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Computation of Faber Series With Application 
to Numerical Polynomial Approximation 

in the Complex Plane 

By S. W. Ellacott* 

Abstract. Kovari and Pommerenke [19], and Elliott [8], have shown that the truncated Faber 
series gives a polynomial approximation which (for practical values of the degree of the 
polynomial) is very close to the best approximation. In this paper we discuss efficient Fast 
Fourier Transform (FFT) and recursive methods for the computation of Faber polynomials, 
and point out that the FFT method described by Geddes [13], for computing Chebyshev 
coefficients can be generalized to compute Faber coefficients. 

We also give a corrected bound for the norm of the Faber projection (that given in Elliott 
[8], being unfortunately slightly in error) and very briefly discuss a possible extension of the 
method to the case when the mapping function, which is required to compute the Faber series, 
is not known explicitly. 

1. Introduction. Several algorithms for numerical minimax approximation which 
are applicable in the complex plane have been proposed (e.g. Ellacott and Williams 
[6]; Barrodale, Delves and Mason [2]; Blatt [3]; Gutknecht [17]; Opfer [25]; Elliott 
[8]; Streit and Nuttall [28]; Glashoff and Roleff [14], are some of the most recent). 
The earlier of these methods seem expensive computationally. Although later ones 
appear possibly to be more efficient, it is natural to look for expansion methods, 
analogous to the Chebyshev series for real approximation which give "nearly best" 
polynomial approximations when the expansion is truncated. The Faber series 
provides such an expansion (Kovari and Pommerenke [19]; Elliott [8]), and the main 
purpose of this paper is to discuss the efficient numerical computation of such series. 
(For a rather different approach to "near best" polynomial approximation, see 
Trefethen [31]; Gutknecht and Trefethen [18]). 

To make the notion of near best approximation more precise, we may employ the 
ideas of Cheney and Price [4], and Mason [24]; see also Geddes and Mason [12], and 
Geddes [13], for the application to complex approximation. Let D be a bounded, 
closed continuum in the complex plane with boundary F such that the complement 
of D is simply connected in the extended plane and contains the point at oo. We 
denote by A(D) the space of functions which are continuous at every point of D and 
analytic at every interior point. A(D) will denote the subspace of functions which 
are analytic at every point of D. Now let Pn denote the space of complex polynomi- 
als of degree < n. Given f E A(D), it is well known that there exists a unique best 
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minimax approximation pn to f from Pn, i.e. 

11S n lo <11S loofor allp EPn, 

where 11 ll denotes the uniform norm, f11 maxzED ISf(z)I 
Suppose we have a projection Cn: A(D) P, (i.e. Cn is a bounded linear operator 

which satisfies Cn( p) = p, p E Pa ). We have 

f C (Of) f -Pn + Cn(Pn -f) 
whence 

(I. 1) 1 f - Onf ) 11oo S (1 + 11 Cn lI)ll1f Pn lloo. 

Thus if II CnII is reasonably small, Cn(f ) will be almost as good an approximation to 

f as the best approximation pn (e.g., if IICn II < 9, we will not lose more than one 

decimal place accuracy in accepting Cn( f ) as an approximation to f, rather than pn). 
Bounds on the norms of the projections obtained by truncating the Maclaurin 

expansion on the unit disc, and Chebyshev series on ellipses, were given in Geddes 

and Mason [12], and Geddes [13], respectively. Elliott [8], pointed out that a natural 

generalization of these ideas to an arbitrary D is given by the Faber expansion, and 

that, moreover, the bounds given by Geddes and Mason, and Geddes, are rather 

similar (although actually somewhat sharper for the special cases considered) to 

known results on truncated Faber series (Kovari and Pommerenke [19]). We shall 

give a further discussion of these results in the next section. 

2. Definition and Properties of the Faber Series. A general description of the 

Faber series is given in Markushevich [22] (Chapter 3 of vol. 3). See also Curtiss [5]; 

and Gaier [11]. For a region* * D as defined in Section 1, we have a mapping p 

which maps the complement of D conformally onto the complement of a closed disc 

of radius p with center at the origin, and which satisfies the condition 

limze. p((z)/z = 1. Here p is the so-called logarithmic capacity, or transfinite 

diameter, of D. Let 4 be the inverse of p. 

The level curves rR (R > p) of D are the images under 4 of the circles I w = R, 
and we denote by IR the closed Jordan region with boundary FR. The nth Faber 

polynomial (pn is the polynomial part of the Laurent expansion at x of (T)n. Thus 

1 and (pn is a monic polynomial of degree n. 

Given f E A(D), the Faber coefficient an is defined by 

I_ f(4w)) 
(2.1) a dw, 

where R > p is sufficiently small that f can be extended analytically to IR. If 4 can 

be extended continuously to the boundary I w I= p (e.g. this is the case if F is a 

Jordan curve)***, then the value R = p is also acceptable. The Faber series EJ=O aJ(pi 
converges uniformly and absolutely to f on every IR to which f can be extended 

* *The term region here and elsewhere is convenient for describing D. It is not, of course, used in the 
sense of some authors to denote a specifically open connected set. 

***Here and below, where such an extension is possible, we refer also to the extended function as A. 
(The requirement that 4 be continuous, can, of course, be considerably weakened.) Similarly we do not 
distinguish between f and its analytic extension to 'R. 
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analytically. For f E A(D) - A(D), the Faber coefficient can be defined by replac- 
ing R by p in (2.1) provided the integral exists. (For a discussion of the convergence 
of the Faber series in this case, see e.g. Kovari and Pommerenke [19].) 

The Faber projection Fn is, of course, obtained by truncating the series, i.e. 
F,n(f) = >0 ajgp1. We require (compare (1.1)) bounds on IIFJII. It is possible to 
obtain at least qualitative bounds without further restriction on D (Kovari and 
Pommerenke [19]), but asymptotically sharper results as n -x o are obtained if we 
assume that P is of bounded total rotation; moreover the bounds are then easily 
made quantitative. If D is a closed Jordan region and P is rectifiable, there exists at 
almost every point z E P a tangent vector which makes an angle @(z) with the 
positive real axis. P has (bounded) total rotation V if the quantity 

V = f dO(z)I 

is finite. Clearly,V > 2 T and V = 2T if D is convex. More generally if F is made up 
of simple arcs, V is often easy to calculate. The results discussed below remain true 
for the case in which D degenerates to a Jordan arc. In this case all integrals must be 
interpreted as being along both "sides" of the arc and "round" the ends. Given any 
fixed point zo E F, we have (Radon [27]) 

(2.2) f dz arg(z - zo) I < V, 

where the subscript z signifies that arg(z - zo) is to be considered as a function of z, 
and where the jump in arg(z - zo) at z = zo is equal to the exterior angle of P at zo. 

We now give several other representations of the Faber polynomials pn which we 
collect together as a single theorem. 

THEOREM 2.1. (a) For a general region D the following representations of (Pn are 
valid. 

(i) Tpn(Z) = En=o CjZj, where 

(2.3) c f _ {g(Z)} dz, 

with R chosen sufficiently large so that D is contained in the interior of the region 
bounded by the circle I z = R. Alternatively, 

(2.4) c I= 1 r w y" 
(w)d s > p 

(ii) p)n(z) is the coefficient of w1(n+l) in the expansion at x of the generating 

function 4'(w)/(4(w) - z). 
(iii) 

n-I 

(2.5) 'Pn+l(z) = zp)n(z) - 2 bkp)n-k(Z) - (1 + n)bn, n > 0, 
k=O 

where bk is the coefficient of w-k in the expansion of +(w) at oo. 
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(b) If D is a Jordan region whose boundary F is of bounded total rotation (or for the 
degenerate case when D is an arc as described above), we have for each zo = 4( pei0o) 

(2.6) p(p(pe"()) = p 2 
j e inod0v(O, O), n > 1, 

where v(O, O0) = arg(4(pe6) - 4(peiGO)). 

Proofs. (ai) (2.3) is simply the expression for the Laurent coefficient in the 
expansion of (p)n. (2.4) is obtained by the substitution z = 4(w). 

(aii) See e.g. Markushevich [22]. 
(aiii) (2.5) is obtained by comparing coefficients in (aii). 

It may be found, for example, in the proof of Theorem 1 in Kovari and Pommerenke 
[19]; or in Curtiss [5]; but its potential usefulness as a computational device does not 
appear to have been previously considered. 

(b) See Pommerenke [26]. The proof there is given only for the case p = 1, but 
modification for the general case is straightforward. 

Theorem 2. 1(b) leads to a simple bound on II cn II o. This can be used to obtain an 
a priori bound on the error of the truncated series which is, at least in principle, 
computable. 

(For a bound on II cn II o when P is not of bounded total rotation seee Kovari and 
Pommerenke [19]). 

COROLLARY 2.2. (a) Let D and P be as in Theorem 2.1(b), and let V be the total 
rotation of P (interpreted appropriately in the case when D degenerates to an arc). Then 
we have for n > 1, 

11 Pn l pn V17T. 

This bound is best possible in the sense that when D [-1, 1], equality holds. 
(b) Iff e A(IR), R > p, we have,for n > 0, 

11 F f 1 <Mr( R) V(plR)" 

where Mr(R) = maxzEFR If(z) I 

Proof. (a) In view of the maximum principle, I p( z) I, z E D, achieves its 
maximum value at some zo E P. The bound then follows from (2.6), noting (2.2). 

When D [-1, 1], V= 2 and (see e.g. Markushevich [22, p. 106]), n= T=/2n-I 
where Tn is the nth degree Chebyshev polynomial of the first kind. For this region D, 
P = 2 and equality is indeed achieved since II Tn I ooI= 1. 

(b) follows straightforwardly from (a) and the bound j a jMf(R)/Rn (see 
Markushevich [22, vol. 3, p. 109]). 

Now we conclude this section by discussing 11 Fn 11. (Note that since A(D) is dense 
in A(D), it does not matter which space we consider here.) 

The result given below is essentially due qualitatively to Kovari and Pommerenke 
[19], and quantitatively to Elliott [8] (although not actually expressed as a bound on 
1I Fn 11). However, we give part of the proof for two reasons. First, it is not entirely 
clear in the former paper whether the authors are discussing a general region or one 
of logarithmic capacity p = 1, and in fact the proof as it stands is only correct for 
this latter special case. (It so happens, however, that the effect of a different p 
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cancels out.) More seriously, Kbvari and Pommerenke do not consider the fact that 
(2.6) is not valid for n = 0. In this case we have 

(2.7) To1 = I 2l| df2 v(O ( 0) 

Consequently, the proof requires a minor modification to deal with this case, with 
the result that the numerical interpretation of the bound given by Elliott also needs 
slight modification to the bounded part, although the dominant logarithmic term 
remains unchanged. 

THEOREM 2.3. Let D be a Jordan region whose boundary r is of total rotation V 
(with the usual modification if D degenerates to an arc). We have 

(2.8) 11FI< n n + B} n >1 

where B is a certain absolute constant which (from numerical values computed in 
Geddes and Mason [12]) has the value 1.773 to 3 decimal places. 

Proof. We recall that IIn II = SUpfcA(D); IIf1 = IIIn(f)IIoo. Thus, let fEA(D), 
1 f l o = 1. I Fn( f )(z) I , z E D, must, in view of the maximum principle, achieve its 
greatest value at some point zo 4(peiGo) E P. Thus from (2.1) 

JIF 
j~Odw1() 

IIn(f)lo =| 27T i llI + d M(pjzo)| 

1I | n Tj(Zo) dw 
2iT Jw=p j=O w1 w 

since f lo 1. Hence (2.6) and (2.7) yield 

iiF ii2f =O wI 
I 12 

e jdeHv(0, 0) dw 

where ' signifies that the first term in the sum is to be halved. Thus 

JI Fn l <272 0 z( ) Iv w I dev(05 0o)l 

The substitution w = pe-i(t-9) yields 

1w1=p y-_o pe W, dw |r W | |o| eijt dt = ( eifj) - dt, 

whence from (2.2) 

II <ii ??(+ T), wherer1 Tn~ '~e dt. 
11 n2i X ( 2 n ) n 27Tlo e - I 

The value of the integral Tn has been extensively discussed by Geddes and Mason 
[12], and in particular (2.8) follows readily from their results. 

Remark. In the case that D is convex (so that V = 2 ) we obtain immediately 
from (2.8) that II Fn II < 9 for n ? 835. 
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3. Numerical Methods for Faber Series. Elliott [8], computes the Faber polynomi- 
als for certain regions directly from the definition, i.e. by obtaining the series for p 
and then using it to compute explicitly the series for ((p)'. However, as it stands, this 
technique is not really suited to automatic computation, and we propose either the 
use of Fast Fourier Transform (FFT) methods or recursive techniques. The idea of 
using the FFT to evaluate Laurent coefficients appears to have been first proposed 
by Lyness and Sande [21]. FFT methods were also used by Geddes and Mason [12], 
and Geddes [13], to compute Maclaurin and Chebyshev coefficients. The use of 
recursive formulae to generate sequences of orthogonal polynomials on the real line 
is, of course, commonplace (see e.g. Fox and Parker [9]). The Faber series has many 
analogies with such orthogonal expansions. 

We first propose two methods for the construction of the Faber polynomials 
themselves, and report on some numerical experiments. Provided 4 is known, 
computation of the Faber coefficients for a given function f is straightforward, and 
we defer this until later. 

3.1. Computation of Faber Polynomials Using the FFT. If (pn(z) = cZj, we 
have (2.3) 

ci = Z ) ) dz. ~27Ti/Z=R{wz~dz 

Following Lyness and Sande [21], we first rewrite this as 

- I 121{ p(Rei6) } nfdO 

j2 7T (RelO)J 

Replacing this integral by its N-point trapezium rule approximation, we obtain 

I N-1 

(3.1) Cj 
- . :: 

tpN{p(ReiOk)} 

e-ii0k NRJ k=O 

where Ok = 2'nk/N. 
Thus all the coefficients c , j = 0, . . , n, can be computed simultaneously using the 

FFT. (Since in fact we know that Cn = 1, we have a useful check on the accuracy.) In 
view of the cheapness of this computation, one may as well take N fairly large, and a 
suitable value on the CDC installation at ETH-Zentrum, Zurich, was found to be 
N = 512. The IMSL subroutine FFT2C was used for the FFT. In practice it was 
found that some care has to be taken with the choice of R. If R is too large, the 
values of {fp(Rei0k)}n lie relatively nearly on a circle, and accuracy is lost due to 
cancellation of figures for smallj and large n. On the other hand if R is too small, so 
that the circle I z j = R only just encloses D, singularities of p on the boundary P may 
destroy the accuracy of the trapezium rule approximation. Somewhat surprisingly, 
we found that the former effect was much stronger than the latter, and a good rule 
for choosing R has been found to be 

R=- 1.1 Xmaxlz I 
z&P 

We note in passing that it is often not convenient in practice to scale p so that 
limzoo (z)/z = I (e.g. we may have the mapping onto the exterior of the unit 
circle). A simple modification of the program enables this scaling to be done 
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automatically. If T is scaled so that the coefficient of z in its expansion at so is a 
instead of 1, then the leading coefficient of (p)' is a'2, instead of 1. If (3.1) is applied 
without rescaling (, the value of a can be obtained from cl with n = 1, and for each 
n = 1, 2,... the coefficients cj need only be divided by a'2. 

Several numerical examples have been computed to test the effectiveness of this 
method. (The values used for N and R are those given above, except where otherwise 
stated.) 

Example 1. D = {z j z + I 1 < 1). Thus (p(z) = z + 1 and the coefficients of cn 
are simply the n th binomial coefficients. Since T is entire, any value of R may in 
theory be used, but in practice the lack of singularities appears to be a positive 
disadvantage, and, of all the examples tried, this proved to be the most dependent on 
R. With R = 1, however, it was possible to obtain the coefficients to at least 10 
significant figures for n < 10; about 9 figures for n = 20 and about 6 figures for 
n = 31, the largest value of n tried. 

Example 2. D = [-1, 1]. In this case (see e.g. Markushevich [22]) the polynomials 
)n are suitably normalized Chebyshev polynomials. For n = 12 (the highest value of 
n for which Tn is given in Abramowitz and Stegun [1]) the coefficients obtained were 
virtually exact. For n = 30, the correct value of co is -1/229 = -1.8626 ... X 10-9, 
and the program produced the value - 1.87117 ... X 10-9. 

Example 3. D is the unit semidisc, i.e. D = {z j z I 1, Re(z) > 0>. The mapping 
(p is 

c(Pz) = I ( )/1 
( 

)/ 
(Z) =p { (Z + j)2/3 (Z _ j)2/3 

where ,B= e1q73. (Elliott [8] gives the value of p as 4/(33), but as pointed out 
above, using the FFT method, p is not required explicitly.) The coefficients obtained 
for cn agree to at least 7 figures with those obtained by Elliott for n < 9 (these are 
only given to 8 decimal places). 

Example 4. We have used this method to calculate the Faber polynomials for the 
unit square and for various rectangles, using the Schwarz-Christoffel transformation 
which gives 4'. The main difficulty here is in actually obtaining the values of (. We 
achieved this by using the IMSL automatic differential equation subroutine DGEAR 
to solve 

dz 1 
dw 47(w)' 

we will not give more details here since in practice it would appear to be better to 
use Method 2 (see below) for this problem. The results obtained using this method 
and that described below were in most cases virtually identical. However, for the 
unit square, D = {z I j Re(z) I 1,l Im(z) Il 1), and with n = 16, some of the cj 
differed in the 8th decimal place from those given by Elliott. This slight discrepancy 
may be due to the fact that we used a more accurate value for the normalizing 
constant in the mapping (see below). 

Before discussing the recursive method, we note that (2.4) provides a possible 
alternative formula for calculating the Cj if 4 is very much simpler than (. However, 
we have performed no numerical experiments with this formula. 



582 S. W. ELLACO1T 

3.2. Recursive Computation of Faber Polynomials. We recall (2.5) 
n-I 

)n+l(Z) Zcpn(z) 2 bkpn-k(Z) - (1 + n)bn, n > 0, 
k=O 

where bk is the coefficient of w-k in the expansion of 4 at 00. Since Po 1, this 
expression provides a recursive method of generating the Faber polynomials. Given 
p, it would, of course, be possible to generate the coefficients bk using the FFT, but 

in view of the possible dangers of instability or cancellation inherent in a recurrence, 
Method 1 would seem to be preferable in general. However, in the case when D is a 
polygon, the Schwarz-Christoffel transformation can be used to obtain 4', and the 
expansion of 4 is then obtained rather easily. The mapping from the exterior of the 
unit circle onto the exterior of a polygon with exterior angles '7Tn, i = 1, 2,.. , m, can 
be expressed as 

(3.2) z = y(u) IKJ(l Th)'(l )2' ) ** (i _<"') du. 

The ratio of the lengths of the sides is determined by the Xi: sometimes the values 
required to obtain a given polygon can be calculated explicitly (e.g., by considera- 
tions of symmetry) but in general a numerical method must be used (see e.g., 
Trefethen [29]; Trefethen [30]). The position, size and orientation of the polygon are 
determined by K and the constant of integration. We note that limu g, z/u = K. 
Thus substitution of w = Ku gives the required mapping 4 and p = I K I . Expansion 
of each bracket, collection of powers of l/w and termwise integration gives the 
expansion for 4. Details of the calculation in the general case can be found in 
Nepritvorennaja [23]. Here we treat the important special case of a rectangle since 
this permits the expansion to be considerably simplified. Further simplification 
occurs for a square and since this problem is considered by Elliott [8], we deal first 
with this case. It will be readily verified that for a square (3.2) becomes 

(3.3) z= K|(1+ 4) du. 

For the unit square D = {z | Re(z) I < 1, I Im(z) I < 1) Elliott gave the value of K to 
9 figures, obtained by applying the Euler transform to the series at u = 1. This was 
not sufficiently accurate for our purposes, and using the numerical integration 
method described below for a general rectangle, we obtained the value K= 

1.1803405990161. Substituting w = Ku in (3.3) gives 

K 4 1/2 K4 K8 K'2 ) 
WK4 (+2w 4 8w 8 16w'2 

Integrating with respect to w and noting that, in view of the symmetry of the unit 
square about the origin, the constant term must be zero, gives 

K4 K8 K'2 
+,(w)= w-6w3 56w7 176w" 

whence by definition 

bo= b1= b2 =O0, b3 = -K4/6, b4= b5 =b60= , b7 =K8/56, etc. 
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The recurrence (2.5) then yields immediately 

TO() = 1, TP(z) Z, 2(Z) = Z2, T3(Z) = Z3 

(Z) = Z4 + 2K4/3, (5(z) = z5 + (5K4/6)z, etc. 

It will be seen that this calculation is very much simpler than that used by Elliott for 
this problem, which, following the method described by Nepritvorennaja, involves 
determining the power series for (. 

We turn now to the case of the rectangle 

D z I I Re(z)I< A, I lm(z) I B} 

for which (3.2) becomes 

(c l ' 1/2 

(3.4) z (u) = I|( + 2 +4 ) du , -2 < C < 2. 

We must first determine the constants K and C. Note that by symmetry, the points 1 
and i on the unit circle are mapped to A and iB, respectively. Thus if 

I(C) : I ( + 
C 

+ 
I 

)du, 

where the path of integration satisfies u 1 1, 

A - Re(-I(C)) 
B Im(I(C)) 

and the required value of C can easily be determined using the secant rule in terms 
of the variable t defined by C = 2(1 - t2)/(l + t2), 0 < t < so. In practice we 
chose the path of integration to be the circular arc 

_ (+ i) e'0 -7T 37T 
u = (2 + 2 ' 4 < 4 

and the integration was performed using the IMSL automatic quadrature subroutine 
DCADRE. K is then determined from the known values of the mapping at 1 and i 
on the unit circle, and the value of I(C). We now proceed as described above by 
substituting w = Ku, and expanding to obtain 

47(w) ~ 1/2) i) K 2C) K4)Jk 

j=0 (J)k=0 kl )(w2 )j W4 

(Here and below, Co is interpreted as 1 if C 0 O.) Collecting powers of l/w, 
followed by termwise integration (again making use of the fact that by symmetry the 
constant term in the expansion of 4 is zero), yields bj = 0, j even, and 

K 2k k (1/2)(m)C2m-k 
b2- - I 9 b-1 2k 

m=[(k/+1)/21 (2m - k)! (k - m)! k 1 . 

where [ ] denotes the integer part and 

( / ) ~2 (2 )(2 ) (2) 

Since the bj's are real, there is no serious inconvenience in computing them and the 
recurrence (2.5) to double precision. 
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With this precaution, no sign of instability was observed, and the method proved 

both effective and efficient. 
3.3. Computation of the Faber Coefficients. We have (2.1) for the Faber coefficients 

forf E A(D): 

a = (() dw. an 2'zTiJ fW))dI 

We may simply replace the integral by its N-point trapezium rule approximation and 

evaluate as many of the an as we require using the FFT (compare Geddes [13]). In 

general the choice of R in this formula does not appear to be critical. If P is a 

smooth curve, one might as well choose R = p, but, if not, R should be chosen 

slightly greater than p (e.g., 1 i lp) to avoid a singular integrand. The only problem is 

ensuring that the level curve rR does not enclose or pass too close to a singularity of 

f: generally this is not immediately obvious. The simplest way out of this difficulty 

is to guess a suitable value of R, plot or print out points on rR and then check its 

position in relation to the singularities of f. On the examples tried, we have not 

found any difficulty in practice in choosing R, and we have successfully produced 

expansions of several functions on the semidisc; ellipses (the case considered by 

Geddes [13]); the unit square and various rectangles. For the semidisc D = {z I I z < 

1, Re(z) > 0), the errors can in some cases be compared with some best approxima- 

tion errors En computed by Elliott [8]. For instance, we have lez - F4(ez)II . = .45 

X 10-2 compared with E4 = .38 X 10-2; IIez - F6(ez)II. = .65 X 10-4 compared 

with E6 = .51 X 10-4. For this example, the computed values of IIez - Fn(ez)II. 
decreased smoothly with n down to a value of .23 X 1011 at n = 13, after which no 

significant improvement occurred: the smallest value obtained was II ez- Fl4(ez)II II 
= .19 X 101. (These smallest relative values of around 10-11 to 10-12 were fairly 

typical of those that could be achieved on the CDC machine with the values of the 

parameters discussed above.) With f(z) = (1 + 2z)-1/2, we obtained 11 f - F4(f ) ll 

= .64 X 10-' (E4 = .42 X 10-'), and flf-F6(f)IK = .26 X 10-1 (E6 = .17 X 

10-'). Convergence for this example is quite slow due to the singularity of f at z = - 2 

(compare Corollary 2.2(b)), and the errors obtained decreased smoothly down to 

1I f - F31( f ) 1100 = .12 X I0-5, the largest value of n tried. 

It will be noted that a difficulty arises in evaluating A(w) when the Schwarz- 

Christoffel transformation is used. However since values are required only around 

the circle w = Reio, 0 < 0 < 2T, we can once again use the FFT to sum the series for 

4 at all the required points simultaneously. In order to do this one requires rather a 

lot of values of bk (we used 512 terms). These could be computed by the method 

discussed above but for this purpose we do not require quite such high accuracy, 

particularly for large k, so it is preferable to compute the Laurent coefficients of 4' 

using the FFT and then get the bk by termwise integration: in this way evaluation of 
4 can be made quite efficient. 

Finally we consider the computation of expansions for f E A(D) - A(D). In this 

case the degree of polynomial approximation is unlikely to be sufficiently good to 

make polynomial approximation an attractive proposition. Nevertheless Theorem 

2.3 remains valid, and the expansion will still produce polynomial approximations 
very close to the best one (for reasonable values of n) should these be required for 
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some purpose. In this case one is obliged to take R = p in (2.3) (i.e., integrate round 
F itself) and the integrand is (by definition) singular, so rather than use the FFT 
method described above, it would be better to compute the coefficients an individu- 
ally using an adaptive quadrature program. 

3.4. Evaluation of the Faber Series. Orthogonal polynomials on intervals of the real 
line satisfy a three term recurrence which can be used to set up a backward 
recurrence to evaluate the orthogonal expansion. (See e.g. Fox and Parker [9, p. 56].) 
In principle, (2.5) can be used in the same way, but if all the bk are nonzero this 
would be very expensive computationally since the recurrence in this case is of 
infinite order, so in general it is better to express the truncated series Fn( f ) in terms 
of powers of z for the actual evaluation. However for regions such as the unit square, 
where only every fourth bk is nonzero, direct evaluation using (2.5) may be useful. 

3.5. Using Approximate or Numerical Conformal Mapping. For a general region D, 
the mapping g may not be known and numerical conformal mapping must be used. 
See Gaier [10], for a general survey of methods up to that date. As discussed below, 
methods yielding analytic approximations to g or 4, rather than integral equation 
methods, are more appropriate here. For recent work on such methods, see Levin, 
Papamichael and Sideridis [20]; Ellacott [7]; Hoidn [16]. (This last paper actually 
describes the author's method for doubly connected regions, but also contains 
improvements in the technique over the original description in Grassmann [15], of 
the method for the simply connected case.) These methods are all described for the 
problem of mapping the region inside a Jordan curve onto the interior of the disc: 
To obtain our mapping T, an initial inversion in an interior point of D and a final 
inversion in the origin must be performed. Unfortunately, however, unless the region 
D is fairly simple, the methods are not sufficiently good to get the pn's accurately, 
and we must adopt a slightly different point of view. The conformal mapping 
method must be regarded as producing a mapping qp which maps the complement of 
a region D D D onto I w 1> P > p. Most conformal mapping algorithms based on 
approximations have the property of giving mappings which are eventually confor- 
mal (for an approximation of sufficiently high order) on compact subsets not 
intersecting the boundary, so if an approximation is produced for which the 
deviation from constant modulus of the image of r is reasonably small (say about 
1%) we will not require to take A very much larger than p for (p to be conformal, and 
hence D will be a good fit around D. A Faber expansion of our given function f on 
D should thus provide a good approximation to f on D. One may identify three 
desirable properties for the mapping algorithm. 

(i) The method should reliably generate a reasonably good approximation even for 
difficult regions. (On the other hand, very high accuracy is not required.) 

(ii) The inverse of the approximate mapping should be readily available. 
(iii) In view of Theorem 2.3, one would like to have some form of variation 

diminishing property on the boundary P. 
We are aware of no method satisfying property (iii) (but see below); on the 

contrary most methods tend to introduce boundary oscillations. On the other hand 
(i) and (ii) are satisfied by the Hoidn-Grassmann method and this would seem to be 
the most hopeful; the relatively poor asymptotic properties of the method are not 
significant here. With an initial inversion in the point 1.5, 20 iterations of the 
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Hoidn-Grassmann method, and a final inversion in the origin applied to the 
"semiannulus" 

D = {z I I z I2,Re(z) 0}, 

we have computed expansions of ez and ln z. For ez, we were able to obtain an 
approximation with an error (on the exact region D) of 1.4 X 10-10. Convergence 
for In z is quite slow: evaluation of the approximate mapping at z 0 O indicates that 
this point lies on a level curve for which R/p (see Corollary 2.2(b)) is only about 
1.17. With n = 31, an approximation with error (on D) of .14 X 10-2 was achieved. 

A disadvantage with the Hoidn-Grassmann method is that symmetry about the 
real axis is not preserved. Thus the resulting approximations may have complex 
coefficients. However, it is easily verified that if f and D are symmetric about the real 
axis (i.e. z e D z &E D,f(Z) =f(z)), then for any polynomialp - 

EJ=0 ajz, 

f- E Re(aj)zJ lIf-PliK. 
j=0 

Before leaving this problem we note that a possible alternative approach to 
obtaining D is to interpolate or otherwise approximate F by a polygon. This method 
would satisfy property (iii) but would present other problems in determining the 
coefficients of the Schwarz-Christoffel mapping etc. 

4. Concluding Remarks. It has been found that the Faber series provides an 
effective and efficient method for producing near best approximations to analytic 
functions in the complex plane, especially when the mapping T for the required 
domain D is available. However, the method can still be used even if q, is not known 
explicitly. 
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