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Applications of a Computer Implementation 
of Poincare's Theorem on Fundamental Polyhedra* 

By Robert Riley** 

Abstract. PoincarCs Theorem asserts that a group F of isometries of hyperbolic space H is 
discrete if its generators act suitably on the boundary of some polyhedron in H, and when this 
happens a presentation of F can be derived from this action. We explain methods for 
deducing the precise hypotheses of the theorem from calculation in F when F is "algorithmi- 
cally defined", and we describe a file of Fortran programs that use these methods for groups F 
acting on the upper half space model of hyperbolic 3-space H . We exhibit one modest 
example of the application of these programs, and we summarize computations of repesenta- 
tions of groups PSL(2, 0) where 6 is an order in a complex quadratic number field. 

In the early 1880's H. Poincare discovered a general theorem allowing one to 
deduce the discreteness of, and a presentation for, a group G of isometries of 
hyperbolic space from its action on a hyperbolic polyhedron under certain condi- 
tions. Theorems of this sort are part of the foundations of his theories of Fuchsian 
and Kleinian groups that have become very popular again, and H. Seifert has 
recently given us a modern proof of a fairly general version of Poincare's Theorem in 
[12]; see also [7]. This theorem has been little used over the past century, perhaps 
partly because its hypotheses have seemed very difficult to verify for a given group G 
except in very special circumstances. One reason for doubting that Poincare's 
Theorem is unreasonably difficult to apply to fairly general discrete groups is that no 
general alternative method for accomplishing its tasks has been proposed. The 
present paper is devoted to demonstrating that Poincare's Theorem can indeed be 
applied to given groups in apparently difficult cases and that much of the work can 
be done by a computer. Our experience suggests that the theorem is really very 
helpful in guiding the user to an understanding of the details of the action of G 
starting from a state of near ignorance. 

An outline of this paper is as follows. In Section 1 we begin by stating Seifert's 
version of Poincare's Theorem and explaining how we would apply it to an 
" algorithmically defined" group G of isometries of hyperbolic space H 'o. In Section 2 
we specialize to the situation, 00 , for which we wrote our file, Poincare', of Fortran 
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programs. Poincare uses an identification of the sense preserving hyperbolic isome- 
tries of the unit ball or half space models of H3 with PSL(C) = PSL(2, C), and it 
embodies the methods of Section 1 as far as was practicable. In Section 3 we present 
one modest example of the application of this file to a group of the kind it was 
developed for. This group is generated by parabolics, is not free, and is discrete but 
not obviously so. We conclude in Section 4 with a summary of an entirely different 
application of the Poincare file. By a Bianchi group we mean gd = PSL(Z[Wd]) where 
d is a negative integer and 

1+d 
';d = 2 if d- 1 (mod 4), Wd d otherwise. 

The integral domain Z[wd] is an order in the complex quadratic number field Q(/d-) 
and is a discrete subset of C. Hence the Bianchi groups are automatically discrete- 
and they are considered to be of interest for arithmetical reasons, cf. Swan [14]. We 
shall describe how we found the presentations of 30 Bianchi groups, give the 
complete presentation for Q-43, and summarize the corresponding results for the 
other groups in Table 1. We also state a few small conjectures inferred from our 
examination of the computer printout. Incidently, the Bianchi project is only 
intended as an advertisement for the Poincare file which was developed for entirely 
different applications. This author thinks that many of the torsion-free subgroups of 
Bianchi groups are likely to be much more exciting than the full groups. 

The present paper is one part of a long term project studying the projective 
representations of knot groups. We have tried to make it independent of the 
previous papers of the project because we feel that things like the Poincare file will 
be of more widespread interest. Our main application is establishing the existence of 
the excellent hyperbolic structure on knot complements by direct calculation, cf. [8], 
[10], [11]. Another related application is to Kleinian groups G which either are 
homomorphic images of knot groups 7rK, or the other way around, and this also will 
be reported on elsewhere. 

Our methods for applying Poincare's Theorem to specific groups were devised in 
1974 while the author was an official visitor to Southampton University and had 
been granted the use of an office and the standard facilities, except the computer. 
This was during a 22 year period of unemployment when our main financial support 
was the savings from a 6 month visit in 1973 to the Universite de Strasbourg that 
was very generously funded by the C.N.R.S. The author was a Research Fellow on a 
project supervised by Dr. David Singerman at Southampton University during the 4 
years 1976-1979. This project was also very generously funded by the Science 
Research Council, and we are most grateful to Dr. Singerman for his invaluable 
assistance during the grim years, and to Professors H. B. Griffiths and S. A. 
Robertson of Southampton University for their continued support since 1968. 
During the first half of 1980 we wrote up the first version of this paper while 
enjoying the warm hospitality of the Institute for Advanced Study. From September 
1980 our project was funded first by Professor W. P. Thurston from his Waterman 
Fellowship and then by the NSF grant supporting the Sullivan-Thurston project of 
1980-81 at the University of Colorado at Boulder. 
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1. How We Applied the Fundamental Theorem. 
1.1. H. Seifert's account [12] of this theorem is in the context of isometries of a 

complete simply connected Riemannian manifold G' of constant sectional curvature 
and dimension n. We begin by stating his version of this theorem in approximately 
his notation, and we shall change over to our notation as we get deeper into our 
special case. A k-blob (k-dimensionalen Raumstiuck) of Gn is the closure of an open 
connected subset of a k-plane of Gn. Let K be a finite nonempty collection of blobs 
with union j K j in G . Seifert calls K a complex when the following assertions hold 
for K. 

KI: Each p E j K j is an interior point of precisely one blob of K, 

denoted Z(p) = Z(p, K). 

K2: If p belongs to the blob A of K, then Z(p) C A. 

He soon restricts attention to the complexes satisfying two further conditions. 

K3: Each blob of K belongs to at least one n-blob of K. 

K4: Each (n - 1)-blob of K belongs to precisely one n-blob of K. 

The blobs of dimension less than n are called sides of K. 
Let SI, ... , Sr be the (n - 1)-sides of such a complex K. We suppose that for each 

side SJ there is an isometry Tj of Gn that maps Si on some other side, say on S,. (My 

TJ is Seifert's Tj-1.) We suppose also that T, = fT1, and that for each interior point 
p E Sj, T. maps the inward normal to Sj (pointing into I K j) to the outward normal at 

TJ(p) E S,. Call p E Sj directly equivalent to TJ(p), and say that points p, q in 
bdry j K j are equivalent when p, q are the ends of a finite sequence of points of 
bdry K each directly equivalent to its immediate neighbors. Finally, suppose that no 
side of K contains equivalent interior points. Then Seifert calls K a complex with side 
pairing and writes (K; T,,. . . Tr) or just (K; T) for it. A cross line of K is a curve v: 

[0, X] -I K I for some X > 0 whose image lies entirely in interior I K I, except that 
v(O) and v(X) are interior points of (n - 1)-sides. A cross line chain is a sequence 
{ vp of cross lines such that the endpoint of vp is equivalent to the beginning of vp+ 1. 
It has finite length when each vp has finite length, say lp, and 2 lp < oo. A complex 
with side pairing (K; T) satisfies the cross line condition when each cross line chain of 
finite length lies in a compact subset of I K i . 

Consider an interior point PI of the (n - 2)-side Z(Pi) of the complex with side 
pairing (K; T), and let K be a circle of radius - and center pI lying in a 2-plane of Gn 

perpendicular to Z( Pi ) at Pi- We suppose the radius E is so small that K is near only 

Z(Pl) in the (n - 2)-skeleton of K. Orient K arbitrarily, and let b, be an arc of K 

whose interior lies in an n-blob of K so that its beginning and endpoints lie in 
(n - 1)-sides. Let T, be the pairing transformation for the side containing the 
endpoint of bl, and let P2 be TI(pl). Then T, maps K = K, to an oriented circle K2 

about Z(P2), and the endpoint of TI(bl) is the beginning of an arc b2 of K2 whose 
interior lies in an n-blob of K. Then the endpoint of b2 belongs to an (n - 1)-side of 
K with transformation T2 that maps P2 on P3 and K2 on K3, a circle about Z(P3). We 
continue in this manner and generate sequences Pi IP2, ... and b1, b2 .. When K 
satisfies the cross line condition, PI is equivalent to only finitely many points of 

I K l, so these sequences are periodic. Let A be the least positive integer such that 
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b = b,+1. ThenZ(p,),...,Z(px+1) forma cycle of (n - 2)-sides. The two (n - 1)- 
sides of K meeting along Z(pJ) that contain the boundary of bj make an angle of, 
say, aj in I Kj . The angle sum for this cycle is a a 1 + - - A-ax. The angle sum 
condition on K requires that for every such cycle the angle sum a is 2 V/1 where / is a 
positive integer depending on the cycle. If T,... ,Tr are the transformations used in 
the cycle in their proper order, then (T ... TI)' is the identity isometry of G . We 
call the equation (T ... T)' = E the cycle relation and the product h... Tj the cycle 
transformation of the cycle. 

It might happen that a side pairing transformationTj for (K; T) is the reflection of 
G " in the (n - 1)-plane carrying the corresponding side Sj. Then F = E, and this 
relation is called a reflection relation. Such a relation does not naturally correspond 
to an (n - 2)-cycle of (K; T), although it is certainly possible to subdivide K and get 
a new complex with side pairing in which the old SJ has been split in two by a new 
(n - 2)-side. 

Let (K; T) be a complex with side pairing, and let F be the group generated by the 
TJ. Seifert calls (K; T) a gapless cover of Gn when 

Gn= U y(IKI). 
yEr 

He also calls (K; T) simple when -y(l K j) meets y2(1 K j) at most in boundary points, 
for distinct -y, m2 in F. Then Seifert's version of the fundamental theorem can be 
stated as follows. 

THEOREM. For some n ? 2 let (K; T) be a complex with side pairing in Gn whose 
side pairing transformations generate the group F. When (K; T) satisfies the cross line 
condition, then (K; T) is a gapless cover of Gn. When the interior of j K I is connected 
and (K; ) satisfies both the cross line condition and the angle sum condition, the cover 
is both gapless and simple. In this case F is a discrete group of isometries acting 
properly discontinuously on Gn, and the cycle relations and reflection relations of (K; T) 

present F on the generatorsT ;. 

1.2. When Gn is hyperbolic space Hn, it is convenient to replace the cross line 
condition by the more manageable cusp condition. This is best stated in the context 
of the two standard conformal models of OHD n that we will use later, viz. the unit ball 
model n? and the upper half space model 0ltn. Start with Euclidean space R n with its 
standard metric, the E-metric, which we use both as a distance (d(x, y) = I x - y I) 
and as a Riemannian metric (dsE jI dx 1). Let R n be the one point compactification 
of R n with compactifying point 00. Write 

n =-{(X1 ... *XJ * R n: IXI< 1<} I 

G8.,n 
- 

{(XlI ... XJ 
- n 8: Xn > 0 )S 

= 
{(X,I ...,XJ) E R n: =h}, H Hh U{0)}. 

The sphere at infinity, SP', is the boundary of jqn and HI in the two cases, and its 
points are called points at infinity. H1n carries a hyperbolic metric, the H-metric, 
which for our two models depends only on the E-metric and the distance to SP??, 
viz. 

2dsE dsE (1.1) dsH=~~~ ~ 1- 1x12' dsH= 
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respectively, cf. [1], [2] for more detail. Most objects or relations in either model are 
described with respect to one of these two metrics, and we use the appropriate 
prefix, E- or H-, to denote which. In cases where the metrics always give the same 
result, notably angles, we do not use a prefix, and we shall often omit the E-prefix. 
(Therefore the H-prefix can only be omitted when the meaning is very clear.) For 
example, the H-topology on Hi is the restriction of the E-topology, and H' is 
H-complete but not E-complete. Let gn 9,"T be the E-closures of our two models. 

A horosphere for either model is an E-sphere S of 'n or 9?n which is tangent to 
SP' at some point p, with the convention that if p = oc, then S = Ih for some h. 
One component of H n- S meets SP' only at p and is called a horoball. A horoball 
may be thought of as a deleted H-neighborhood of the point p at infinity. Let (K; T) 
be a complex with side pairing in our model, and suppose the E-closure of i K I meets 
SP' in a nonempty set L. An isolated point of L is called an ideal vertex of K. At 
each ideal vertex z. we choose a horoball VJ, which is so E-small that distinct 
horoballs do not meet and so that Va, meets only those sides of K that have Za on 
their E-boundaries. We call the portion of I K I inside Va, a cusp of I K j . The cusp 
condition on (K; Tr) requires that these horoballs VJ for the cusps of K I can be 
chosen so that, if p E I K I belongs to some Va,, then all points of I K I equivalent to p 
also belong to the horoballs. Seifert calls the H-distance of P E Va to the horosphere 
bounding V the niveau of p and shows that when the cusp condition holds the 
horoballs can be chosen so that corresponding points of I K j in the horoballs have 
the same niveau. 

ADDENDUM TO THE THEOREM. The cusp condition for (K; T) implies the cross line 
condition. If the horoballs for the cusps of j K j can be chosen so that each Va f j K j is 
connected, then the two conditions are equivalent. 

1.3. We are now ready to discuss the mechanics of actually using Poincare's 
Theorem to demonstrate the discreteness of an explicitly defined isometry group F 
and to determine a presentation of F. One possible meaning of "explicitly defined" 
is the following. An algorithmically defined group is a triple ({Sj}, AD(l), AD(2)), 
where {SJ} is a (finite in this paper) set of isometries of Gn generating a group r, 
AD(l) is an algorithm which solves the word problem for F on Sj), and AD(2) is an 
algorithm that computes the action of each S. E {S.) on Gn to any requested 
accuracy, with respect to some fixed atlas of charts of Gn. For brevity we shall call 
the set S>} algorithmic when these algorithms are provided, and we shall regard 
them as provided when the definition of {SJ} suggests ways of providing them. The 
standard case for us is where we are using some model of Gn that gives a convenient 
faithful representation of the isometry group of Gn by a matrix group M C GL(m, C) 
for some m. Suppose that each Sj is represented by a matrix whose entries belong to 
an algebraic number field F= Q(w), where w is a root of a known integral 
polynomial f(x). Then AD(l) is reduced to arithmetic in F, and this boils down to 
calculations with polynomials in Ql[x] modulo f(x) which can be done algorithmi- 
cally. Similarly, AD(2) boils down to Newton's iteration to the specific root w 
starting from a sufficiently good first approximation. Not all finite sets {SJ) of 
isometries actually permit AD(1) or AD(2), for instance, because it is easy to give 
cute examples of cyclic subgroups of the additive group Q which make either 
algorithm depend on thetruth of Fermat's Last Theorem. 
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Many algorithmic sets {Sj} generate indiscrete groups r, and Poincare's Theorem 
does not apply to them. We are told that for every GI there is in principle an 
effective criterion for indiscreteness of F in terms of inequalities associated with sets 
of elements of r. The main difficulty in applying such a criterion is finding the right 
subset of F for it. Our basic plan of attack on {S,} is to try to construct a complex 
with side pairing (K; T) where T generates F by some kind of a reasonably efficient 
search for suitable transformations Tj. Whenever a new transformation is proposed it 
is fed to the indiscreteness criterion so that the search can be stopped immediately 
when F is proved indiscrete. The idea is that the early guesses at a fundamental 
domain for F are too big, the search is looking for ways to reduce them, and F is 
indiscrete when the guesses get too small. 

Our methods for dealing with isometry groups of Ho apply to the models ('@ and 
Qnt for all n 2 2. The advantages of these models are the two metrics, the conformal- 
ity, and the convenient matrix representation of the groups. A good reference for the 
background is Chapter II of Ahlfors [1] or Thurston [15]. We shall henceforth make 
the tacit assumption that all mentioned H-isometries of our model preserve orien- 
tation. Therefore if our original set {Sj} contains orientation reversing elements we 
first produce an appropriate set of products of the Sj generating the orientation-pre- 
serving subgroup I" of F, and then study I" by the methods below. It is easy to 
derive the desired results for F from those for 17'. 

We shall use a geometric description of the (n - 1)- and (n - 2)-planes and the 
action of H-isometries for our model, in or QIn, of Hn. We wish to use our system of 
carefully distinguishing the two metrics, but because this gets clumsy for general n, 
we shall describe everything primarily for n = 3 and indicate the notational changes 
for other n. It is well known that a 2-plane H of (our model of) HI has the form 
H 3n s, where S is an E-sphere or E-plane perpendicular to SP'. We shall call H an 
H-plane, or an EH-plane when S is an E-plane. A 1-plane is the intersection of two 
intersecting H-planes. We shall call it an H-line, or an EH-line when the two planes 
are EH. In dimension n the corresponding objects have the same codimension, so 

H-(n - 1)-plane" and "H-(n - 2)-plane" replaces "H-plane" and "H-line", re- 
spectively, in the following discussion. 

An EH-transformation or EH-isometry is an H-isometry which is also an E-isome- 
try. Let T be an H-isometry of (tn. Then the nth root of the Jacobian Jcb(T) 
evaluated at a point P of 91n gives the expansion of the E-metric at P by T, so T is 
an E-isometry of 9t" exactly on the locus Jcb(T)(P) = 1. When Jcb(T) is noncon- 
stant, then this locus is an H-hyperplane which we call the isometric sphere of T and 
denote by I(T). If we denote the H-hyperplane that perpendicularly H-bisects a 
segment (a, b) of Hn by Eq(a, b), then I(T) (when it exists) is 

lim Eq(T-'(P), P), 
P- oo 

and the E-centre of I(T), denoted cn(T), is T-1(o) E SP'. The cases where I(T) is 
not defined for qtn are when Jcb(T) is a constant function. When Jcb(T) 1, then 
T is EH, and when Jcb(T) c =# 1, then T is an E-similarity of a type that we will 
have to exclude from the discussion below. So if we encounter a group F acting on 
Qtn containing such an element, we shall have to switch to the ball model. In the next 
section we shall give the explicit formulae for I(T), cn(T), and the E-radius, rd(T), 
of 1(T) for -13 using the standard complex notation. 
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An EH-isometry T of (J' is an H-isometry which fixes the Euclidean center 0 of 
$35n, cf. (1.1). When T is not an EH-isometry, we define the isometric sphere of T, 
again denoted I(T), by I(T) = Eq(T-1(0), O). Then, both for QA and J5, if T admits 
an isometric sphere, there is an EH-hyperplane Ref(T) that E-bisects I(T) such that 
the action of T is the product of an E-inversion of H3 in I(T), an E-reflection 
(inversion) in Ref(T), and an EH-transformation that carries I(T) on I(T-'). It 
follows from this description that T is an E-magnification E-inside I(T), an 
E-isometry exactly on I(T), and an E-contraction E-outside I(T). Therefore, if U is 
an EH-isometry we have 

(1.2) I(UT) = I(T), I(TU) = U-`(I(T)). 

We shall not need to give a rule to determine the reflecting plane Ref(T) except when 
T is an involution. If T has fixed points in H O then T is an H-rotation about an axis 
ax(T) which is an H-(n - 2)-plane. If T2 = E and I(T) exists, we choose Ref(T) to 
be the EH-plane containing ax(T). If T is both EH and an H-rotation, we call T an 
EH-rotation. For (jY the E-centre, still cn(T), of I(T) for a non-EH-isometry lies 
outside (in. If R is an EH-rotation of H n(either model) such that the E-(n - 2)-plane 
containing ax(R) contains cn(T), we shall say merely that ax(R) contains cn(T). 

1.5. Suppose we are given an algorithmic set {Sj} generating a discrete group F of 
(orientation-preserving) H-isometries. We wish to produce a complex with side 
pairing (K; T) such that T also generates F, and we begin by selecting a model, (%n or 
GAtn, of H 0n. Let rEH denote the subgroup of all EH-transformations of F. Then rEH is 
a Euclidean group of a simple type that we may suppose has been completely 
classified. Hence, if the study of F is to present a challenge, we suppose that 
r ]FEH. Let 0 be the open region of H n which is E-outside all isometric spheres of 
IF - EH Then 0 is nonempty if we are in 6JYn but 0 could be empty if we are in t n. 

If this happens, we must switch to jqn. So suppose 0 is nonempty. Each (n - 1)-side 
(face) of 0 lies on an isometric sphere, say I(T), and T maps the face of 0 on I(T) 
onto that on I(T-1). When rEH is trivial, then 6 is a fundamental domain for F. We 
then set 6D = 6 and call 6D a Ford domain for F. It is associated with the set {Tj} of 
elements of F whose isometric spheres carry faces of 6D. 

When rEH is nontrivial, the region 0 is bigger than a fundamental domain, and we 
have to describe a rule for getting a good domain in some detail. Let pr: tn -> LIH0 
C SP' be the orthogonal projection (xl,... ,xn) -* (x,. ... ,xn1), and let pr: '!in - 

{0} -* SP' be the radial projection from 0. Our method for getting a Ford domain 
6D for F is to select a fundamental domain 6D' C SP' for ]EH, and then set 
6D = 0 n pr`(6D.). It will simplify the later discussion if we always choose 6D. so 
that the number of spherical faces of 6D is minimal, and we do this as follows. Each 
face of 0 is an H-polygon on some isometric sphere. Suppose first that F does not 
contain an EH-rotation which rotates a face of 0 on itself. Then there is a collection 
{Tk} of elements of IF - EH such that each I(Tk) and I(TA7l) carries a face of 0, 
these faces are all distinct except for the possibility that Tk = T,j, and the interior 
of the closure of the union of the projections on SPO of these faces is a fundamental 
domain for rEH. The modification needed when the EH-rotation R rotates a face F 
of 0 on itself is to replace F by a suitable wedge W on F. If R is a rotation of exact 
order r a 2, the vertex angle of W will be 2v/r, and the " vertex" of W will be 
ax(R) Pn I(T) where F C I(T). One of the sides of W to this " vertex" will be an 
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H-(n - 2)-line to an (n - 3)-side of bdry F. Also TRT-1 is an EH-rotation whose 
axis contains cn(T-1), and we select a wedge W' on I(T-1) for it by W' = T(W). 
Then 6D., will be the interior of the union of the projections of the complete faces 
and wedges on the I(Tk+1), and is a fundamental domain for rEH. The resulting 
domain 6D is called a Ford domain for F, and 6D is determined by ]EH, the collection 
{Tk}, and, perhaps, the choice of certain wedges. These wedges will be tacitly taken 
for granted and will be mentioned only when needed. So, in all cases, our Ford 
domain 6D is associated with a collection {Tk} such that each Tk is some word on the 
original generators {Sj}, and Tk maps the face of 6D on I(Tk) onto that on I(T-j ). 

When rEH is nontrivial, the above rule for producing 6D., can be refined to ensure 
that 6D be connected and even that the number of EH-edges be least possible. While 
these features may seem desirable, they do not enter our analysis at all, and it turns 
out to be rather difficult to achieve them in practice. It is very unusual for one of our 
Ford domains to be H-convex, and typically an H-convex fundamental domain 
(when rEH is nontrivial) is more complicated than a Ford domain in ways that really 
matter. Incidentally, the Beardon-Maskit theory for H-convex domains in dimension 
3 applies directly to our Ford domains in spite of the nonconvexity. 

1.6. To get a complex with side pairing (K; T) from a Ford domain associated 
with {Tk} take I K I to be the H-closure of 6D and the sides of K to be the minimal 
collection of blobs on bdry I K that is consistent with the H-polyhedral structure 
and satisfies Seifert's restrictions K1,... , K4. (When F contains involutions we may 
have to bisect some faces of K so that no side of K contains equivalent interior 
points.) The side pairing transformations T are {Tk} and any necessary EH-transfor- 
mations for EH-sides. It is clear that the E-distances to SP' of equivalent points of 
IKI are the same and that this implies that the cusp condition holds for (K; T). 

Hence Seifert's Addendum shows that the cross line condition holds. Because 6D is a 
fundamental domain for F we know that (K; T) is a gapless simple cover of H n, and 
then item 9.3 of [12] tells us that the angle sum condition also holds. The only new 
information that Poincare's Theorem might give us now is that the cycle relations of 
(K; T) present F on the generatorsTj. 

However, our usual starting point is the algorithmic set {Sj} generating F, and 
intiially we may not know whether F is discrete, or know the subgroup rEH, or the 
set {Tk} for a suitable Ford domain. These three items are to be part of the 
conclusion. Suppose that we have found a candidate corresponding to {Tk} for being 
a Ford domain for F by some kind of search. The Tk and the proposed EH-pairing 
transformations are supposed to be explicit words on {Sj}. Our problem is then 
reduced to proving that 6D actually is a Ford domain for F. The hypothesis that 6D, 
{Tk} is a candidate Ford domain means first of all that we have used algorithm 
AD(2) to calculate roughly the intersections of the I(Tk+1) and the effect of the 
EH-transformations, and that we have lists of the sides of the candidate (K; T) 

(defined as above for 6D, {Tk1). These lists give us the proposed incidence relations of 
K and the approximate E-boundary of each k-plane carrying a side of K. The edges 
(codimension 2 sides) of K have been sorted into tentative edge cycles, and the cycle 
transformation for each cycle has been reduced to a word on {Sj}. The angle sum for 
each cycle has been calculated very accurately and found to be very nearly 2 T/a for 
some definite integer a. Then the cycle relation Xa = E for the cycle has been 
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verified by algorithm AD(l). It is assumed that no inconsistency in (K; T) was found 
during these checks, so that 6D is pretty certain to be correct. 

The easiest condition to settle is the angle sum condition for each proposed edge 
cycle. Say the cycle has cycle transformation X, that Xa = E, and that the angle sum 
estimate really proves that the angle sum is less than 4,r/a. Now Xa = E implies 
that the angle sum its exactly 2Trm/a for some integer m 2 1 which is relatively 
prime to a. Our upper bound implies that m = 1, so the angle sum condition holds 
for this cycle. We call this argument the angle sum trick. 

The really hard part of the verification is proving that the side pairing transforma- 
tions really do pair the faces of K in the manner indicated by the approximate 
calculation. We do not have a general method for doing this, so we have to take 
advantage of the special circumstances of the definition ( Sjj) of F. There is a direct 
method for solving the pairing problem when the Si are defined by a faithful matrix 
representation of the group of H-isometries and the entries of the matrices generate 
a known algebraic number field F. It is then possible to compute the coordinates of 
the vertices of the E-closure of I K I as explicit algebraic numbers. Then if Tk seems to 
send a side A on a side A', one can compute the vertices of Tk(A) and A' and 
compare them as algebraic numbers. If A' and Tk(A) have the same vertices, they are 
equal because they are both H-convex. This method is so grim that we call it the 
method of last resort. 

There are two important simplifications of this pairing problem that help even the 
method of last resort. The first is that when a tentative Ford domain 6D is 
constructed by the above rules, its EH-faces are automatically paired correctly by 
EH-transformations and hence they can be omitted from the pairing verifications. 
First of all, the two EH-sides that meet along the axis of an EH-rotation through the 
apex of a wedge on a face of 0 are paired by R because we explicitly arranged it. For 
the other EH-faces recall from (1.2) that the EH-transformations permute the 
isometric spheres of IF - EH, and hence permute the edges of our candidate for 0. 
An edge e of 6 gives rise to an EH-strip pr-'(pr(e)), so rEH permutes these strips. All 
the EH-faces of 6D except those from wedges are such strips, so the EH-elements of T 

must pair them correctly. Note that this argument works even when 6D is wrong 
provided that we keep to the rules for defining 6D given a candidate (. 

The second simplification of the pairing problem is the recognition that Poincar'e's 
Theorem really does not require hypotheses on the sides of K of codimension > 3. 
Let T E T and let F, F' be faces of 6D such that T approximately maps F on F'. Let 
l,..., lm and l',..., l be the H-lines (or H-(n - 2)-planes) containing the edges of 
F and F'. Suppose we can prove that T maps the H-lines lI on the H-lines 1j. Then 
T(F) and F' are nearly coincident H-polygons on the same H-plane which are 
bounded by segments of the same set of H-lines. Therefore T(F) = F', and we have 
solved the pairing problem for F, F'. The H-line T(1j) is determined by the effect of 
T on the E-endpoints (or E-boundary in higher dimensions), so in the method of last 
resort the pairing problem is reduced to calculations of the effect of the Tk on SP??. 

We are now ready to explain our preferred methods for solving the pairing 
problem efficiently. We shall consider the effect of the Tk on the H-lines carrying 
non-EH-edges of K on a cycle by cycle basis rather than on a face by face basis. 
Consider a nontorsion cycle of length 6 whose cycle transformation X is the product 
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U3V3U2V2UIV1, where the Uj are EH-transformations and the Vj belong to {TkA1}. Of 
course, the cycle relation X = E was verified by AD(1). The H-lines carrying the 
edges of this cycle are 

171 = u3(i(v3-')) n i(vi), T2 = i(vi-1) n u1-1(i(v2)), 

7T3 = Ul(I(Vi-1)) n i(v2), vT4 = I(v2-1) n u271(i(v3)), 

7T5 = Uji(vi(-')) n i(v3), ?T, = i(v3-1) n u3-(I(ivj)). 
Clearly U1(T2) =T3, U2( T4) = ?T5, and U3( ?6) = ?Tj, and we need to prove that 

(1.3) 72 = VI(?T1), ) T4 = V2( 73), I76 = V3( 75). 

Let T' : = U3V3( T5), ?T2 = U 11V271U271(?T5). Because ?T5 C I(V3) and UI1( 5) C 

I(V27l), the maps U3V3 and U1-1V271U2?1 are E-isometries of ?T5 on ?T' and ?T2. Hence 
the composite U(-1V271U21 -(U3V2)-l= Y is an E-isometry of ?T' on ,T2, whence 
IT' C I(Y) and ?T25 C I(Y-1). But the cycle relation implies that Y = VI, so 

IT= I(v) n U3(I(V3-1)) = ?Tj, and ?T25 = i(v1-1) n u1(i(v2)) =T2- 

Hence T2 = Vl(?T1). Next 

7T4 = U21 (5) = V2U1(q) = V2U1(?T2) = V2(?T3) = 74, 

and the proof of the last assertion of (1.3) is similar. The conclusion is that the 
H-lines carrying the edges of a torsion free cycle whose cycle transformation has 
exactly three non-EH-factors are automatically mapped on their successors correctly. 
We call this little swindle the closing trick. The closing trick even helps the method of 
last resort, because if we have a torsion free cycle with more than three non-EH-fac- 
tors in its cycle transformation, the trick permits the omission of the calculation of 
the effect of one non-EH-factor on an H-line. 

We have not found a similar good trick for most torsion cycles, and when we 
encounter one we rely on ad hoc arguments, cf. the example in Section 3. However, 
if the cycle relation is a direct power T = E, then the cycle can contain only one 
edge and this edge is a segment of ax(T ). So there is nothing to do here, but for the 
sake of reference we call this observation the torsion trick. 

1.7. Experience suggests that these tricks are completely reliable except in cases 
where some alternative method is not especially unpleasant. One common situation 
where the closing trick is prone to fail is where we have two isometry groups F c a, 
so that information about one group can be used for the other. For example, when 
the bigger group is proved discrete the smaller group is a fortiori discrete, and a 
Ford domain for F is the interior of the H-closure of the union of A-translates of one 
for A. If F has finite index in A, then A is discrete when F is, and this time we 
subdivide a Ford domain for F to get one for A. A third important case is where A is 
generated by F and EH-isometries and F is normal in A. Then A is discrete if F is, 
because both groups have the same lattice e of isometric spheres. In any of these 
cases, once we have produced a complex with side pairing (K; T), where the interior 
of I K is a Ford domain for one group, the approximate calculations of AD(2) 
suffice to determine all we need to know about the other group. 

One further advantage of Ford domains is that when one of the torsion free cycles 
admits the closing trick the angle sum a for the cycle is bounded above by 3 ?T, 
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whence a = 2 ?. More generally, suppose the cycle relation is Tm * * * Tl = E. If an 
edge of the cycle is a segment of the intersection of two non-EH-faces, then the angle 
here is < 7T. When one face at an edge is an EH-face paired by T, we use 

angle in I KI of i(T) n TCn (I(Tb)) + angle in I KI of Tc(I(Ta)) n 1() 

= angle of I( T) n I(TbTc) < T. 

Hence if exactly r of the factors TJ are not EH, we get the bound a < rv. Therefore 
we do not have to consider a when r = 3 or 4 because then a = 2? automatically. 

A final verification that may sometimes be necessary after (K; T) has been found 
is that T generates F itself, and not some proper subgroup F,. For each generator 
S E { SJ} of F that is not known to be in IF we construct an approximation to 

S(I K ) and connect an interior point of this to an interior point of I K by an 
H-polygonal path that avoids the P1-images of the edges of K. This path determines 
a word T on T such that T(j K I) overlaps S(j K 1). Then we use AD(1) to check that 
T= S. 

2. The Poincare Library File. The Poincare file is a collection of Fortran 
subroutines that is to be combined with a main Fortran program to make a system 
implementing something like the methods of Section 1 for dimension 3. The file has 
grown over the years and is now getting near its natural limits. There are still certain 
restrictions on the groups it can handle, and there will always be machine dependent 
practical limitations, but the system can now do most of what one could expect and 
want. The file is on magnetic tape and will be available for copying by other 
matematicians desiring to use it. We shall also prepare a manual describing Poincare 
in more detail and explaining how to use it. Here we will just outline what it does 
and give a few hints about its methods, which will support the discussion of its 
applications in the next two sections. 

First of all, Poincare uses the standard complex notation for 913, so now we will 
write 

6,3 = ((z, h) E C X R: h >0), P1(C) = no = SPo. 

This facilitates an identification of the group of orientation-preserving H-isometries 
of "9t3 with PSL(C) = PSL(2, C) = SL(C)/K-E), where SL(C) = SL(2, C). Let 

(2.1) T =[ 
a b 

ad -bc = 1. 

We shall consistently minimize the notational distinction between SL and PSL and 
express an H-isometry by one of the matrices representing it. It is also convenient to 
pick out the entries of the matrix (2.1) by the functions 

all(T) = a, b12(T) = b, c2l(T) = c, d22(T) = d. 

Our T acts on P 1(C) by 

_az +b a 
(2.2) T(z) = +d T(x)--,- 

where a/c = x when c = 0. This action extends to 913 by a quarternion formula 
which is equivalent to Poincare's original formulae, cf. [1], [2]. We can identify 
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C X Ri with the space of quarternions p = xl + x2i + X3j + Ok by (x + iy, h) < 

p = x + yi + hj. Then T acts on 6&3 by 

(2.3) T(p) = (ap + b) - (cp + 

It follows from (1.1) and (2.3) that T is an H-isometry of G13, and a standard 
argument shows that every orientation-preserving H-isometry T can be represented 
in this way. It also follows that T is EH on ?t3 exactly when c2,(T) = 0 and 

a, I(T) 1. All EH-transformations are either EH-translations 

An =-A{1= l] (z, h) F- (z + 71, h) (q 71 E ) 

or EH-rotations 

[e;R (z, h) ,_ (Wt2Z + wb, h) (1 1, w S 

which E-rotate %213 about the EH-line ax(R) whose finite E-endpoint is 

axo(R) 
b 

-1 

If c21(T) + 0, then T has an isometric circle IO(T) C C where IO(T) is the locus 

I cz + d l= 1. The isometric sphere I(T) is the H-plane whose E-boundary is IO(T). 
The specific formulae for radius and center are 

I - ~d _a 
rd(T) = rd(T-1) = cn(T) --, cn(T-1) - 

We fix a definite choice for the reflecting plane Ref(T) (with E-boundary the 
reflecting line Refo(T)) by taking the action of T to be the product of inversion in 
I(T), reflection in Ref(T), and EH-translation (not rotation) of I(T) on I(T ). 

To identity the group of orientation-preserving H-isometries of J3 with PSL(C) 
we define a conformal map F: 13 _ 635 using the above quarternionic represen- 
tation of QI3 and an identification of R3 with another space of quaternions: 

(XI, X2, X3) " q = xl + X2j + x3k. 

Then 

F: p (p-j)(p + j)1 = q (p E(=- Q ) 

has inverse 

F-1: q(Il- q) '(l + q)j=-p (q E qj33 

Note that F sends (0, 1) ] j to 0 E ciI? and F extends to the spheres at infinity so 
that F(oo) = (1, 0, 0) = 1. We transfer the action of T on Qt3 to an action on @3 by 

T(q) := Fo To F-1(q). 

The Poincare file computes rd(T) and cn(T ? 1) for j3 in a straightforward manner, 
but leaves Ref(T) undefined because Ref(T) is only used for Calcomp plots of Ford 
domains in q13. 

Poincare uses two criteria for indiscreteness. The first is Shimizu's Lemma, a 
special case of Jorgensen's Inequality, which asserts that 
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is indiscrete when 0 <I 'qc 1< 1, cf. [2]. (We have been told that Shimizu's Lemma 
was known earlier, notably by H. Petersson, but on looking into this we did not find 
an account giving an explicit criterion for indiscreteness.) The other criterion is 
Jorgensen's Inequality, which asserts that ( X, Y) C SL(C) is indiscrete when 

|tr(X)2 - 41 + Itr(XYX-'Y1) - 21 < 1, 

except when < X, Y) is an elementary group of three explicitly noted types; cf. [6]. 
Whenever there is a choice, Poincare relies solely on Shimizu's Lemma because it is 
easier to manage. 

In using Poincare one first gives it values for several parameters that determine the 
type of groups to be considered. The input data for each group G is a collection {SJ) 
of unimodular matrices that generates G. The program then attempts to set up a 
Ford domain 6D in Q13 or j3 for G, and when it thinks it has succeeded it sorts the 
edges of 6D into cycles and works out the non-EH-cycle relations. These, together 
with data for the non-EH-side pairing transformations {Tk} of 6D are then sent to the 
output routines. The official record of the calculation is the printout. This includes a 
list of the {Tk} expressed as words on the {Sj}, rd(T) and cn(T '), and the matrix 
entries of T, for each T E {Tk}. Then comes a count of the number of non-EH-edges, 
and finally the non-EH-cycle relations from 6D. Each torsion-free cycle which does 
not admit the closing trick is noted. If G turned out to be indiscrete, some 
information about the details may be given. Poincare also allows the option of 
producing a Calcomp plot of the orthogonal projection of 6D on C for 1I3 or an 
orthogonal projection of 6D on some plane for . The plots for Qi are usable as 
working diagrams that give insight into the action of G, they use three colors to 
make them easy to interpret, and many are rather pleasant works of art. The plots 
for j3 are a recent development that is not yet complete, but it seems that they will 
have to be regarded solely as artwork because they are too difficult to use as working 
diagrams. 

The large size of the output per group means that Parkinson's Laws usually will 
apply before the practical and theoretical limitations do. The only current theoretical 
restriction on the gorup G is that it must admit a Ford domain 'lD with only a finite 
number of sides, i.e. be geometrically finite. Two simple examples of geometrically 
infinite groups are 

([+ 1'[_ ) where I + w + , 2 - 
o, 

(A{2 + 2i}41 where j + i2 = 

These are the J-groups of [10], after T. Jorgensen, who found the first examples of 
this type. Feeding J-groups to Poincare would lead to disaster, and yet a casual 
inspection of these input matrices would not arouse suspicion. There are also certain 
avoidable restrictions on the subgroup GEH of a group G that Poincare accepts. The 
system was originally intended for parabolic representations of knot groups, cf. [8], 
[9], [10], [11], for which one wants GEH to be allowed to contain two independent 
EH-translations and an EH-involution, using the model qt3. The very considerable 
programming effort needed to provide for this involution discouraged us from 
providing for EH-rotations of higher order. For the ball model, GEH must be trivial. 
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To avoid these restrictions, replace G by a suitable conjugate XGX-' for which GEH 

is trivial, and use the ball model. 
The practical limitations of running time and array storage space are not espe- 

cially serious, because Poincare is rather efficient, and the arrays are so large already 
that most groups that exceed them are too complicated to be interesting. Of greater 
moment is the fact that algorithms AD(l) and AD(2) are not part of the system for 
obvious reasons. The lack of AD(l) means that the user will have to verify the cycle 
relations himself, and this is where Parkinson's Laws usually come in. For each 
sufficiently restricted class of input groups for Poincare one might try to write a 
batch of subroutines that provide AD(l). We once did this for parabolic representa- 
tions of 2-bridge knot groups, and the programming effort required suggested that 
one will need to be very strongly motivated indeed to do this for other such classes. 
Probably free groups are the most that one should ask for. Instead of AD(2) we used 
the ordinary floating-point arithmetic for the computer, which had the equivalent of 
11, 14, or 16 decimal figures for the machines on which we implemented Poincare. 
Such accuracy is not overly generous because the arithmetic calculations of Poincare 
lose accuracy at a shocking rate. The system uses the input quantity E to test for 
presumed equality of two calculated floating point numbers, and the run will fail 
when - is simultaneously too large and too small. In the first important class of 
groups that we studied via Poincare we found a simple minded geometrically 
convergent (cf. [15]) sequence G(') of discrete groups with a very simple geometric 
limit G(w) that is maximally unfavorable for the Poincare system if it is based on 
floating-point arithmetic of any fixed accuracy, cf. [11]. Another good way of getting 
into accuracy trouble is to try and get near a general point on the boundary of a 
space of nonrigid Kleinian groups. What will happen is that the Ford domains will 
get progressively more complicated and the expression of the {Tk} as words on the 

{Sj} will get longer. The accuracy is lost in the resulting long chains of matrix 
multiplications. 

Poincare has three quirks that should be noted. The first is that if G is a proper 
Kleinian group such that GEH for 213 is nontrivial, then the EH-sides of the resulting 
Ford domain 6D over the regular set of G in P '(C) are left undefined because they do 
not come into consideration. The second is that when GEH is nontrivial, the domain 
6D we get may be disconnected. This is difficult to recognize from the printout, and 
only the Calcomp plots brought this quirk to light. The only way to prevent this 
would be to add subroutines which check for connectedness after a good 6D has been 
found, and redefine the set {Tk} when it is not. This is contrary to the general flow 
of activity of the system, so it should only be done for a compelling reason. The 
third quirk is that when GEH contains an EH-rotation which rotates the face F of e 

on I(T) on itself, Poincare does not actually choose a wedge on F in defining the 
domain 6D as described in Section 1. Recall that TRT-1 is an EH-rotation rotating 
the face F' of 6 on I(T-1) on itself. Poincare marks the edges of F, F' as "live" or 
"ghost" according to a complicated rule, and when it sets up the cycle relations it 
arranges that only the live edges are used. We chose the marking rule to ensure that 
the resulting presentation is correct, and we did not try to ensure that the live edges 
actually are edges of some Ford domain. Perhaps they always are, but we do not 
know. One cannot easily decide this from a Calcomp plot, because the projections of 
F, F' appear without any indication of which edges are live. 
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We conclude this section with an outline of the search procedures to find {Tk} and 
6D given {Sj}. One first approximation to 6D could be to use just the isometric spheres 
and EH-transformations from {Sj}, but we often can do better. Suppose that we 
have a set {W,} of words on {SJ} which are likely to be related to 6D, e.g. relations of 
G that are known in advance or words found to be of interest from previous 
computer runs for G. Subroutine BWORDS cuts each word W of {W,} into all 
possible segments which neither begin nor end with an EH-transformation and sends 
the matrices for the segments to subroutine TEST which decides whether a matrix 
might actually contribute something to 6D. If one knows an element of PFL(C) (the 
group of all H-isometries) which normalizes G, but does not belong to G, it can be 
taken into account in building approximations to 6D. 

The heart of Poincare is subroutine LELIM, which takes a collection {Tk} of 
matrices and the known generators of GEH and sets up a trial Ford domain 6D from 
them by the rules of Section 1. LELIM was the hardest subroutine to write, and for 
about 2 years the first runs for each new class of groups fed to Poincare promptly 
detected complex errors in LELIM that took a fair bit of trouble to fix. LELIM sets 
up the lists of edges of 6D and associates with the edge e the isometric spheres which 
meet in the H-line 1 containing e, the vertices of 6D on e, the E-endpoints of 1, and 
the dihedral angle of 6D along e. In the process the set {Tk} is refined to remove 
unneeded elements. 

The output of LELIM might be sent to subroutine VXCLN which checks for any 
obvious defects in 6D and attempts to set them right. For each vertex v of 6D and each 
T E {Tk- l} such that v lies on I(T), VXCLN computes T(v) and sees whether it is 
E-inside some other I(V) for V in {Tk- }. If so, v is inside I(VT), and VT can be sent 
to TEST in building up the next approximation to 6D. VXCLN actually uses this idea 
more aggressively, and when it is finished the calculation is returned to LELIM if 
the list {Tk} has been changed. VXCLN may be called several times if our early 
approximations to 6D are bad. Alternatively, the output of LELIM might go to 
EDGCYC, which tries to set up the non-EH-edge cycles and their relations. If a 
cycle is found to be incomplete in a usable way, it is stored and later fed to SLUIT 
which deals with it in analogy with BWORDS. The calculation would then proceed 
to LELIM and EDGCYC, and perhaps return to SLUIT. When this is finished 
either the non-EH-cycle relations all seem to be correct, or some limit on recycling 
has been reached, or the process did not seem to be getting anywhere. The results are 
then sent to the output routines. To make all this practical and convenient, 
numerous bookkeeping subroutines are included, and some of these are long and 
complex. The total length of Poincare as of July 1981 is 3936 Fortran card images, 
but this length will definitely change with time. 

3. A Modest Example. We illustrate the application of the Poincare file by one 
example, a certain nonfree discrete group G generated by three parabolics. To define 
G let 

(3.1) h(y) =y - 3y2 + 2y3-4y4 +y' - y6, 

and let X be the root of 3 + h(y)2 = 0, which is the limit of Newton's iteration 
starting from 

(3.2) 0.3726019174 + 1.6959107370i. 
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Then G KA, B, C) where 

(3.3) A=[o ] B= [I6,2 
0 

C=[ 
I 

1]. 

PROPOSITION. The group Gjust defined is a geometrically finite Kleinian group which 
is presented by the following relations: 

(3.4) (AB-'AB-1A-1BA-1CA-1CAC- )3 = EF 

(3.5) (AB-1A-1BA-1BC-1BCB-1CB-1)3 = EF 

(3.6) (A-lCAC-lAC-lBC-1B-lCB-lC)3 = E. 

Proof. We begin by verifying that these relations do hold in G. A straightforward 
calculation in PSL(Z[y]) modulo 3 + h(y)2 shows that any one of these relations 
holds, say (3.4). Next, notice that if 

(3.7) R [ O i1] S [o c 1-] 

then SAS-1 = B, S-1AS = C, SBS-1 = C, and 

(3.8) R2= E, RAR = A-1, RBR = C-1. 

(These relations depend only on the normal form (3.3) and not on the particular 
value of w.) Write the relations (3.4), (3.5), (3.6) as V13= V23 = V33 = E, where Vj is 
the displayed word, then 

V2-I = SViS-1, V3=RV2R. 

Hence the relations all hold, as asserted. 
When we first encountered G all we knew was what we have just proved, and this 

information was not especially helpful to the search for a Ford domain for G when 
we were relying on BWORDS and SLUIT without VXCLN. It took several attempts 
and the analysis of a diagram for an incomplete domain to find the collection {JWJ} 
of words listed below which BWORDS could use to generate the list of all 
non-EH-side pairing transformations for 6D. (A recent attempt using only VXCLN 
and SLUIT without any guidance from the relations of G or the rotation R was 
immediately successful. The account below is based on an earlier run.) 

WI = BA-'CA-C, W2 = CB-'CA-'C, W3 = BA-'BA-'C, 

W4= C-1AC-'BC-'B, W5 = BA-1BC-1BCB-'CA-'C, 

W6= BA-'BC-'BCB-1CB-'AB-'. 

The EH-rotation R of (3.7) which induces an automorphism of G by conjugation was 
taken into account by the computer on this run. 

We list below the non-EH side-pairing transformations Tj that the computer found 
for its chosen 6D. For each T1 we give, perhaps in abbreviated form, the expression of 

Ti as a word on A, B, C, and also cn(Tj), cn(Tj-7), rd(Tj). These three numbers will 
be essential for interpreting Figure 1, a diagram of the E-projection on C of 6D. We 
have not labelled the projected sides of 6D in the diagram because that would clutter 
it too much. Incidentally, the computer uses a different subscript for TJ-l (when 

E F), but we only list the pair T T1 once. Hence the missing subscripts, here 
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the even subscripts, are used for the inverses of the listed transformations. When it 
got to the cycle transformations it changed notation by using T7j) for the inverse of 
a listed transformation. We might have reindexed to make the Poincare presentation 
look a little simpler, but we refrained for fear of introducing clerical errors. 

n Tn cn(Tn) cn(Tn1) rd(Tn) 
1 B -0.301 - 0.139i 0.301 + 0.139i 0.332 
3 C -0.178 - 0.702i 0.425 - 0.423i 0.332 
S A-1BA-1C -0.456 - 0.719i -0.421 + 0.156i 0.278 
7 A-'WI -0.018 - 1.008i -0.358 + 0.391i 0.290 
9 CA-1C -0.199 - 0.927i 0.446 - 0.198i 0.227 

11 W2 -0.294 - 1.185i 0.132 - 0.189i 0.232 
13 B-'CA-1C -0.278 - 1.043i -0.169 - 0.408i 0.205 
15 BA-1B -0.323 - 0.365i 0.323 + 0.365i 0.227 
17 W3A-1 0.481 - 0.954i 0.142 + 0.445i 0.290 
19 W4 -0.011 - 0.207i -0.155 - 1.229i 0.208 
21 BA-'BC-1 0.292 - 0.154i 0.402 + 0.480i 0.205 
23 BA-1BC-1B -0.009 - 0.373i 0.417 + 0.623i 0.232 
25 A-1W5A-1 0.477 - 1.155i -0.353 + 0.593i 0.232 
27 A-1W6 0.043 + 0.851i -0.290 + 0.851i 0.333 
29 CB-'CB -AB' 0.279 + 0.667i 0.135 - 0.355i 0.208 
31 RT27R 0.081 - 1.4141 0.414 - 1.414i 0.333 

The computer found that the Ford domain generated by the rules of Section 1 
from these transformations has 96 non-EH-edges which it arranged into 27 edge 
cycles. The cycle transformations for these cycles are as follows. 

cycle cycle 
1 A-1T1T1-'T1 2 A T3T- 'A T1 
3 T5A-'TC71T1 4 A 1T9T71A'T1 
5 T13Tj'IT1 6 TC91;T1 IjT1 
7 T-1T V T1 8 ATT3T- 1T3 
9 T7-'T5A T3 10 T3 T1T3 

11 Tl-5T21T3 12 A-1T1-1T15A-1T3 
13 T231T291 T3 14 T1 T2j'AT7 
15 T731 Tl- 'A T7 16 Tp71T7 
17 T '9T231AT7 18 T3j1Tj51T7 
19 A-1TC71 T21T9 20 A -Tp7115T 11 
21 A-1T251A-IT23T 1 22 A-1T31T19T1j 
23 A T71 T23T13 24 T251T27T17 
25 T29 T7A-T23 26 T27 
27 T31 

The computer also found that the angle sum for each cycle is approximately 27, 
except for cycles 16, 26, 27 where the sum is near 2v/3. Hence the presumed 
Poincare presentation for G on A, TD,... T31 sets all cycle transformations to E 
except for cycles 16, 26, 27 where the relations are 
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to 

t 

FIGURE 1 
The projection of 6D on ?. The circles are isometric circles, and the lines bisecting them 
suggest the reflecting planes. The bold lines are the projections of edges of 6D where two 
isometric spheres meet on a segment of an H-line outside all other isometric spheres for G. 
The portion of ?Do in the regular set of G is left undefined, and the axes of the EH-rotations 
normalizing G should be clear on inspection. 
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We have reached a situation of the type discussed in Section 1. We have a 
candidate 6D for being a complex with side-pairing, and we must now apply our 
special arguments to complete the proof that G really is discrete and that 6D really is 
a fundamental domain for it. The first part is to verify that all the relations of the 
above Poincare presentation actually hold in G. We begin with the 24 torsion-free 
relations. It is completely straightforward to use 14 of these relations to express the 
elements T5,..., T31 as words on A, T1 = B, T3 = C, and the result I obtained when I 
did this agreed with the list of words in our first table. The remaining 10 relations 
were then easily shown to hold in a free group F3, so they are all redundant. 
Therefore all the torsion-free relations together hold in a free group, and hence in G. 
Now consider the three torsion relations, beginning with (T17T7)3 = E. Expanding, 

Tl71T7 = AC-'AB-'AB-'A-'BA'1CA-'C, 
and this is a cyclic permutation AC-'V1(AC-')-l of the word VI of relation (3.4). 
Hence this relation is equivalent to relation (3.4), and we turn to the relation 
T237= E. We have 

T27= A-IW6 = A-'BA-'BC-'BCB-'CB-'AB-1, 

which is a cyclic permutation of the word V2 of (3.5). Hence T237 = E is equivalent to 
(3.5), and similarly T33, = (RT27R)3 = E is equivalent to (3.6). Therefore the Poin- 
care presentation for G is equivalent to the presentation stated in the Proposition, 
and all the cycle relations are indeed correct. 

The last part is to verify that the sides of 6D are paired exactly as they seem to be 
by the presumed side-pairing transformations. Inspection of the Poincare presen- 
tation shows that the closing trick and the torsion trick work for all cycles except 
cycle 16, (Tp-1T7)3 = E. This causes somewhat more trouble, and we first note that 

RT7R = Tb'I 

is a consequence of (3.8) and the listed expressions for these elements. Hence 
Tl- T7 = (RT7)2, and so (RT7)6 = E. Because R is an EH-isometry we have 

I(RT7) = I(T7), I((RT7)y') = I(Tf-'R) = I(RTr-'R) = 1(T17). 

Therefore the rotation axis of RT7 is 

I(RT7) n I((RT7)') = I(T7) nA (TI7), =:11 say. 

It is now clear that Tp-1 must be an E-isometry along T7(11), so 

T7(11) = I(T7-1) n I(T,-') =: 12 say. 

Therefore T17(l) = 12, and these H-lines are indeed mapped on each other in the 
suggested manner. This completes the last of our verifications of the hypotheses of 
Poincare's Theorem in the manner of Section 1. The Proposition follows im- 
mediately. D 

For comparison we also ran the unit ball version of Poincare for G, and found 
that the Ford domain in i33 is considerably more complex than in 1Qj3. There are 62 
spherical sides, 54 edge cycles of which 4 are torsion cycles, and 154 edges. Every 
torsion-free edge cycle has length 3, so the closing trick works for all of them. 
Because of the extra complexity, the running time for i3 was 3.35 times longer than 
for QL3. 

The only remaining question about G is the identification of its orbit space 3IG 
with some better known 3-manifold. Matthew Grayson has just proved that 1'I/G is 
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homeomorphic to the knot complement R 3- k where k is the pretzel knot (3, 3, 3), 
also known as 935. He did this by a geometric analysis of Figure 1; cf. his paper 
immediately following this one. 

4. Bianchi Groups. In the 1890's L. Bianchi determined Ford domains for an 
impressive collection of Bianchi groups, cf. Vol. I of his Opere [4]. The starting point 
of the present investigation was [14] by R. Swan in which much of the basic theory is 
explained and a small portion of Bianchi's results are used to derive the Poincare 
presentations of gd for 

d = -1, -2, -3, -5, -6, -7, -11, -15, -19. 
Here we shall report on our determinations of Ford domains and their Poincare 
presentations of gd for all d where 

-8 : d : -37, d= -43, -67, -163, 
except the cases listed above that Swan considered. We shall explain our methods for 
dealing with Bianchi groups, state the results for one example, d = -43, and present 
a table of some rather superficial data derived from the complete results for these 30 
groups. We also state the rather meager collection of observed regularities that we 
found in our computer output. Many of these groups are so complex that their 
intimate details are not fit for publication. We should perhaps confess that the 
Bianchi investigation was regarded as a detour from this author's primary interests, 
and that we did not put much effort into it except for finding the correct results. In 
particular, we did not complete a proof that our Ford domains are correct in 27 of 
the 30 cases, and the nature of the gap in our proofs will be indicated below. All 
these calculations were done on a CDC 7600 computer, and the hardest cases were 
run on unbudgeted Priority 0 time during July and August 1978. 

Because a Bianchi group is obviously a discrete group of a type that admits a Ford 
domain for its action on &3I, the kind of arguments of Section 1 is inappropriate for 
the study of these groups. We use instead the classic method, due to Bianchi himself, 
which is based on the ease of listing the elements of an order e = Z[W] of a complex 
quadratic number field F = Q(w), and thereby the matrices of the corresponding 
Bianchi group g = PSL(?). We shall assume that e is not the full domain of integers 
for -1, -3, because Picard and Bianchi settled these cases. Then the subgroup 
9EH of EH-isometries, which we now call g6, is easily seen to be generated by 
A:= A{l}andA,=A{w}.Let 

A = {z E C: |Re(z) I , |Im(z) I < Im(w)|}. 

We all normalize the non-EH-side pairing transformations T for our Ford domain 6D 

for g by requiring that cn(T ? 1) belong to A. This is an application of our standard 
rule for normalizing groups acting on &32, and it certainly works but it is not 
optional. The search for 6D is based on searching for all T E g - gO with cn(T ? 1) E 
A and rd(T) > constant, say ho. The computer listed elements of e in order of 
increasing absolute value. The list begins with 1, which corresponds to 

T_ [ 1 
l -1 o0 

For the nth number, say c, on this list the first check is whether I c I> h-', for if so 
the search is complete. Otherwise, choose a, then d, on the list so that a/c, -d/c 
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belong to lA and I Im(a/c) I, I Im(d/c) I > 1/2. Then solve for b such that ad - bc 
= 1 and see whether b EE C. If not, continue trying values of a and d. If b EE C, then 

T=[a b] 

and T is fed to subroutine TEST to see whether it might contribute something to 6D. 
It is obvious that such a search will produce a correct Ford domain when ho is small 
enough, and that the correct 6D will be found relatively early if the rule for choosing 
ho is rather pessimistic. 

The rule for choosing ho for all but one, g-33, of the Bianchi groups listed above 
was to determine a good guess 6D' for 6D on a preliminary run and then take 

h = E-height of the lowest proper vertex of6D' - (little bit) 

for the final run. We wanted to do this for -33 too, but the lowest vertex was so low 
(cf. Table 1) that we would have felt guilty about wasting even unbudgeted computer 
time on something this silly. (I recall that we stopped at ho = 7501-/2, and that this 
took 19' minutes on a CDC 7600. One minute on this computer is equivalent to 
about one hour on the first computer to run Poincare.) The main reason why these 
searches took so long is that we did not take the trouble to reprogram Poincare to 
eliminate the long stretches of redundant calculations that the standard version 
needs for this kind of search. Perhaps if we had, the searches would have gone 2 or 3 
times faster. Naturally, a correct domain is obtained when the search is stopped at 
height h 1, where h I is just less than the smallest radius of an isometric sphere needed 
for the true domain 6D. If one relies on our subroutines VXCLN and SLUIT, which 
work on inconsistencies of a trial domain, the search can be stopped at height 
h2> h > h0 when the domain seems to be consistent. Therefore one could get Ford 
domains and presentations for many more Bianchi groups at the cost of some 
reprogramming of the system and of a willingness to accept results which are only 
probable. Incidently, it would have been easy for us to have modified this search to 
get results for congruence subgroups of Bianchi groups back in 1978, but nobody 
asked us to do it. 

The ideal classes of e are associated to ends of the orbit space 9Th = 9Ud GQ 3/g in 
the following manner. Swan [14] calls z E C singular when for no X, u E 6 such that 
the ideal (X, jt) equals 6 do we have I ,z + X I < 1. A singular z belongs to F, and if 
z = a//3 where a, /3 E ?, then z is fixed by the parabolic 

1 _#2 1 + a ] 

Also z corresponds to the ideal (a, /3) C ?. If a singular point z belongs to the 
closure 6D_., then it represents one end of &3 /g. Two singular points in the same 
orbit of g correspond to ideals in the same class, and conversely. The class of 
principal ideals corresponds to the sole point x which is fixed by the EH-transla- 
tions. Further results of Humbert and Swan imply that the H-closure 6D is compact 
except for solid cusps reaching down to the singular points below and up to x 
above, so that j1j7g is N - 1, where N is a closed orientable 3-manifold, and / is a 
union of h(?) disjoint 1-spheres in N, and h(?) is the class number of 6. These 
assertions are due to Humbert, Swan, and Serre when e is a maximal order, but 
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Swan's proofs can easily be extended to nonmaximal orders. Incidently, if 

T=[a d] =[ a d ] 

belong to 9 and p E 6L3, then Swan defines T(p) to be our T*(p). Because the 
EH-rotation 

R := [ _i: (z, t) 9- (-z, t) 

normalizes 9 by RTR = T*, we all come to the same conclusions. 
It follows from these results that when the class number h(?) = 1 the lowest point 

of the E-closure GD is also the lowest proper vertex of 6D, and so our search 
automatically produces the correct domain in these cases. In our sample this applies 
to gd for d = -43, -67, -163. When h(?) > 1 we have to supplement our search by 
an examination of the solid cusps reaching down to the (presumed) singular points 
of 6D.. These singular points show up conspicuously on our Calcomp plots as points 
on many isometric circles but not inside any. Swan provided a discussion of the 
methods for verifying that our presumed 6D is correct near each singular point, and 
in [51 H. Cohn gives a table, based on [131, of arithmetic data for e used in the 
verifications. Once our 6D is proved correct in the solid cusps reading down to 
singular points, our setup implies that it is correct everywhere. 

There are other ways to verify that our candidate is correct. One can locate the 
singular points on our Calcomp plots and verify without difficulty that the isometric 
circles which seem to pass through them actually do so. Then the method of last 
resort, which is actually rather easy here, could be used to verify that our 'D is a Ford 
domain of some subgroup SC of g. To prove that the index [ : X3] is < 1 we could 
use an estimate of the H-volumes, vol(s), vol(9C), of the respective orbit spaces. For 
a recent account of the classic lore of H-volumes see J. Milnor's contribution to [15]. 
On the one hand, vol(s) is determined by a formula, due to Humbert, in which the 
value of '(2) is the only ingredient whose estimation requires serious effort, where 
c(s) is the Dedekind D-function of (. On the other hand, vol(5C) = H-volume (GD) 
can be approximated with the aid of Milnor's Lobachevsky function provided that 
we know the dihedral angles of our polyhedron GD. But these have been computed 
and stored because they were needed to bound angle sums, so vol(9C) can be 
estimated mechanically. Thus 

[g: X] 'vol(5s) 

can be estimated accurately enough to determine which integer it must be. Inci- 
dently, Humbert's formulae for volume have only been proved for maximal orders. 
Finally, we suspect that there really is no need to supplement the lowest vertex 
search because it always gives the right answer. 

We now come to the specific results for 9 = gd where d = -43. We have 

1 + -43 
2 ' ? =Z[w]. 

The generators ofg are A, A,, and the following non-EH-transformations, and again 
missing subscripts were used internally by the computer for the inverses of listed 
elements. 
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t -1 0) 2 -1 + co 3J -1 + j 

T4[ w3 -I ] T4co 3 -2+o]' T8 [ 3 1-'j 
The computer arranged the 36 non-EH-edges of 61 into 14 cycles, and the Poincare 
presentation for 9 is as follows. 

T-'A T2A-IAAT~-T1 = T4TfTj = E, 
T7A-'T8T4 = T8AT6T4 = E, A :?A6,A 

(AT1)3 = (T6A-Tl)3 -=(T7A-Tl)3 = T23 = (A-'T2)3 - , 

(A-jT6A,T2) - (T7A-'T2 T 62 = T72= E. 

Note that the first two cycle transformations have four non-EH-factors, and so the 
closing trick fails for them. Figure 2 is a copy of a Calcomp diagram for 6D. 

BIRNCHI GROUP -43 BIANCHI GROUP -67 

Z 0.500000 *3.278719.1 Z 0.500000 +4.092676o1 

FIGURE 2 
The projection of a Ford domain for the Bianchi group 9-43. 
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The following table summarizes the computer printout for our 30 groups. The 
headings NSS and NEHE are, respectively, the numbers of spherical sides and of 
non-EH-edges of 6D for gd' We used our standard rule for producing Ford domains, 
so NSS is an invariant of d but NEHE is often larger than the least possible value 
for d. The headings NR and NTR are, respectively, the number of non-EH-edge 
cycles and the number of such cycles where the angle sum is 2 r/r for r = 2 or 3 (the 
number of torsion relations in the Poincare presentation). Note that the Poincare 
presentation will always require the EH-relation A 2 A<, as in our example. The 
heading RSHLV means the reciprocal of the square of the height of the lowest 
proper vertex of 6D. Add something like 0.1 to this to get the cutoff for I c21(T) 12 in 
our lowest vertex search. Remark that RSHLV was written in Fortran format F10.5, 
and we guessed the rational expression for the decimal part whenever we could. In 
the cases d = -32, -33 a continued fraction expansion of this part did not give us a 
fraction we could trust. The final heading, c21, gives c2,(T) in the form m + nc, 

TABLE 1 
d NSS NEHE NR NTR RSHLV C21 
-8 6 20 7 3 33 1/3 2w 
-9 8 29 11 9 49 2w 

-10 10 39 15 9 65 1/3 2w 
-12 10 34 13 9 65 1/3 2w 
-13 16 64 25 17 85 1/3 2c 
-14 26 84 26 7 108 2c 
-16 18 66 20 9 110 1/4 2c 
-17 32 110 36 15 133 1/3 2w 
-18 26 88 29 11 161 1/3 2w 
-20 40 117 33 7 117 3/5 2w 
-21 30 99 35 19 192 2w 
-22 44 147 49 13 225 1/3 2w 
-23 11 33 10 2 16 8/11 4 
-24 34 108 32 11 161 1/3 2w 
-25 42 143 49 25 261 1/3 11 
-26 80 228 73 13 300 11 
-27 3 11 6 6 13 1/2 2 
-28 52 168 53 17 161 1/3 2w 
-29 86 246 77 19 341 1/3 13 
-30 62 195 63 21 385 1/3 13 
-31 13 47 15 6 24 1/2 4 - X 

-32 100 314 91 9 176.35393 10 - X 

-33 70 230 74 29 1090.39080 4w 
-34 102 317 104 21 481 1/3 15 
-35 7 26 8 4 40 1/3 -1 + 2 
-36 90 257 77 17 225 1/3 2w 
-37 96 314 103 29 533 1/3 17 
-43 9 36 14 10 21 1/2 3 
-67 25 82 28 12 33 1/2 -3 + 

-163 99 332 102 20 81 1/2 4-X 
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where co = od for the last of the listed generators. The isometric sphere for the last 
side pairing transformation has the least radius. 

The first regularity in our output that we could not overlook is that for every one 
of our 30 groups there was at least one relation in the Poincare presentation which 
asserted that a product SI ... S72 = E in gd' and there were four non-EH-transforma- 
tions in this product. The closing trick fails for such a cycle. But we never found a 
relation (SI ... Sn)r = E where > 5 of the Sj were non-EH-transformations. This 
author predicts that the closing trick is likely to fail for a group when there is no 
advantage in using it, and the Bianchi groups are cited as evidence for this 
prediction. 

Perhaps some observations on our calculations of the fundamental group l0td 
are of more general interest. Recall that for a discrete subgroup G of PSL(C) acting 
on H3, 3 1(G) G/Gf =:6(G), where Gf is the smallest normal subgroup of G 
containing all the elliptic elements. A presentation for CF(G) is derived from one of G 
by replacing every relation (SI ... Sn)r = E by SI ... S, = E. We applied this to 18 
Bianchi groups and, after simplifying, obtained the following results. For the first 
batch of 12 groups, 1iF(gd) turned out to be free, of rank r(d) say, and the values of 
r(d) are as follows. 

d -5 -6 -10 -13 -18 -21 -22 -24 -37 -43 -67 -163 
r(d) 2 2 3 3 5 7 5 9 8 2 3 7 

In addition, q(d) for -14, -17, -20, -26, -31 is as follows. 

d = - 14, -17: |X II- ,.X5: X4 X51. 

d=-23,-3l1:xI,x2,x3:x2 x31. 

d = -20: xI,...,x7: x6 x71. 

d -26: xI,.. . ,X8: X71X8 3 X31X4, X3X71X5X41 ? 4X71X3X61. 

This was pencil and paper work, and we urge anyone wishing to rely on these 
assertions for any serious purpose to check them first. All the known F(9d) are 
HNN extensions of free groups, and we wonder if this is always true. 
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