- 
rithms in more than one space dimension [61, [111, [131. Some attention has also been 
given to splitting or fractional step methods for problems where the differential 
operator is split up into pieces corresponding to different physical processes which 
are most naturally handled by different techniques. This has been done, for example, 
with convection-diffusion and the Navier-Stokes equations [1], [4], [51. 

More generally, a splitting method may be useful any time one is faced with a 
problem 

( 1.v 1) ut = GU 

where C6 is some differential operator of the form 

&= 1 + 2' 

such that the problems 

(1.2a) ut = 9u 

and 

(1.2b) u - 92u 

are each easier to solve than the original problem. By alternating between solving 
(1.2a) and (1.2b) we hope to compute a satisfactory solution to (1.1). 
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In this paper we consider such methods applied to a one-dimensional quasilinear 
hyperbolic system 

(1.3) ut A(x, t, u)ux, 

where A is an n X n matrix with real eigenvalues. We assume that A is of the form 

(1.4) A = Af +As. 

In our notation, "f" and "s" stand for "fast" and "slow", respectively, which 
reflects a common situation in which the solution contains waves traveling at quite 
different wave speeds. If A is constant, then the solution operator for the problem 
(1.3) on a single timestep of size k is exp(kAa,), that is to say 

(1.5) u(x, t + k) = exp(kAax)u(x, t). 

For nonconstant A the solution operator is more complicated. Our analysis will be 
concerned mostly with the constant coefficient case, so we will use the notation of 
(1.5) throughout. The ideas generalize easily, but are most intuitively seen in terms of 
exponentials. 

The additive splitting (1.4) comes into play when the solution operator exp(kAax) 
is approximated by the product of the solution operators for the subproblems 

(1.6a) utJAfUX 

and 

(1.6b) ut = AsUx 
We replace (1.5) by 

u(x, t + k) > exp(kAfax)exp(kAsax)u(x, t). 

An approximation to u(x, t + k) is thus obtained by first solving (1.6b), with u(x, t) 
as initial data, and using the resulting solution as initial data for (1.6a). If Af and As 
commute, this splitting is exact. When they do not commute, we have introduced an 
error which is 0(k2). As noted by Strang [16], this error can be reduced to 0(k3) by 
use of the splitting 

(1.7) exp(k(Af + As ) ax) exp IkAa exp(kAsax)exp 
I 

kAf ) 

Analogous results hold for the corresponding splittings with variable coefficients. 
Computations confirm that the global error is also improved (from 0(k) to 0(k2)) 
by the use of this splitting. 

The numerical approximations to the solution operators exp(kAsax) and 

exp(lkAf ax) will be denoted by Qs(k) and Qf (k/2), respectively. The numerical 
method based on the Strang splitting (1.7) is then 

(1.8) = Qf(k/2)Qs(k)Qf(k/2)UUmn, 

where Um is the numerical approximation to u(mh, nk) on a grid with Ax = h and 
At = k. When splitting a multidimensional problem into one-dimensional subprob- 
lems, this sort of a splitting gives rise to the so-called locally one-dimensional (LOD) 
method, a spatially split scheme. In the present context we will refer to (1.8) as the 
time-split method. 
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In practice U"+1 can be computed via the sequence 
(1.9) U* = Qf(k/2) U, 

Um** =Qs(k)U* 

m +I Qf (k/2) U=* 

although it should be noted that when several steps of (1.8) are applied successively 
the adjacent Qf(k/2) operators can be combined into Qf(k), and the half-step 
operators need only be applied at the beginning and immediately before printout, 
i.e. 

Un= Qf(k/2)QS(k)Q (k) ... Qf (k)Qs(k)Qf (k/2)U?. 

There are several situations in which the use of the time split method may lead to 
a more efficient solution of the original problem. We will mention three such cases 
here. Our analysis will be mostly concerned with the first and last of these. 

Problem 1. Suppose the solution to (1.3) contains both fast waves and slow waves, 
i.e. the eigenvalues ,ui of A satisfy 

| 1 I II 2 1<-' 
-' 

A| Ip <<| Ipp A,+ t| n| 

Assume also that there are relatively few elements of A which contribute to the fast 
waves. We can take advantage of this structure by splitting the operator into slow 
and fast parts and using small time steps only on the fast part. That is, we can 
choose k so that exp(kAsa,) can be adequately represented by a single step of some 
finite difference scheme and then approximate exp(-kAfa,) by several steps of a 
difference scheme with a smaller time step. Similarly, we can handle more than two 
clusters of wave speeds by means of further splittings. 

Such a splitting method requires less work than using small time steps on the full 
unsplit problem and will thus be more efficient provided the accuracy is not too 
adversely affected by the error in the splitting. We will see that this depends very 
much on the problem at hand. In cases where the splitting error is small, the 
time-split method actually may be more accurate, since we will be able to use nearly 
optimal mesh ratios for each cluster to minimize the truncation error and improve 
other characteristics of the method, such as its dissipative behavior. 

Similar splittings have been considered by Engquist, Gustafsson and Vreeburg [4] 
for this type of problem. However, the splitting in their problem involved little 
interaction between the different time scales, so that many of the problems we shall 
encounter were not present. 

Example 1.1. Consider a block triangular system of the form 

(1.10) A =[11 A2 
w As e 

with IAll I IA 22l I and e < 1. It is reasonable to take 
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For this problem the effectiveness of the split method depends greatly on the 
coupling A12 between the different time scales. This is analyzed in Section 2 where 
we also present a simple procedure for changing variables to reduce the coupling. 

Problem 2. Consider the same situation as in Problem 1, but where the fast waves 
are known to be absent from the physical solution of interest. Recently Kreiss [9], 
[10] and Browning, Kasahara, and Kreiss [2] have considered some new approaches 
for this problem which rely upon properly preparing the data so that the fast wave 
components are eliminated. These can be considered as projection techniques. 
Majda [12] has considered using filters to suppress the fast waves in the same 
context. 

In this case the true solution should satisfy 

exp(kAax)u(x, t) = exp(kA3ax)u(x, t), 

providing the splitting between fast and slow scales is done correctly. For variable 
coefficient problems it will not be possible to have the correct splitting at all times, 
and the operator Af cannot be dropped entirely. However, we can consider using the 
time-split method (1.8) with a less accurate scheme for Qf(k/2) than is used for 
Q,(k), perhaps by using the same time step for both with a larger spatial step for 
Qf(k/2). In such a manner it may again be possible to obtain the same accuracy 
more efficiently. Turkel and Zwas [18] have considered a method for this problem 
which is similar in spirit. 

Problem 3. Suppose that the coefficients in the problem (1.3) have large mean 
values about which they oscillate with small amplitude. In this case it may be 
possible to split out a constant coefficient problem which can be solved exactly, 
leaving behind the small perturbations for A,. Then (1.8) can be used with some 
large time step approximation for Q,(k) while Qf (k/2) = exp(?kAf ax) exactly. This 
is clearly more efficient than using small time steps on the unsplit problem. 
Moreover, since the dominant part of the operator is being handled exactly, great 
increases in accuracy are also possible. 

Example 1.2. The simplest example is the scalar problem 

(1.12) ut = (1 + a(x))ux, 

where I a(x) j < 1, and we use the splitting 

Af = 1, A2 = a(x). 

Take k = ph for some integer p. The operator exp(4kAfax) is known exactly: 
exp(?kAfax)u(x, t) = u(x + {ph, t). If Lax-Wendroff is used for the remaining 
subproblem ut = a(x)uX, then the method (1.8) can be written as a single step 
method. 

Un+1 u= n+ +2P( U+p+ U - +P 

+ 4p a x)((a(x-m + h) + a(xm))(Umn+p+I -Umn+p) 

- (a(5m) + a(m - h))(Umn+p -Um+P-l))' 

where x = xm + -ph. Notice that even though this is a scalar problem, the 
operators ax and a(x) ax do not commute, and so the Strang splitting must be used. 

The shallow water equations provide a more interesting example of Problem 3. 
These are discussed in Section 8. 
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General Considerations. The effectiveness of the time-split method depends on the 
error in the splitting (1.7). If this is exact, then the splitting method is clearly more 
efficient for the types of problems we are considering. On the other hand, if the 
splitting error dominates, it may be necessary to reduce the time step considerably, 
eliminating the possible benefits of the splitting. In the next section we derive an 
explicit expression for the splitting error and indicate how to determine whether a 
splitting method is useful on a given problem. We will show that the equations 
sometimes need to be transformed to reduce the linkage between fast and slow 
modes in order to achieve the desired accuracy. 

The Q operators in the time-split method can consist of one or more steps of any 
explicit or implicit scheme using two time levels. It is not immediately clear how a 
scheme using more than two time levels (such as leapfrog) could be used. For 
suppose we want to use leapfrog as Q,(k) to go from U* to U** in (1.9). Then we 
would need some approximation to exp(-kAsa8)U* (which is not Un) to play the role 
of U* at the previous time level. As a first step towards incorporating multilevel 
schemes into the splitting framework, Section 4 introduces a different type of split 
scheme which does use leapfrog for Qs(k). This method is based upon approxima- 
tions to the variation of parameters formula, or Duhamel's principle, and will be 
called the Leapfrog Duhamel method. Similar ideas have been used for ordinary 
differential equations by Certaine [3]. The accuracy and stability of the Leapfrog 
Duhamel method is considered in Sections 5 and 6. 

The initial boundary value problem is considered in Section 7. In most cases 
boundary data will have to be supplied for the intermediate solutions U* and U** in 
(1.9). We consider the problem of approximating the correct boundary data in terms 
of the given boundary conditions. 

Some further examples of splittings and computational results are presented in 
Section 8. 

2. Accuracy of the Time-Split Method. In this section we consider discretizations 
of the approximate splitting 

(2.1) u(x, t + k) t exp( IkAfax)exp(kAsaX)exp( IkAfaX)u(X, t) 

for the solution of u = Aux =(Af + As)ux with 11 As 11 < 11 Af 11. Up until Section 7 
we will deal only with the Cauchy problem, where - oo < x < xo. Of course these 
results also hold for a strip problem with periodic boundary conditions, e.g., 
0 < x s 1 and u(O, t) = u(1, t). We will assume that Af and As are constant 
matrices, but our approach carries over for more general problems if the exponen- 
tials in (2.1) are replaced by the appropriate solution operators. For example, the 
splitting error for the problem (1.12) is given in Example 8.2 of Section 8. 

If Af and As commute, then the splitting (2.1) is exact. Otherwise we define the 
splitting error operator Eplit(k) by 

(2.2) E.plit(k) = exp( 2 kAf ax) exp(kAsax)exp( 2 kAf ax - exp(k(Af + As) ax) 

6 k3 4A fAs- 2 AfAsAf + 4AsAf 

-2 A2 + 2) a 4)2 . 
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The local truncation error operators for the approximate solution operators Qf (k/2) 
and Qs(k) are defined by 

Ef (k/2) = Qf (k/2) - exp (-2kAf ax) 

Es(k) = Qs(k) - exp(kAsax). 

Note that for a second order scheme such as Lax-Wendroff these are 0(k3). We can 
now compute the truncation error operator for the split scheme. The numerical 
solution operator is 

Qf(k/2)Qs(k)Qf (k/2) = (exp( kAf ax) + Ef (k/2)) (exp(kAsax) + Es(k)) 

X (exp 
I 

kAf ax) + Ef (k/2)) 

exp( 2 kAf ax )exp(kAsax)exp( 2 kAf ax) 

+Es(k) + 2Ef(k/2) + 0(k4) 

exp(k(Af + As) ax) + Esplit(k) 

+Es(k) + 2Ef(k/2) + 0(k4). 

The truncation error operator for the time-split method (TSM) is thus 

(2.3) ETSM(k) = Qf (k/2)Qs(k)Qf (k/2) - exp(k(Af + As) ax) 

= Esplit(k) + Es(k) + 2Ef (k/2) + 0(k4). 

For a given problem this error can be computed directly and used to assess the 
efficiency of the time-split method relative to an unsplit method. 

In order to illustrate some of the properties of this method and the effect the 
splitting error ESplit(k) has on its utility, we restrict our attention to the case where 

Qs(k) consists of a single step of Lax-Wendroff. For convenience we use LW(A, k) 
to denote the Lax-Wendroff operator, 

LW(A, k) = I + kADo + k2A2D D_ 
2 + - 

where Do, D+ and D_ are the standard centered, forward, and backward difference 
operators, respectively. We thus have 

(2.4a) Qs(k) = LW(As, k). 

For Qf (k/2) we consider both 

(2.4b) Qf (k/2) = exp (2kAf ax) 

and 

(2 .4c) Qf ( k/2) = (LW( Af klm )) m/2 

for some integer m. The situation (2.4b) occurs when the solution operator 
exp('kAfax) is known exactly, as in Problem 3. In (2.4c) Qf(k/2) consists of m/2 
steps of Lax-Wendroff with time step k/m. This might be appropriate when solving 
Problem 1, for example. 



NUMERICAL METHODS FOR HYPERBOLIC EQUATIONS 475 

The standard error analysis for Lax-Wendroff shows that for (2.4a) we have 

(2.5a) Es(k) = EsLw(k) = - 
I 

(k3A3 - kh2As) a3 + 0(k4). 

When (2.4b) is used there is no error on the fast scale, and 

(2.5b) Ef (k/2) = EfXP(k/2) 0. 

Otherwise, when (2.4c) is used, 

Qf (k/2) - (LW(AfA, k (m))) ) 

- exp( -2kAx) 6- (2%A3- 2h2A ) 3 + 0(k4) 

and so 

(2.5c) Ef(k/2) = Efw(k/2) = - kh2Af) a3 + 0(k4). 

In this case we must choose an appropriate value of m, the number of small time 
steps used within each large time step. For fixed h, the error EfLw(k/2) does not 
approach zero as m -s o0. From (2.5c) it seems unreasonable to take m any larger 
than a value for which II k3Af/m2 11 I kh2Af I1. This suggests taking 

(2.6) m t h 11 Af11. h 

The proper choice of m may also be influenced by stability requirements. Determin- 
ing the stability of the operator Qf(k/2)Qs(k)Qf(k/2) is in general a difficult 
problem, which will be considered in some detail in Section 5. It will be shown there 
that for some problems the product operator is stable provided Qf (k/2) and Qs(k) 
are each stable independently. It is well known that for Lax-Wendroff the stability 
condition on Qf (k/2) is p(Af )k/mh < 1, i.e., m > p(Af)k/h. The m given in (2.6) 
is consistent with this requirement. Also note that, for k/h 1/I As 11, (2.6) becomes 
m :t" 11 Af 11/11 As 11. 

When the splitting error ESplit(k) is negligible compared to the other terms in (2.3), 
the truncation error for the split scheme becomes 

ETSM(k) = Es(k) + 2Ef (k/2) + 0(k4) 

- k3(A3+ IA kh2(As + Af)) a3 + 0(k4). 

This error is roughly the same as we would obtain using (LW(A, k/m))m, i.e., 
Lax-Wendroff with small steps on the unsplit problem. The truncation error for the 
unsplit method can be derived in the same manner as (2.5c) to obtain 

(2.7) E (k) 6 _ f 0(Af +As) ax) 

4( -4 Af-kh2(Af +As)) a3. 
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Thus we do almost as well by taking large steps with A. and small steps with Af as 
we would by taking small steps on the unsplit problem. This can lead to considerable 
savings. If Qf(k/2) = exp(kfkA a.) the results are even more striking. Now the error 
(2.3) is simply 

ETSM(k) = Es(k) + 0(k4) = -6(k3A -kh2As) a ? O(k4). 

Comparing this to (2.7) shows that the split scheme is considerably more accurate. It 
also requires less work, since now nothing is computed using small steps. 

The results of the last paragraph are all based on the assumption that ESPlit(k) is 
negligible. In practice ESPlit(k) may easily dominate the discretization error Es(k) + 
2Ef (k/2). In this case the split scheme is less accurate than Lax-Wendroff with time 
step k/m. Nonetheless the split scheme may be preferable. It may be possible to use 
the split scheme with smaller k and h to obtain better accuracy while still requiring 
less work than the unsplit scheme. The proper quantity for comparison is the work 
required to obtain a given accuracy. This can be estimated and compared for various 
methods as we now do. Under some mild assumptions, we will see that the methods 
(2.4a, b) and (2.4a, c) are always more efficient than the unsplit scheme (provided we 
choose k/h properly). 

Work Comparisons. We will compute expressions for the work required to obtain a 
solution at time t = 1 with error at most T. All of the bounds below are rough order 
of magnitude bounds which are sufficient for our present purpose. Suppose that 

hAill ; IAf, = a, IIAsII = b, 

where b/a = E < 1. Also suppose that II IIuxxx 1. This is for convenience only, 
since it removes one common factor from all of the bounds below. 

We will first analyze the unsplit Lax-Wendroff method LW(A, k). Suppose that 
Wis the work required to compute LW(A, k)U,,7 at a single point xm. Then the work 
required to advance the solution on a unit x-interval by one unit of time is 
W/kh = XW/k2 if k = X h. The error committed in one time unit using the unsplit 
method is bounded by 

II((LW(A, k)) /k - exp(Aau)) uI 

< k ((k3I1AII3 + kh2IIAII) + 0(k4)) - 6k2(a3 + a/X2) + 0(k3). 

Since we require an error 'r, we set 

6k2(a3 + a/XA2) = 

giving 

k 2 6T 

a(a2 + 1/X2) 

Thus w(T; X), the work required to achieve a given accuracy T using Lax-Wendroff 
with stepsize ratio X, is given by 

W(T; X) = W = (Xa + l/Xa) 
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We have not yet specified A. Choosing X to minimize w(T; A) gives X = 1/a, and the 
minimum workW(T) iS 

(2.8) w(T) ) a2W for unsplit Lax-Wendroff. 

Now consider the split method (2.4a, b). Let W, be the work required to apply 
Lax-Wendroff on the slow scale and Wf xP the work required to compute 
exp(kAf aX)Um,n. Set WTSM -W, + WfxP. Typically WTSM t W. The error over one 
unit of time for the split scheme is bounded by 

11 ((Qf(k/2)Qs(k)Qf (k/2)) /k - exp(Aax))u 11 

< k 11Esplit(k)u + Es(k)u + 2Ef(k/2)u + O(k4)tI. 

For (2.4b), Ef (k/2) = 0. From (2.5a), 

1I Es(k)u II 6k(k2b3 + h2b) k3(b3' + b/A2). 

The splitting error is bounded using (2.2), 

IIEsPlit(k)ulI < -k3(a2b + ab2) ?Ik3a2b 6 ~~~~6 

although it may be much smaller for some problems. Since our results depend very 
much on the size of this error, we will suppose for now that 

(2.9) IIEsPlit(k)uII < -k3a 6 
for some a, so that 

II Esplit(k)u + Es(k)u I I k2(a + b3 + b/A2). 

In order to obtain accuracy T we must take 

k2 6T 

a + b3 + b/A2 

so 
XWTSM 2 = X(a 

wTSM 
(2.10) w(T; A) IAWTsM/k2A(a + b3 + b/A2) W 

The optimal stepsize ratio A now depends on the size of the splitting error and is 
given by 

(2.11) A= b 

so that 

w(T) 
WTSM 

for the time split method (2.4a, b).If a < b3 (e.g., when Af and As commute), then 
(2.1 1) gives A 1/ lb and 

(2.12) W(T) = b2WTSM 
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When WTSM W this is better than (2.8) by a factor of e2, meaning greatly 
improved efficiency. Note that when a = 0 the only error incurred is the error in 
using Lax-Wendroff on the slow scale. From our previous discussion of Lax-Wendroff 
it is clear why A = 1 /b is optimal in this case. 

On the other hand, if the splitting error is as bad as (2.9) indicates, then a = a2b 
and X 1 l/a in (2.11) giving 

abWTSM 

()3T 

This is still an improvement over (2.8), although now only a factor of E. Note that 
now A is chosen appropriate to the fast scale, even though the fast part of the 
problem is solved exactly, in order to reduce the error due to splitting. Indeed, if we 
try to use A = 1/b when a = a2b, we obtain no improvement over (2.8). For this 
reason it is advisable to always use small time steps with the time-split method 
(2.4a,b) unless Esplt(k) is known to be very small, in which case even greater 
efficiency is achieved by using larger time steps. 

Now consider the method (2.4a, c) where Lax-Wendroff is used for both opera- 
tors. In this case WTSM = W, + mWf where Wf is the work required to apply 
Lax-Wendroff on the fast scale. We are assuming that Wf < Ws z W. We will take 
m Aa as suggested in (2.6). Using (2.5c) we find that 

k I1Espit (Es( k )u + 2Ef(k/2)u11 I 2(a + b3 + b/A2 + a3/m2 + a/A2). 

We then obtain 

(2.13) W(T; A) = A(a + b3+ b/A2 + 2a/A2) Ws faW 6T 

Ws + AaWf 
PtA(ca+ b3 +2a/A2) 6r for (2.4a, c). 

The optimal X now depends on the relation between Wf and Ws and is more difficult 
to solve for. We will discuss three possible choices of A: A = 1/a, A= l/b, and 
A=<- l/V/ab. 

When A = 1/a, m = 1 and we are simply alternating between LW(Af, k) and 

LW(As, k). In general we would not expect this to be any more efficient than using 
the unsplit method LW(A, k). Indeed, we find that 

w(T; 1/a) t ((a + b3)/a + 2a2) . + Wl t a2 
Ws + Wf 

regardless of the size of a. This is better than (2.8) only if Ws + Wf < W, which is 
generally not the case for the problems we are considering. (Note that this is the 
case, however, in the LOD method, where we alternate between solving one-dimen- 
sional implicit problems in different space dimensions.) 

For A = 1/b increased efficiency is possible if the splitting error is small. From 
(2.13), 

W(T; I/b) (a/b + 2b2 + 2ab) W + ai 
6+ 

Ws+ aWflb 
-(alb +2ab) S6T 
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Suppose that Wf + -WJ = yW for some y < 1/2. Then W, + aJWf/b = yaW/b, and 
so 

(2.14) w(T; 1/b) = (al/b2 + 2a2) yW 

This is better than (2.8) whenever a < ab2/y. In this case the time-split method is 
more efficient. For example, if a = 0, (2.14) is better than (2.8) by a factor of y. 

Unfortunately, if a = a2b as in (2.9), then 

a (Js + aWf/b) 
W(Tr; 1/b) 

which is no better than (2.8) and may be worse if Wf > -W. 
Now consider an intermediate stepsize ratio, A =1/ VaE. From (2.13), 

W (T; I/ ab I(a + 2a 2b)W 6abWf 
Vab 6T 

a3/2bl/2 WS X f a2W+ 
a b f 

2T ~~~~2T 
regardless of the size of a. This is better than (2.8) if Wf + X, W, < 2 W, which will 
generally be true. 

We conclude that the method (2.4a, c) is more efficient when A is chosen correctly. 
If the splitting error is known to be small, then A = 1/b can be used. Otherwise 
smaller time steps should be used, e.g. X = 1/ 4. Very small time steps, X = 1/a, 
should never be used. 

Here we have not dealt with the advantages of the split scheme resulting from the 
possibility of choosing the stepsize ratio on each scale so that the k3 and kh2 terms 
in each of the Lax-Wendroff errors nearly cancel out. When this can be done, the 
splitting may be even more advantageous than indicated here. 

Block Triangular Systems. Since the efficiency of the split scheme is limited 
primarily by the splitting error, it is interesting to investigate how this error depends 
on the coupling between fast and slow scales in a simple model system. Suppose that 
the matrix A is of the form (1.10) with II A12 11 a a <- 1 and that the splitting (1.11) is 
used. Here A12 is the coupling between fast and slow scales. If A12 = 0, the problem 
is uncoupled and ESpt(k) = 0. In general, from (2.2), 

E k3 [o Al( AIIA12 - 2A12A22)] a3 + O(k4). 
0 ~~~0 

Thus II Espli,(k)u11 ak3/24c2. The efficiency of the splitting depends on the size of 
a. In the notation used above, we have 

a1/e, b 1, a- a2b. 
4 

For unsplit Lax-Wendroff, (2.8) gives 

1 W 
(2.15) w(T) = 

I W 
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The time-split method (2.4a, b) is always more efficient if we choose 

(+ a a2b )l A 4 

For example, if a 1, we should use X 2/a = 2E in order to reduce (2.15) by a 
factor of e. The maximum efficiency indicated in (2.12) is achievable only if a < E2 
in which case taking X = 1 reduces (2.15) by a factor of E . 

Reducing the Splitting Error. For block triangular systems in which A12 is not 
sufficiently small, it is possible to reduce the coupling through a change of variables 
so that the optimal efficiency can be achieved. A change of variables amounts to 
replacing u by u- = Bu for some nonsingular matrix B. The system ut = Aux then 
becomes ut = BAB-iu-x. Clearly, if B is chosen to be the eigenvector matrix of A, 
then the problem completely decouples into independent scalar equations. We are 
seeking something less expensive which only decouples the fast and slow scales. Thus 
we want a matrix B such that 

(2.16) 1 l 
O C22 

with II C1 II II C22 II 1. In the block triangular case, it suffices to consider B of the 
form 

B =[' 2] B2=[' -B12] 

Then 

BAB l [-A -AAB12 + A12 + B12A22] 
0 A22 

and so B12 should be chosen to solve 

(2.17) 1 AB-B2A22 = A12 

in order to completely decouple the fast and slow scales. 
In the present context solving for B12 from (2.17) is not worthwhile. In order to 

achieve optimal efficiency we need only reduce the coupling by one or two factors of 
e. Further reductions do not gain anything once the Lax-Wendroff errors dominate. 
This suggests taking 

(2.18) B12 = EA-'A12' 

so that 

BAB-i= [ 1 12 

o A22 

where 

A(A2) = 12 22- 
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We now have IIA() II ea provided IA 1 1. The coupling is thus reduced by a 
factor of - through the use of a very simple change of variables. The above process 
can be repeated to obtain additional factors of e. This change of variables has been 
suggested by Kreiss [9] in a similar context. 

For full systems of the form 

A [A: A12 

A21 A22 

we can obtain a similar reduction in the size of both off-diagonal blocks and again 
reduce the splitting error by several orders of magnitude. In this case we consider B 
of the form 

B_ I K][I ohdI?KL K] 
[O I ]L I] L I] 

It is easy to verify that the lower corner of A is annihilated by taking L to satisfy 

LA-A22L-LA12L + A21 =0. 

The matrix K can then be chosen as before to remove the remaining upper corner. 
This results in a system of the form (2.16). This particular transformation is 
discussed more completely by O'Malley and Anderson [141. Again, however, we are 
not interested here in completely annihilating the corners, but rather in reducing 
them by a factor of e. This is easily accomplished by taking 

K eA-'A12, L = -eA2 Al-' 

Example 8.1 in Section 8 illustrates the use of the change of variables for a triangular 
system. 

3. Stability of the Time-Split Method. In this section we investigate the stability of 
the time-split method when applied to a constant coefficient problem on the entire 
real line, -oo < x < ox or, alternatively, on a finite interval with periodic boundary 
conditions. When Qf2(k/2) = Qf (k), as is true for the splittings (2.4), for example, 
Cauchy stability of the Strang splitting (1.8) is equivalent to stability of the first 
order splitting 

(3.1) U = Qs(k)Qf(k)Un. 

For simplicity we restrict our attention to this splitting and set Q(k) = Qs(k)Qf (k). 
In general the stability of Qs(k) and Qf(k) does not imply stability of Q(k). 

Instead stability must be checked directly. In fact, (3.1) can be unstable even when 

Qf (k) and Qs(k) are exact solution operators for well-posed hyperbolic problems as 
the following example shows. 

Example 3.1. Let 

f [O -1 ] [ I 0] 

Then the problems ut = Af ux, ut = Asux, and ut = (Af + As)ux are all well-posed, 
strictly hyperbolic problems for any value of the parameter [. Let 

Qf(k) = exp(kAfaj), Q5(k) = exp(kA,a_). 
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and let G (4, k) and G,(4, k) be the corresponding amplification matrices. For the 
exact solution operators, 

Gf1( k) = exp(ik4Af) 4e ei k] 

and 

Gs(4, k) exp(ik4As) [cos k4 i sin k4 
i sink4 cosk4 ] 

We have p(Gf (4, k)) = p(Gs(4, k)) =1 for all 4 and k. On the other hand, the 
amplification matrix G(4, k) for the time-split method (3.1) has p(G(4, k)) =1 for 
all 4 and k only if I y I2. When I y I > 2, the method is unstable. Figure 3.1 shows 
graphs of p(G(4, k)) for y = 5, 10. 

In spite of this example, there are some very important classes of splittings for 
which the individual stability of Qf (k) and Qs(k) does imply the stability of Q(k). 
It is useful to delineate such classes, since the stability of Qf(k) and Qs(k) is often 
easy to determine, whereas the stability of Q(k) may be quite tedious to determine 
directly. 

_, I -- , - I I I - 

10 

8 ~ ~ ~ \ I \ 
8/ / / 

6 ~I 
I 

-2 0 2 
FIGURE 3.1 

Spectral radius of the amplification matrix G (4, k) of Example 3.1 for t - 5, 10, 
as a function of 4k between -7T and 7 

Block Triangular Systems. One such case is the block triangular system of 
equations 

A12 U 

LV J tL ? A22 V x 

with the splitting (1.11). The solution v does not depend on u. In solving for u, the 
computed v enters essentially as a forcing function. The schemes Qs(k) and Qf(k) 
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will be of the form 

(3.2) QQ(k)] Qf (k) [Q11(k) O 

Suppose that Qll(k) and Q22(k) are stable schemes, and in particular, that there 
exist a norm 11 11 and a constant a > 0 such that 

(3.3) 1 1QI (k)II < 1 + ak for all k sufficiently small. 

All of the following estimates will be in this norm. We also suppose that 

(3.4) 11 Q12(k)V 11 < kM 11 D+ V 11 

for some constant M. These assumptions are satisfied for the methods (2.4) provided 
the Lax-Wendroff operators are stable. We then have the following theorem. 

THEOREM 3.1. Suppose Qf (k) and Q,(k) are stable schemes as above. Then the split 
scheme Qs(k)Qf(k) is stable for smooth initial data V?. More precisely, we obtain 
bounds for the solution which depend on a discrete Sobolev norm of the initial data, 

(3.5a) 11 Un 11 s KT(II U? 11 + 1I D+ VO 110 

(3.5b) 11 Vn 11 s KTH V?ii, 

for nk < T. Here KT and KT are constants depending only on the fixed time T. 

Proof. When the full scheme Un+l = Qs(k)Qf(k)Un is written out we obtain 

(3.6a) Un+1= Q11(k)Un + Q11(k)Q12(k)Vn, 

(3.6b) vn+l = Q22(k) Vn. 

The bound (3.5b) follows immediately from (3.6b) and the stability of Q22(k). 
Moreover, by linearity, an identical bound holds for the linear combination of 
solutions D+ vn, i.e., 

ID+ V KT II D+ Vo 11. 

Using this together with (3.4) in (3.6a) gives 

11 Un+l S IQ11(k)II(IIUn 11 + kMKTIID+ V0 11) 

When iterated n times this gives 

(3.7) IUn 11 s IIQ11(k)IInIIU0II + kMKT(IiQll(k)IIn-1 

+II11Q(k)lln-2 + - - + 11 Q11(k)II + l)ii D+ VO 11. 

By (3.3), 11 Ql(k)I" n S (1 + ak)n < eaT if nk < T. Using this in (3.7) gives 

ii Uni 11 '(1U1 TMKTID 0i ,-U 1 eaT(11 U? 11 + T IK 1 D+ VO 11) 

for nk s T, which is of the desired form (3.5a). D1 
Simultaneously Normalizable Matrices. Stability also follows directly when Af and 

As are normal matrices (a normal matrix is one which commutes with its transpose). 
This includes, for example, symmetric matrices and scalar problems. In fact, it 
suffices that Af and As be simultaneously normalizable, i.e., that there exist some 
nonsingular matrix S such that SASS- and SAf S - are both normal. Thus, the case 
of simultaneously diagonalizable Af and As is also covered. This is a consequence of 
the following, even more general, theorem. 



484 RANDALL J. LEVEQUE AND JOSEPH OLIGER 

THEoREM 3.2. Let A1, A2,... ,Am be constant matrices. Approximate each solution 
operator exp(k Aj8x) by some operator Qj(kj) with amplification matrix Gj(t). 
Suppose there exists some norm 11 * for which 

(3 .8) 11Gj()1 < I V(, j = 1, 2, ..., m M. 

Then the scheme 

(3.9) Un+1 = Ql(k1)Q2(k2) ... Qm(km) Un 

is stable. 

Proof. Let G(4) = Gj(.)GAO ... Gm(4) Then powers of G(4) are uniformly 
bounded in the norm 11 *1 since 

11G()l <6 11 G(t) 11 n s (11 Gj(t)l*** 11 ()l s1 

It follows that (3.9) is stable. LI 

COROLLARY. Suppose there exists some nonsingular matrix S such that SAjS-1 is 
normal for j = 1, 2,. . ., m, and that the amplification matrices Gj (/) satisfy 

(3.10) (i) p(Gj(()) s 1 V4, j = 1,2,.. .,m, 

(ii) SGj( )S-' is also normal for all (, j = 1, 2, ..., m. 

Then the scheme (3.4) is stable. 

Remark. Condition (3.10ii) is satisfied if Qj(kj) is the exact solution operator or 
one or more steps of Lax-Wendroff. 

Proof. Since the 2-norm of a normal matrix is equal to its spectral radius, 
conditions (3.10) give 

IISGj()S-' 112 p(SGj(()S-1) = p(Gj(()) < 1. 

It follows that the hypothesis of Theorem 3.2 is satisfied in the norm 11 defined by 

IAlII = IISAS- 112. 

This completes the proof. C1 

4. The Leapfrog Duhamel Method. As mentioned in the introduction, the time-split 
method does not immediately lend itself to use with multilevel difference schemes. 
We now present a new method with the same basic philosophy as the time-split 
method but which uses leapfrog on the slow time scale. 

Using Duhamel's principle (i.e., variation of parameters) we can write the solution 
to (1.3) as 

u(x, t + k) = exp(2kAfa,)u(x, t - k) 

+ +k exp((t + k - T)Af a)Asu(x, T ) dT. 
tk 

If we now approximate the integral by the midpoint rule, we obtain 

u(x, t + k) exp(2kAfaj)u(x, t - k) + 2kexp(kAfax)Asuj(x, t) 

- exp(kAfax)[exp(kAfax)u(x, t - k) + 2kAsux(x, t)]. 
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Replacing ux(x, t) by the standard centered difference operator and approximating 

exp(kAf ax) by Qf (k) gives the Leapfrog Duhamel method, 

(4.1) Um+' = Qf (k) Qf (k) Umn ' + -A (m+l m_l) (4.1) m +h 

The term inside the brackets is essentially leapfrog for the problem u =Asux since 

Qf (k)Un-1 texp(-kAsax)U . If Qf(k) is an 0(k3) approximation to exp(kAfax), 
then (4.1) provides an 0(k3) accurate approximate solution, even for noncommuting 

Af and As. This will be shown in Section 5 where the method is analyzed in more 
detail. 

We pay a price for using a scheme involving three time levels, since (4.1) requires 
two applications of the operator Qf (k). One of these is needed only to provide the 
proper values at time n - 1. Nevertheless, this method may be useful, particularly in 
cases where exp(kAfax) is known exactly and is easy to apply. 

5. Accuracy of the Leapfrog Duhamel Method. The Leapfrog Duhamel scheme can 
be analyzed in terms of the error in the midpoint rule directly from its derivation. 
We prefer to build upon the results in Section 2 by rewriting Leapfrog Duhamel as a 
splitting. 

First consider the standard leapfrog scheme on u, = Asux, 

Un+1 = Un- 1 + 2kAsDoUn. 

The truncation error is given by 

[u(x, t - k) + 2kAsDou(x, t)] - u(x, t + k) 

=[(I + 2kAsDoexp(kAsax)) - exp(2kAsax)]u(x, t - k). 

For conformity with Section 2, we define the operator Qs(2k) by 

Qs(2k) = I + 2kAsD0exp(kAsa3). 

Note that this is not the actual finite difference operator for leapfrog, since in 
general Un is not exactly equal to exp(kAsax)Un-1, but it is the proper operator for 
computing the local truncation error, in which Un- 1 and Un are replaced by the true 
solution values. We can now define the truncation error operator for leapfrog on 
stepsize k by 

(5.1) ELF(k) = Qs(2k) - exp(2kAsax) = 0(k3). 

The Leapfrog Duhamel scheme is 

(5.2) Un+1 = Qf(k)(Qf(k)Un-I + 2kASDOUn), 

where Qf (k) is some approximation to exp(kAf ax) with error operator 

Ef(k) = Qf(k) - exp(kAfax) = 0(k3). 

To obtain the truncation error for Leapfrog Duhamel we replace Un-1 and Un by 
u(x, t - k) and u(x, t) in (5.2). The right-hand side then becomes 
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(5.3) Qf (k)[I +2kA,Doexp(kAa_,)Qf-'(k)]Qf (k)u(x, t-k) 

- Qf(k)[I + 2kAsDoexp(kAsa.) 

+2kAsDo(exp(kAaj)Q-'(k) - exp(kAsa.))]Qf(k)u(x, t - k) 

=[Qf (k)Qs(2k)Qf (k) + 2kQf (k)AsDo 

X(exp(kAax) - exp(kAsa_)exp(kAfax) - exp(kAax)Ef(k))]u(x, t - k). 

Thus the Leapfrog Duhamel operator can be viewed as a splitting of the form 

Qf(k)Qs(2k)Qf(k) plus some additional error terms which are 0(k3). Let ESIplit(k) 
denote the error operator for the first order accurate splitting 

Esplit(k) - exp(kAax) - exp(kAsax)exp(kAf ax) = 0(k 2). 

Observing that 

exp(kAsax)Ef (k) = 0(k3), Qf (k) I + 0(k), Do = ax + 0(k2), 

the operator in (5.3) becomes 

Qf(k)Qs(2k)Qf(k) + 2kAsaxEs'pjt(k) + 0(k4). 

Using (2.3) we obtain an expression for the truncation error operator for Leapfrog 
Duhamel, 

ELFD(k) = (Qf (k)QS(2k)Qf (k) + 2kAsaxEgplt(k) + 0(k4)) - exp(2kAax) 

=Esplit(2k) + ELF(k) + 2E (k) + 2kAsaxEs4Ipt(k) + 0(k4). 

For As and Af constant we have 

EIltk 1 + 
Espht(k) 

- 
2k2(A A -AA )a2 + 0(k3), 

so 

Esplit(2k) + 2kAsaxEsp,lt(k) 

= - k3(f2As2A fAsA f + ASAf + A2A + AsAfA 2) aX3. - >~~~~~~~~ fsf 2 A 
The splitting error in Leapfrog Duhamel is thus roughly 8 times as large as the 
corresponding error in the time-split method with Lax-Wendroff. The work compari- 
sons of Section 2 can be repeated for Leapfrog Duhamel with simlar results. 

6. Stability of the Leapfrog Duhamel Method. At present the stability analysis for 
Leapfrog Duhamel covers only the case in which A1 and As are simultaneously 
diagonalizable, 

XA Xf =Mf, XAsX1 =Ms 

where Mf and Ms are diagonalizable matrices. We assume that Qf (k) is stable and is 
also diagonalized by X. This is true for Qf(k) = exp(kA8ax) or for Qf(k) = 

(LW(A1, k/rm))tm with p(Af )k/mh < 1. Let qf (k) be a single diagonal element of 

XQf(k)X' and ,Its a diagonal element of M. It suffices to consider the scalar 
equation 

(6.1) + I q7(k)Un-l + 2kq(k)D0Un 
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Let gf (() be the amplification factor corresponding to qf (k). By assumption, 

gf (() I < I for all t. 

THEOREM 6.1. Suppose I X ?u s 1, where X = k/h. Then the amplification factor 

g(t) for the scheme (6.1) satisfies 

I g() lI= I gf (0) I 

Proof. The amplification factor is derived by letting 

Un = gn( )eitmh 

in (6.1). We obtain the equation 

g(() = gf(t)g (t) + 2iXgf (()js sin th, 

which can be rewritten as 

(g(t)gj())2 - 2iXs sin h(g(t)gl(O)) -1 = 0. 

Solving this quadratic equation yields 

g(t)gf-l() = iXI,s sin th 1+- VI XVI2 sin2 h. 

If I XIs I < 1, the square root is real and so 

g()gl'(O)2= 1, 

and hence 

Ig(O) I= Igf (0 I 

as claimed. C 
Note that when the exact solution operator is used for qf (k) we have gf1() = 1 

and hence I g(t) l= 1 for all (. In this case Leapfrog Duhamel is nondissipative. 

7. Boundary Data for the Intermediate Solutions. For general initial boundary 
value problems we must be able to generate the appropriate boundary values for the 
intermediate solutions which arise in the use of a split scheme. We have developed a 
general methodology for defining the proper boundary data which will be illustrated 
here for constant coefficient problems at an inflow boundary. More general prob- 
lems can also be handled, as will be reported on elsewhere. The procedure will be 
demonstrated for the time-split method (2.4a, b), but can also be used for the other 
methods previously described. 

First consider the scalar problem 

(7.1) ut - (1 + E)u, x > O, t > O, 

u(O, t) = g(t), t > O, 

with the splitting 

Af = -l As =-E. 

Take k = 2h and use the method of characteristics solution for Af and Lax-Wendroff 
on As. There is no need to use a Strang-type splitting, since the operators commute, 
and thus the split scheme is simply 

(7.2) U* = Umn-2 m = 2,3,... 

UIn+ I 
U* - _(+ -) + 2 - T + m- =12. 
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The value of UO"+l is given by the boundary conditions, 

Uo = g(tn+1)- 

For the splitting (7.2) we must also provide UO* and Ul*. In general, with k = ph for 
some integer p > 1, we would need to supply UO*, Ut*, . . ., Up*_ I. 

In order to generate boundary data we consider U,* as an approximation to 
u*(Xm, tn+1), where the continuum function u*(x, t) satisfies 

(7.3) U* = -u* x > O, t > tn, 
Ut -x,n 

U*(X, tn) = U(X, tn), X > 0. 

Then, using the differential equations governing u and u*, we can express UO and 

Uj* in terms of g(t). Consider UO*. We want 

(7.4) UO* = u*(0, tn + k) 

u*(0, tn) + ku*(O, t k) + 2 k2u*(0, t") + 

u*(O, tn) k tn) + 2 k2 uXX(0, tn) + * - 

Here we-used (7.3) to express u* in terms of u*. But since u*(x, t") = u(x, tn) for all 
x, this relation can be differentiated with respect to x, giving u*(x, tn) =u(x, t-) 

and similarly for higher derivatives. So (7.4) becomes 

UO* = u(O, tn) - kux(O, tn) + 
I 

k k2U xx(0 tn) + 

We can now use the original equations (7.1) governing u to rewrite this in terms of 
t-derivatives of u. Since 

au 

1+ E atu jO 

we obtain 

(7.5) UO' = u(O, tn) + 1 + u,(O, tn) + 2( 1 + )Utt(O t) + 

= U(0, tn + k/ (I + e)) g(tn + k/l( + +)). 

This is the desired boundary data. 
For such a simple example it is easy to verify that this is the correct boundary 

value. According to the scheme (7.2) we would really like 

U0* = Vn~2 =u(-2h, tn). 

Of course u is not officially defined for x < 0, but using the differential equation 
(7.1) it can easily be extended from the boundary. Since (7.1) has characteristics with 
slope 1/(1 + e), we find that 

u(-2h, tn) = u(O, tn + 2h/ (I + E)) = g(tn + k/ (1 + e)), 

exactly as in (7.5). 
We can compute Uj* in the same manner. We want 

Uj* = u*(h, tn+?) = u*(O, tn+l/2), where tn+1/2 = tn + k/2. 



NUMERICAL METHODS FOR HYPERBOLIC EQUATIONS 489 

We now proceed as before, 

(7.6) Uj* = u*(0t tj) + 2ku*(, tj + 
I 

k2U*(, t) + 

= u(0, tj) - kux(O, tn) + 8 xx(0 tn) + * 

= u(0 tn) + 2 UJO +e tn0 ) + 8 
- 

UJO utn(,t) + 

=g tn + 2 kl (I + E)) 

To summarize our procedure, we switched from t-derivatives of u* to x-derivatives 
of u*. Since these were evaluated at time tn, they were identical to the corresponding 
x-derivatives of u. We then switched back to t-derivatives of u along the boundary, 
which allowed us to use the known boundary conditions for u. Clearly this 
procedure will not work so neatly when we deal with variable coefficients, systems of 
equations, or inflow-outflow boundaries. Nonetheless, these same ideas, combined 
with a little ingenuity, lead to sufficiently accurate approximate boundary conditions 
for a wide variety of problems. 

Constant Coefficient Systems. Next consider the system of equations 

(7.7) ut Aux (Af + As)ux, x > O, t > 0, 

u(0' t) = g(t), t >: 0. 

We assume that A and Af have strictly negative eigenvalues. In general Af and As do 
not commute, so we will have to use a Strang-type splitting. There will be at least 
two intermediate solutions, say 

(7.8) U* exp( kAfax) u , 

U** -- exp(kAsax)exp( 2 kAfa) Uax 

Of course there may be many more if exp(4kAfax) is itself approximated by several 
steps of Lax-Wendroff, but they can be handled similarly. The general principle 
should be clear from considering (7.8). 

Again let u*(x, t) be a continuous function satisfying 

(7.9) u* = AfU* x0, t t>, 

u*(x, tn) = u(x, tn), x 2 0. 

We then want 
(7.10) Uo = u*(0, tn+l/2) 

= u*(0, tn) + 2 4ku*(0, tn) + 8 tk2ut(0, tn) + * 

U(0, tn) + 2kAfUX(O, tn) + 8k Af xx(? tn) +* 

= u(0, tn) + 
I 

kAfA-lut(O, tn) + 8k2A2A-2 utt(O, tn) + * 

= g(tn) + 
I kAfA'-g'(t) + f On) + 
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We assume that the boundary is noncharacteristic so that A is invertible. In general 
UO must now be approximated by the first few terms of (7.10). If we keep only the 
first two terms, we will have boundary data with 0(k2) errors. This is sufficient to 
retain the 0(k2) global accuracy of Lax-Wendroff; see Gustafsson [7]. It may, 
however, increase the error constant considerably and partly offset the benefit 
obtained by using the split scheme. Consider, for example, a case in which 11 Af 11 t I 
and II A, e. In this case the error ETSM(k)u is like ck3 at most and the resulting 
global error, assuming u is smooth, will be like Ek2. In order to achieve the same 
accuracy in the boundary data we will have to include the third term of (7.10) as well 
(or at least its dominant part). In some such cases it happens that 

AfA-J-I + 0(E) forj = 1, 2,.... 

We can then retain O(Ek2) accuracy simply by taking 

UO = g(tn+112) + Ik(AfA1 - I)g'(tn). 

This will be illustrated in Example 7.1. 
Now to find boundary values of U**. The easiest way to proceed is to note that 

U* * I 
x kf ax )Un+ 1, 

which prompts us to define u**(x, t) as the continuous solution to 

(7.11) U**(x, t) = AjU**(x, t), x > 0, t < t 

U**(x, tn+?) = U(x, tn+?), x > 0. 

We now solve this backwards in time for 

UO** = U** (0, tn+ 1/2). 

Proceeding as in the derivation of (7.10) we obtain 

UO* *=g(tn+ I - IkA fA-lg'(tn+ ) + Ik24 2A-2g"(tn+ I) + 2 8 fAg(~1 . 

tg(tn+112)- 

I 
k(AfA1 -I)g (tn+l) 

Example 7.1. Consider 

[ V ] t[ 2 ] V ] x 0 < X < 
I I t -> O, 

ui(x,IO) = f(x), O < x < 1 

u(O, t) = g(t), t '~> O,1 

where ui = (u, v)T. We have chosen a strip problem to illustrate that outflow 
boundaries are frequently trivial to handle with a split method. Take 
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For this problem the splitting error is 

6113[ 

E 2 E} E2 

If we use the time-split method (2.4a, b) then, according to (2.11), the optimal 
stepsize ratio is 

At | l 6 t~2, 
- + ? 
4 

where E max j. For k = 2h and h = I /M, (2.4a, b) becomes: 

Um* = Un_l m = 12, ...,9M, 

Vm* = Vn, - 2 m = 2, 3,...,M, 

UM** = LW(As, k)U*, m = 1,2,...,M-1, 

ULn? =( 

Vn+ = ** m = 2,3,...,M, 
mn+1 Vm**2, =,,..M 

Notice that no boundary conditions whatsoever need to be specified at the outflow 
boundary x = 1. On the inflow side we still need to specify U0, VI, U**, and J/1+ I 

For this problem, 

A2A -2 1 [4 + ee2 3E ] +0(e) 
f 

(2 - E1E2 )2[ 12E2 4 + 4E1E2 j 

and we can retain 0(ek2 ) accuracy by taking 
__ 1 

(7.12) UO* = g(tn+172) + -k(AfA' 
- I)g'(tn) 

k 

= g(tn+1/2) + 
2(2 -ee2) [2e2 El2 jg'(tn) 

Similarly we use 

UO* = (tal+1/2) - -k(AfA-1 - 1)g(tn+l)- 

In order to implement the split scheme, we also need V, and Vln+*. We want 

VI*= v*(h, tn+?12) = v*(0, tn+?14), and so the appropriate value comes from the 
second equation of 

d*(0O tn+1/4) g(tn+1l4) + Ik(AfA-1-I)g'(tn), 

i.e., 

VI* 92( n+1/4) + 4(2 
k 

e1e2) 
(2e2g'(tn) + -e12g2(tn)), 
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where g =(g1, g2)7. Similarly, 

VI"+ 92(tn 3/4) 
- k - (2E2gf(tn 1) + E1e2g2(t +1)). I g2 nJr3/4 4(2 - EIE2) 

?8g + 

Computations confirm that these boundary conditions preserve O(ck2) global 
accuracy in the split scheme. Actually, for this particular example with k = 2h, even 
greater accuracy can be achieved. Computing Es(k) from (2.5a) shows that the 
O(ek3) terms exactly cancel the O(ek3) terms in ESplit(k), and that the total 
truncation error ETSM(k)u is actually 0(e2k3), giving O(E2k2) global accuracy. 
Higher order boundary conditions can be derived which maintain this accuracy, but 
this cancellation of errors is a fluke which does not occur in general. 

Stability for the Initial Boundary Value Problem. The boundary approximations 
derived here all depend only on the given boundary function g(t) and its derivatives. 
Suppose the time-split method used in the interior is Cauchy stable. Then the 
stability of the resulting scheme for the initial boundary value problem follows 
directly from the theory of Gustafsson, Kreiss and Sundstrom [8], if we modify their 
stability definition 3.3 by using an appropriate Sobolev norm of the boundary data 
on the right-hand side. 

8. Computational Results. In this section we give various examples of splittings 
and present the results of some numerical experiments. The first example is a 2 X 2 
upper triangular system of the form (1.1 1). We demonstrate the effects of the 
splitting error and its reduction by the use of a simple change of variables as 
discussed in Section 2. 

The second example is a variable coefficient scalar equation in which the coeffi- 
cient has small variations around some large mean value. We give an expression for 
the splitting error in such problems. 

In Example 8.3 we consider the one-dimensional shallow water equations. In some 
cases this system can be broken up into a constant fast part and a quasilinear slow 
part in conservation form. 

Example 8.1. This problem is designed to illustrate the effects of the splitting 
error. Consider 

(8.1) u=[ 0 Ifux forO<x l,t O, 

with initial conditions 

U1(X,O) = U2(X,O) = e-100(x- 1/2)2 

and periodic boundary conditions 

Ui(0, t) = uj(l, t), t ~> 0,j = 1 , 2. 

Figure 8.1a shows the results after 236 times steps using Lax-Wendroff with 
h = 1/50 and k = h/l0 on the unsplit problem. Figure 8.1 b shows the results based 
on the splitting 

A [0 n ], A 0[g 11 
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We used k = h = 1/50 with 

Qs(k) = LW(As, k), Qf (k/2) = (LW(Af, k/ 10))5. 

In this case E,(k) = Ef (k/2) = 0 by a judicious choice of k/h and m. The second 
component u2 is computed exactly, and the errors in ul are due entirely to the 
splitting error. 

If the change of variables suggested in (2.18) is applied twice to (8.1) with E 0.1, 
we obtain the new variable 

U = U- (E + e2)u2 = U- 0.11u2, 

and (8.1) becomes 

[U, 10 0.01 ][Ui 

If we solve this system with the same split scheme as before and then transform back 
to the original variables by ul = Ii- + 0.1 Iu2, the errors in uI are reduced to 0(10-3) 

as seen in Figure 8.1c. 
The Leapfrog Duhamel scheme can be applied to this system with similar results. 

The same change of variables can clearly be used to reduce the splitting error in this 
scheme as well. 

Example 8.2. For problems of the form 

t= (a + a(x))ux 

with a constant and I a(x) Ia <I, the splitting error operator corresponding to 

Af = a, As = a(x) is 

ESplht(k) = exp( Ikaax)exp(ka(x) ax)exP( Ikaax) - exp(k(a + a(x)) ax) 

- - 1k3a(( 1 a + a(x))a"(x) - (aX(x))2) a + 0(k4). 

For the Leapfrog Duhamel scheme the splitting error is 

ESplit(2k) + 2ka(x) aXESPlit(k) 

- ESplit(2k) + 2ka(x) ax( 
I 

k2aa'(x) ax + 0(k 3)) 

- - 3 k3a[(2a + a(x))a"(x) - 4(a'(x))2 - 3a(x)a'(x) ax] ax + 0(k4). 

The Lax-Wendroff and leapfrog errors on ut = a(x)ux are, respectively, 

ELW(k) = 4k3a(x)[a2(x) aX3 + 3a(x)a'(x) ax2 + ((a'(x))2 + a(x)a"(x)) ax] 

+ kh2a(x)a3 + 0(k4) 6 

and 

ELF(k) = 2ELw(k) + 0(k4). 
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For the test problem, 

u, = (1 + 0.1 sin(2vx))ux on [0, 1], 
u(x,0) sin(4vx), 0 x ? 1, 
u(O, t) = u(l, t), t 0, 

a comparison of the errors shows that the splitting error for either scheme with 
k = 4h should be of roughly the same size as Es(k) and considerably smaller than 
the error for the unsplit operator with the same spatial step and reduced time step 
k = h/2. Thus we expect the split scheme with the true solution operator used on 
ut= ux to be more accurate than the unsplit scheme. This is confirmed by the 
computational results in Table 8.1. Note that in this case the improved accuracy was 
obtained using only about one-eighth the work required for the unsplit scheme. 

If Lax-Wendroff is used on the fast scale, Qf (k/2) = (LW(Af, k/8))4, the 
corresponding error 2Ef(k/2) is roughly the same size as the error in the unsplit 
scheme. This error dominates in the resulting split scheme, and so we get roughly the 
same accuracy as in the unsplit scheme. This is also illustrated in Table 8.1. 

Example 8.3. The one-dimensional shallow water equations can be written as 

(8.2) t V[X 

where v(x, t) is the velocity and 4 = gh with h(x, t) the height and g the gravita- 
tional constant. Typically O(x, t) = + 4'(x, t), where 4 is constant and 

I4'(x,t) I<II, I?V(X1tk 
With the change of variables 

u(x, t) = '11/2V(X t) 

the system (8.2) becomes 

u]41/2[ u 

[?]t [+ + O' U] ] x 

The natural splitting is then 

Af = -0 / 9 A(u (PI X/[? 

We have HA s I IK< II1 Af I1. The matrix Af is constant and the method of characteristics 
can easily be used for Qf (k/2). Furthermore, the problem on the slow scale can be 
written in conservation form. Since kx = ox, we have 

As [U]= -1/2 I 212] 

For the numerical experiments we used the initial conditions 

u(x, O) = 0, 

O(x, 0) = 16 + 0.1 sin(2rrx), 0 s x s 1, 

rnd took 4= 16. We again used periodic boundary conditions and compared 
Lax-Wendroff on the unsplit problem with k = h/20 to the split scheme with k = h 
n the slow scale and the method of characteristics for Qf (k/2). For h = 1/100 the 
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results are shown in Table 8.2. Again the split scheme outperforms the unsplit 
scheme. The errors were reduced by a factor of 100, while at the same time the work 
was reduced by roughly a factor of 10. 
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FIGURE 8.1 

True and computed solutions at t= 1.72 for Example 8.1. The first 
component, u1, is on the left and the second component, u2, is on the right. 
The schemes used are: 

a) top: Unsplit Lax-Wendroff 
b) middle: Time-split method (2.4a, b) 
c) bottom: Time-split method with change of variables 
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TABLE 8.1 
Max-norm errors for Example 8.2 at various times t. The schemes used are: 

* 1: unsplit Lax-Wendroff with k = h/2 
#2: Leapfrog Duhamel with k = 4h, Qf(k) = exp(kaa,) 
#3: Time-split method (2.4a, b) with k = 4h 
#4. Time-split method (2.4a, c) with k = 4h, m = 8. 

h t #1 #2 #3 #4 

1/50 0.48 6.619(-2) 1.336(-2) 2.147(-3) 6.470(-2) 
0.96 1.342(-1) 1.949(-3) 4.598(-3) 1.315(-1) 
1.52 2.058(-1) 1.414(-2) 7.193(-3) 2.016(-1) 
2.00 2.685(-1) 3.434(-3) 9.617(-3) 2.623(-1) 

1/100 0.48 1.677(-2) 3.356(-3) 5.581(-4) 1.635(-2) 
0.96 3.389(-2) 4.130(-4) 1.166(-3) 3.320(-2) 
1.52 5.314(-2) 3.365(-3) 1.845(-3) 5.197(-2) 
2.00 6.971(-1) 2.028(-4) 2.437(-3) 6.818(-2) 

TABLE 8.2 
Max-norm errors for u and 4 in Example 8.3 at various times t. The 
schemes used are: 

? 1: unsplit Lax-Wendroff with h = 1/100, k = h/20 
#2: Time-split method (2.4a, b) with k = h = 1/100. 

t # 1 #2 

0.25 3.983(-4) 2.952(-6) 
3.354(-5) 2.338(-7) 

0.50 8.059(-4) 5.882(-6) 
1.248(-4) 9.386(-7) 

0.75 1.232(-3) 8.793(-6) 
2.683(-4) 2.085(-6) 

1.0 1.687(-3) 1.166(-5) 
4.829(-4) 3.628(-6) 
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