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Truncation Error Bounds for Limit Periodic 
Continued Fractions 

By W. J. Thron and Haakon Waadeland* 

Abstract. We derive a truncation error bound for limit periodic continued fractions K(a,,/ I) 
which, at least asymptotically, is best possible by comparsion with periodic continued 
fractions. For a given limit periodic continued fraction the bound is easy to compute. 

1. Introduction. A continued fraction K(an/l) is defined as follows: set 

Sn(W) = n an= ? n a O > 1, 

and 

Sn(W) = Sn-I(Sn(W)) n > 2, 

S1(w) = s1(w). 

Then the continued fraction is the ordered pair ({an}, {Sn(O)}). The sequence {an} is 
called the sequence of elements, Sn(O) is called the nth approximant. The continued 
fraction K(an/l) is said to converge if {Sn(O)} converges. We sometimes write 

K(an1l) = lim Sn(O), 
n 0o 

provided this limit exists. For Sn(w), the notation 

a, a2 an n 2, 

is frequently used. Similarly, we write 

lims~?ios~?2o *.. an?1 an+2 lim Sn + I? Sn+2 ? .. * Sn+k(?) = + +***' n 0 O 
k- oo 1+ 1+**' nO 

provided those limits exists. 
In this article we shall consider only limit periodic continued fractions. For these 

lim an=a 
n 0o 

is assumed to exist. We shall here in addition assume a =# oo and a 7# 0. Limit 
periodic continued fractions play an important role in the analytic theory of 
continued fractions as was pointed out in [7]. In particular 

Log(l + z), Arctan z, (1 + z)Y - 1, 
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or, more generally, certain ratios of hypergeometric functions, to name but a few 
examples, have limit periodic regular C-fraction expansions K(,/3z/l1) with 
limn. ,f3= 1/4. We shall restrict ourselves to the case where a is a nonzero 
complex number which does not lie on the negative real axis between -1/4 and - 00. 
We also exclude a = -1/4. Under these assumptions the two roots of the equation 

(I.1) x2 + x - a = 0, 

which are also the fixed points of the transformation 

(1.2) s(w) = a/ (1 + w), 

are of unequal absolute value. We choose xl to be that root for which 

(1.3) 1 . 
1+xi 

This is possible since -1 - xl is the other root of the equation (1.1), and a is not a 
negative number < -1/4. It also means that xl is the attractive fixed point of s(w). 
With these assumptions the limit periodic continued fraction K(a,/l) is known to 
converge (see, for example, [5, p. 89]). In addition the sequences {h"} and { f (n)} 

defined, respectively, by 

an anIa (1.4) h =-Sn l(X)=1+ + a2 n - 2, h 1, 

and 

(1.5) 1 (n) an+ I an+2 

are known to converge to 1 + xl and xl, respectively, provided all an are sufficiently 
close to a. For convergence of { f (n)} to xl see, for example, [5, p. 93]. Convergence 
of {h,1} to 1 + xl is proved in [9] under fairly strong conditions, and in Theorem 2.3 
of the present paper under less severe and much simpler conditions. 

Sometimes it is convenient to set 

fn = S(O) and lim fn = f. n - oo 

Sn(w) is clearly a linear fractional transformation, hence we can write (if all fn are 
finite) 

(1.6) n(w) - hn + w 

since we know that SJ(O) = fn, S(oo) = Sn- 1(O) = fn- I and Sn(-hn) = 00 

This article supplements our paper [7], in which we discussed the accelerated 
convergence which results if the sequence {Sn(O)} is replaced by {Sn(xj)}. However, 
we did not discuss at that time the speed of convergence of {Sn(O)}. This will be 
done in the present paper. 

2. Preliminary results. In this section we collect some auxiliary theorems which 
will be useful in the sequel. 

THEOREM 2.1. Let 6, 0 <6 < 1, and a, I a I< 7T/2 be given. Define the parabolic 
region P(a, 6) by 

(2.1) P(a, 6) = [z: I z IRe(ze-2la) < (cos a)2(1 - 02)/2]. 
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Then all expressions 
am amk V + +k amr E P(a, ), r = O,1,..., 

lie in the half-plane 

(2.2) V(a, 6) = [v: Re(ve-1a) -(cos a)(l - 6)/2]. 

Proof. The result follows from Theorem 4.4 in [2]. In that theorem we set Pn =P 

An = a, bn = 1 for all n > 1. For 

p = (cos a)(I - 6)/2, 

we get 

2p(cos a -p) = (cos a)2(l - 02)/2. 

A corollary of this result is the following. 

COROLLARY 2.2. Let 6, 0 <6 < 1, and a, I a I < 7T/2 be fixed. If in a continued 
fraction K(anl1), an E P(a, 6) for all n > 1, then 

Ih, + f () cos a for all n > 1. 

Proof. We have hn E 1 + V(a, 6), that is Re(h e-ia) > (cos a)(1 + 6)/2. Now 
f (n) E V(a, 6) since it is the limit of expressions in V(a, 6) and since V(a, 6) is 
closed. Hence Re(f (n)e-a) > -(cos a)(1 - 6)/2. Thus, finally Re((hn + f (n))ela) 

2 cos a or I h +f(n) 0 6cos a. 

In [9] we showed that for a limit periodic continued fraction K(an7l) lim hn = 1 
+ xl, provided all an are very close to a. Here we give a new proof of this result 
which imposes much less severe and much simpler conditions on the elements an of 
the continued fraction. 

THEOREM 2.3. Let K(anl1) be a limit periodic continuedfraction with lim a 
a # 0. Let a be such that the fixed points xl and -1 - xl of the transformation 
w = s(z) are of unequal absolute value. Further, assume that there exist a 6 E (0, 1) 
and an a E (-7T/2, 7T/2) such that an E P(a, 6) for all n > 1. Then 

lim hn = 1 + xi. 
n - oo 

Remark. In many cases it is convenient to choose a such that a is on the axis of 
the parabola, that is 

a= 2 arg a if arg a 7T, 

a = 0 if arg a =T. 

Proof. We recall from [2, pp. 69, 71] that hn = -Sn-1(oo) = Bn7Bn-. Poincar&e's 
theorem [6] applied to the three term recursion relation, 

Bn = Bn- I + anBn-2, 

or, in the way that Poincare wrote it, 

Bn- Bn - anBn-2 = 0, 

guarantees that h n = BnlBn - will converge to one of the roots of 

(2.3) x2 -x-a = 0 
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provided lim an = a and provided the two roots of (2.3) have different absolute 
values. In terms of the attractive fixed point xl of the transformation w = s(z), the 
roots of (2.3) can be written as 

1 +xi and -xi. 

Thus if, in addition to being limit periodic, we assume that an E P(a, 6) for all 
n > 1 and for some fixed 6, 0 < 6 < 1, then we can conclude that hn -* 1 + x1. This 
can be shown as follows: -I + hn E V(a, 6) since 

an an- I a2 

hnlT+ I + ? 
Since xl = K(a/l) and a E P(a, 6), we have xl E V(a, 6). Now the transformation 
v(z) =- - z transforms V(a, 6) into a half-plane which is disjoint from V(a, 6), 
and hence -1 - x V(a, 6), so that hn - 1 cannot tend to -1 - xl. It follows that 

hn ,- - 1 + xI. (We even have that the transformed plane has a positive distance from 
V(a, 6) so that -I - xl is bounded away from V(a, 6).) 

3. The Main Theorem. From (1.6) one obtains 

(3.1) f-f = Sn(f (n)) - Sn(O) = hf +j(n) ( t In- f) 

Similarly, 

(3.2) In+? -fn = Sn(an+1) -Sn(O) = 1 + - ( fn- l) 
I+hn/an+1 

-1 ( j _ -<- I ) = (hn+l l) (f f)n- l) 

1 + 1n? 
hn+-h1 

See Overholt [4, p. 204]. Combining (3.1) and (3.2) one arrives at 

(3.3) 11n=(1)n 1() ( hv- )a 

which is essentially Overholt's formula from [3, p. 76]. This formula is valid for 
continued fractions K(an/l), provided hn + f (n) 7# 0. In case we are dealing with a 
limit periodic continued fraction (with an E P(a, 6) for all n > 1), we have 

hn -1I xi <1 
hn + XI 

and 

h + I(n) I+ 2x1 | 

since xl I -1/2 (xl = -1/2 happens only for a = -1/4, a case which is excluded 
here). 

From (3.3) and these observations we can deduce two statements. In the first the 
asymptotic aspect is emphasized. In the second statement we dwell more on the easy 
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computability of the hn and hence of the product 

ft h,-lI 
v =2 h / 

and we also give an explicit estimate of If(n) 1/I hn + f(n). 

THEOREM 3.1. Let K(a n/ 1) be a limit periodic continued fraction with lim a,= a # 
0, where a is such that the fixed points of s(z) = a/(I + z) have unequal absolute 
values. Let xi be the attractive fixed point, and choose q so that 

+xi I+xl I<q<l. 

Further assume that there exist a 9, 0 < 9 < 1, and an a E (-7T/2, 7T/2) such that 

an E P(a, 9) for all n > 1. Then there is a quantity K(a, 9, q) independent of n such 
that 

(3.4) If-f12<K(a,9,q)q . 

Remark 1. It is known that for a periodic continued fraction f = x and 

(3.5) If-fn Ilfn - xI | x i Ifn + (l + xi) 

See for instance [8, p. 648] from which we immediately have 
xn _xn 

=n X1X2 n+1 n+1 
X1 X2 

with X2 = -(1 + xl), and from which again the equality above easily follows. This 
shows that, at least asymptotically, Theorem 3.1 is best possible. 

Remark 2. It is easy to prove that if an -* a fast enough (I an - a <const An, 
0 < 4 < I x l/(1 + x I ) I suffices for small enough const), then q in (3.4) may be 
replaced by I x/(l + xl) . 

Remark 3. An alternative approach is to start from the formula 

(3.6) f -fn2 
I 

-)n f() Ilk-lIak 
hn + f(n) B,B,, I 

(see [2, formula (8.3.19)] in combination with [2, formulas (2.18) and (2.19)]) where 

Bn is the denominator of the nth approximant in the usual normalization and hence 
recursively given by 

Bo = 1, B1 = 1, Bk = Bk_ + akBk-2 k > 2. 

Replace in (3.6) ak I by f (k)(l + f (k1)), and use for Bn the formula 

Bn = (-l)n[f(1) _f(2) ... f(n) - (1 + f(')).f(2) ... .f(n) 

+ ... + (-1)n(l + f(l)) ... (1 + f((n))] 

from [1, p. 100]. A simple calculation, under mild conditions (jf(n)/(l +f(n)) I 9 
< 1 for all n > 1 suffices), leads to a formula for the truncation error which is the 
product of 

n-I f (k) 

(3.7) krI 1 +f(k) 
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and a factor tending to 

x1(I + 2x,) a o (3.8) f(1 + X?2 asn X 0 

Observe that in the periodic case (3.7) reduces to I x1/(1 + xl) In-l1, andf = xl, and 
hence 

ti I Xl (1 + X1) In+= 1 + 2xI 

as already seen in (3.5). 
Since, however, hn1 can be computed recursively by a forward algorithm, the 

formula (3.3) is more useful for computing than the formula involving (3.7). 
If a, E P(a, 0), then using Theorem 2.1 we obtain the following estimate 

If(tn) I= I an+l < 2 1 a,1?+,1 
I1 +f(n+' (cos a)(1 + 0) 

and hence, by using Corollary 2.2, 

I f (ti I 2 | a n+, I 

I hn + f"( I (cos a)20(1 + 0) 

The theorem below then follows. 

THEOREM 3.2. Let K(an1 1) be a limit periodic continued fraction with lim,. X = 

a # 0, where a is such that the fixed points of s(z) = a/(1 + z) have unequal absolute 
values. Further assume that there exist a 0, 0 < 0 < 1, and an a F (-7/2, 7/2), such 
that a,1 E P(a, 0) for all n ? 1. Then 

2 la, -a,,+,I 
I 

(COS, 

<- 

R)20( 1 + I ) IJ- 
llh 

(cos a)2( +0 z2 

where h =1, ht 1 = I + a tllhn-, n 2. 

4. Numerical Examples. We shall here illustrate the use of Theorem 3.2 on some 
examples. The first problem is to find (if possible) a and 0 such that all a,1's are in 

P( a, 0). Next, that choice should be made such that the factor 

(4.1) 
2 1a, I 

((cos a)20(1 + 0) 

is as small as possible. This, however, is not extremely important. The essential 
factor of the truncation error estimate is 

n 1 
(4.2) i 1-7 I . 

Finally, the truncation error estimate has to be computed numerically by using the 

recursion formula for h . 

We shall here look at three examples. In all three we shall find a parabolic region 

P(a, 0) in which all the an's are located, and in one of the examples we shall proceed 

to compute the truncation error estimate itself. 
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Example 1. 

an = 2 + 4n. 

In this case an E P(O, 6) for all 6 e (0,1) and even for 6 = 1. (a, 6) = (0,1) 
obviously gives the smallest value of the factor in front of (4.2) in the truncation 
error estimate in Theorem 3.2. We get in this case 

2 
,I II an+ I =1 al I| I 1 (2 + )2 + < 5. 

(cos a)26(1 + 6) n14 4+ 

Example 2. 

a = -.09+ 1 

In this case an E P(0, 6) for all positive 6 < .8. We choose a = 0, 6 = .8, and get 

2 1 . 9 _ 1 
21a, Ian+1? 100 \ 100 10(n + 1) 1 

(Cos=a 8 18 800 
(cosa)26(1 + ) 1 1O lo0 10 

Example 3. 

an i + an 

where n -? 0 as n -x o and An < 3/16. Here we shall use the remark after 

Theorem 2.3 and place the parabola such that a = i is on the axis. This means to 
take 2a = 7/2. P(7T/4, 6) is given by the inequality 

lz -Im(z) < 4 

Since the parabola has its vertex at z = -((1 - 62)/8)i and intersects the real axis 
for z = +(1 - 62)/4, we easily see that for 6 < 1/2 all an are in the parabolic 
region. With a = 7/4 and 6 = 1/2 we get 

2I1a, I Ian+i 16 361 
)2 
1al 

1 a+l 0) I 
3 i + 81 i+ 8n+1 1<~< 48 

(cos a)(1+6 48<8 

Example 1 (Further discussion). We shall here proceed to compute the truncation 
error estimate from Theorem 3.2 for the continued fraction 

(4.3) K 
n=1 1 

for some n-values. For the factor in front of (4.2) we shall use the estimate in the 
first discussion of Example 1, and the formula we shall use is thus 

(4.4) 5 1 I v 

The value of (4.3) is known to be 

f= 1.1096400019 
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rounded in the 10th decimal place [10, p. 237]. The computation here is done on a 
Texas Instruments Programmable 58 calculator by using the recursion formula 

(4.5) hn = 1 + an n 2 2, hi 1, 
hn-I 

and the results of the computation are listed in Table 1. 

TABLE 1 

n an = 2 + 4 hn hn n hp 
1 2.25 
2 2.0625 3.0625 .6734693878 3.367346939 
3 2.015625 1.658163265 .3969230768 1.336577708 
4 2.00390625 2.208509615 .5472059559 .731383282 
5 2.0009765625 1.906030269 .4753493603 .347662576 

6 2.0002441406 2.049429367 .5120593 .17802386 
7 2.0000610352 1.975911181 .4939043771 .087926761 
8 2.0000152588 2.012198968 .5030312529 .044229909 
9 2.0000038147 1.99393939 .4984802422 .022047736 

10 2.0000009537 2.00303994 .5007588316 .011040599 

11 2.0000002384 1.998482429 .4996203192 .005516108 
12 2.0000000596 2.000759391 .5001897757 .002759101 
13 2.0000000149 1.999620455 .4999050957 .001379289 
14 2.0000000037 2.00018981 .500047448 .000689710 
15 2.0000000009 1.999905104 .4999762749 .000344839 

16 2.0000000002 2.00004745 .5000118622 .000172424 
17 2.0000000001 1.999976275 .4999940687 .000086211 
18 2.0000000000(15) 2.000011862 .5000029655 .000043106 
19 2.0000000000(036) 1.999994069 .4999985172 .000021553 
20 2.0000000000(009) 2.000002966 .5000007415 .000010777 

In Table 2 a comparison is made with the actual truncation error, computed by 
using the backward recursion algorithm to find Sn(O). The numbers in the table are 
rounded off to the 6th decimal place. 

TABLE 2 

Truncation error estimate 
n~ from Theorem 3.2 f - S(0) 

5 .347663 -.053840 

10 .011041 +.001654 

15 .000345 - .000052 

20 .000011 +.000002 

It appears that in Table 2 the estimate is always less than 8 times the actual 
truncation error, this being caused by the estimate of the first factor. Since 
1 - 1/hn -* 1/2 as n -x oc, this means roughly that, in using this estimate to 
determine an n that will give a desired accuracy, the n-value obtained will be larger 
by 3 than is necessary. 

Remark 1. In Example 1 it is easy to find a good truncation error estimate in an 
elementary way, since all an > 0. This is, however, beside the point, since the 
purpose is to illustrate a far more generally valid truncation error estimate. 
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Remark 2. This example satisfies all the conditions of Theorem 2.1 in [7]. Hence 
using {S(l)} instead of {SJ(O)} represents an acceleration of convergence: 

f -Sn(l) 3 
f f- Sn(o) 4n-l 

This aspect (and even a stronger method of acceleration) is illustrated on the same 
example in [10, p. 237]. 
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