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The Orbit Space of a Kleinian Group: 
Riley's Modest Example 

By Matthew A. Grayson 

In the previous paper, Robert Riley [4] and his computer file Poincare found a 
fundamental domain for the action of a discrete group G of isometries of hyperbolic 
space HI generated by three parabolics. In this paper, we show that the orbit space 
H3/G is homeomorphic to a complement S3 - k*, where k* is k union a point and 
where k is the (3, 3, 3) pretzel knot. Furthermore, H 3/G is equipped with an infinite 
volume hyperbolic orbifold structure. This should not be confused with the complete 
finite volume hyperbolic structure on S3 - k. A neighborhood of k in H 3/G is not 
the quotient of a horoball by a group of parabolic isometries with common fixed 
point. It is instead the quotient of a neighbourhood of the domain of discontinuity 
for G. In addition, G has elliptic elements of order three which give rise to three 
singular axes in the hyperbolic structure. These three axes meet at a point at infinity 
in H 3/G. This accounts for the additional missing point in 3- k*. A neighbour- 
hood of this point is the quotient of a horoball by the Euclidean (3,3,3) triangle 
group. For a treatment of hyperbolic and orbifold structures, see Thurston [5]. 

The computer output form Riley's program consists of a picture of the fundamen- 
tal domain 6D, and a data output giving the face pairings and face pairing transfor- 
mations. For this paper, only the picture of 6D appearing in Section 3 of the 
preceding paper is used, as the information that it contains is sufficient to determine 
the face pairings uniquely. As a result, our labellings are different from those 
appearing in the data output, but the face pairings are the same. To show the 
homeomorphism H03/G = 3- k*, we will glue up by identifying paired faces. The 
geometric structure will then arise as a direct consequence of the gluing. 

The domain 6X is an infinite volume hyperbolic polyhedron. In the upper half 
space model G&3 it lies between two EH-planes parallel to the imaginary axis of the 
boundary complex plane iro. The E-closure of 6D, GD, contains three subsets of i0. 

Two of these are compact, and are labelled Y and Z. The third region, labelled X, 
has connected closure in ro* and intersects any neighborhood of the point { oo 

Figure 1 shows a slightly altered version of the original computer drawing with 
added labellings of faces and edges. Some of the edges of 6D are EH-lines and, as 
such, they do not appear on the computer drawing. This poses no difficulty, as these 
edges will be subsumed by the first gluing step and will play no further part in the 
discussion. 

Received April 29, 1982. 
1980 Mathematics Subject Classification. Primary 57N 10, 30F40, 57M25. 

@1983 American Mathematical Society 
0025-5718/82/0000-1 101/$01.75 

633 



634 MATTHEW A. GRAYSON 

~~ ~A- 

3~~~~~~~~~~~~ 

2- 2~~~2 

G 1T 

13 13 

FIGURE 1 . The fundamental domain GjD 
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The first gluing step is induced by the parabolic isometry A = (O ) acting on %t3. 
%t3/(A) is then an open solid torus. 9)Z1 = 6D/(A) is obtained by identifying the left- 
and right-hand sides of 6D. 91Z1 is a closed solid torus minus a closed subset of its 
boundary, namely X U Y U Z U { oo }. Even though the regions X, Y and Z are not 
part of M , these labels will be retained to indicate the missing pieces of the 
boundary of the closed solid torus. Viewed"as such, the region X in 9Th1 is now a 
cylinder. For a more detailed treatment of the compactification of fundamental 
polyhedra, the reader is referred to Riley [2], [3]. 

FIoulu3 3e 

FIGURE 3. M 1 and the tube running through H 

For the rest of the discussion, it is convenient to represent GA, as follows. A solid 
torus is homeomorphic to a ball minus a 1-handle, which can be drawn as a closed 
half space H minus a 1-handle. The advantage of this description is that it keeps the 
faces of (X1 on a plane aH, and the cylinder X forms the boundary of the removed 
1-handle. 

Figure 2 is a picture of the plane bounding the half space H. The cylinder X has 
two boundary components on this plane; they are labelled X and X. Edge 3 passes 
out of the picture, through the point { oo}, and back in. Note that this is the edge 
passing through the center of Figure 1. A diagram showing the positions of 
X, X, X, Y and Z is given in Figure 3. In the hyperbolic structure induced on 9T1 
from 6D/(A), the tube X is pinched in the middle. This is because A fixes the point at 
infinity. In the figures, this occurrence will be denoted by a circle labelled p for 
parabolic. 

From here, the argument consists of identifying paired faces in a suggested order. 
The map which identifies, say, faces C and C will be written (C, C). At each stage of 
the identification, paired faces will sink into the interior below the plane MH, leaving 
only unidentified faces on the surface. 

Figure 2 suggests that the gluing may begin with the pairs A, A and P, P. 
Identifying these pairs has an interesting consequence. By Riley's angle sum trick [4], 
we know that the dihedral angles of 6D summed over the occurrences of any edge 
yield a rational multiple of 2X. For the edges labelled 0, 4 and 26, this sum is 2?T/3; 
for all other edges it is 2 r. Identifying A, A makes a neighborhood of edge 0 
isometric with a neighborhood of the EH-line between 0 and {oo} in 1&3/(z -*Z), 

X a primitive cube root of unity. Such a structure is an example of an orbifold 
structure as defined in Thurston (5]. In the figures, orbifold axes are denoted by 
solid arcs. 



THE ORBIT SPACE OF A KLEINIAN GROUP 637 

K~ v 



638 MATTHEW A. GRAYSON 

r4lNF /V 

U10 C 

C 



THE ORBIT SPACE OF A KLEINIAN GROUP 639 

The map (A, A), which can be visualized as closing the pages of a book with, say, 
A on the right-hand page and A on the left, actually identifies the circle X with itself, 
leaving only a point touching the plane MH. For the sake of the figures, this point 
will be left a circle, and it will be marked later with a parabolic p. A detailed 
description of the identification (A, A) is given in Figure 4. A similar discussion 
holds for (P, P). 

FIGURE 6. 912, its tubes and orbifold axes in H 

At this point, a more complicated gluing is possible. Faces 0, 0 and J, J could be 
identified in a manner similar to A, A and P, P. Unfortunately, each of these faces 
shares an edge in common with its counterpart, edges 22 for 0, 0 and 23 for J, J. To 
overcome the conceptual difficulty involved in such a gluing, we identify only part of 
each side. In Figure 2, each of the four faces 0, 0, J and J have been divided in two 
by an edge marked -7 to indicate the dihedral angle concentrated at this edge. It is 
now a simple matter to identify the faces 01, 01 and J,, J, by the maps (O, O) and 
(J, J). This identification leaves the faces 02, 02 and J2, J2 separated by an edge 
containing a full 2 g of dihedral angle. Geometrically, the faces 02, 02, say, are 
adjacent and tangent, but not yet identified. Notice, also, that the maps (0, 0) and 
(J, J) fold the regions Y and Z into tubes running through the 
half space H. As before, the ends of these tubes will be labelled Y, Y and Z, Z. The 
resulting quotient space, 9DT2 = )1h/(A, A), (P, P), (01, 01), (J,, J,) is shown in 
Figures 5 and 6. 

To glue any further, it is necessary to move around the circles X, X, Y, Y, Z, Z. 
This has the effect of simplifying the diagram, as well as tangling the tubes running 
through H. In this way, we begin to obtain our manifold as the complement of some 
knot or link in S3. Figures 7 and 8 show the end result of this manipulation. No 
identifications have been performed. 

Now we can easily identify 02, 02 and J2, J2. Previous identifications of edges 22 
and 23 allow M, M and I, I to be identified at the same time. Circles Y and Z move 
around the picture as a result. 93 = 62/(?2, p2), (J2, J2), (M, M), (I, I) is 
shown in Figures 9 and 10. 
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Looking at Figure 9, we realize that all occurrences of edges 18, 19 and 25 have 
been identified, that, is, there is a full 27 of dihedral angle concentrated at each of 
these edges. We can then identify faces G, G, E, E, D, D and B, B. This joins tubes 
Y and Z at the circles Y and Z and forms a new orbifold axis, edge 4. This is seen in 
Figures 11 and 12. In a like manner, we can identify N, N and H, H. Figures 13 and 
14 show what is left, and without further manipulation, we identify F, F, L_L, K, K 
and C, C, identifying tubes X and Z at X and Z and tubes X and Y at X and Y, 
completing the gluing. Figures 15 and 16 show two views of the resulting knot 
complement, its parabolic circles and orbifold axes. The three orbifold axes meet at 
a point which, from angle considerations, must be at infinity. We could have made 
this observation earlier, but as it is not obvious from the original figures that both 
endpoints of edge 4 lie on the plane 70, we decided to withhold this assertion until it 
could be seen more clearly. A neighborhood of this point in H0 3/G is homeomorphic 
to the product of an open interval with a three cornered sphere, in this case S2 with 
a Euclidean structure everywhere except at three points, each of which has a cone 
angle of 27/3. The other boundary component, the torus, has a hyperbolic structure 
induced by the conformal structure on the domain of discontinuity for a Kleinian 
group. The conformal structure is that of a Riemann surface with three nodes 
alternating with three elliptic points of order three. 

FIGURE 8. IA2 after simplification 

We have really constructed this knot by its three bridge presentation. In general, 
the technique of starting with n tubes running through half space and shuffling their 
2n boundary components will yield the complement of an n bridge link. For the 
pretzel knot (3,3,3), Riley has produced a sequence of groups G2n, n > 2, and 
fundamental domains (D2n. The G in this paper is G6 of this sequence. Each case can 
be treated in exactly the same way, the only differences being the orders of the 
orbifold axes. For G2n, the axes have order n, and the resulting quotient has a 
boundary component homeomorphic to S2 with the structure of a hyperbolic 
2-orbifold with three points, each an elliptic point of order n. This holds for all n 
greater than 3. For n equals 2, there is only one boundary component, for the three 
axes meet at a finite point. Unfortunately, no general proof of the discreteness of 
these kinds of groups has been found, and presently, ad hoc methods are necessary. 
For further examples, the reader is referred to Riley [1]. 
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FIGURE 10. (Th3, its tubes and orbifold axes in H 
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FIGURE 13. 'Th5 = (Xh4/ (N, N ), (H, H ) 



THE ORBIT SPACE OF A KLEIN1AN GROUP 645 

FIGURE 14.9Th5 

FIGURE 15. H3/G 
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