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Irregular Sets of Integers 
Generated by the Greedy Algorithm 

By Joseph L. Gerver 

Abstract. The greedy algorithm was used to generate sets of positive integers containing no 
subset of the form {x, x + y, x + 2y}, {x, x + y, x + 3y}, {x, x + 2y, x + 3y), {x, x + 
3y, x + 4y}, {x, x + 3y, x + 5y}, and {x, x + y, x + 2y, x + 3y}, respectively. All of these 
sets have peaks of density in roughly geometric progression. 

In 1936, Erdbs and Turan [1], in connection with the question of whether there 
exist arbitrarily long sequences of primes in arithmetic progression, conjectured that 
if the sum of the reciprocals of an infinite set of positive integers diverges, then the 
set must contain arbitrarily long sequences of elements in arithmetic progression. 
This conjecture, still unsettled, led to attempts over the years to construct denser and 
denser sets of integers containing no k elements in arithmetic progression, for 
various fixed values of k. 

The earliest such construction, due to Szekeres, was actually mentioned by Erdos 
and Turan [1] in their original paper. Szekeres considered the case where k is prime; 
his set Sk consisted of all nonnegative integers which do not include the digit k - 1 
when written in the base k. Although Rankin [6] later constructed examples with 
greater asymptotic density, Szekeres's sets (when each element is increased by one, to 
avoid dividing by zero) still hold the record for the sum of the reciprocals of a set of 
positive integers with no arithmetic progression of k terms; see Gerver [2]. 

Szekeres's sets are generated by the greedy algorithm. That is, n E Sk if and only 
if (Sk n [0, n - 1]) U {n} contains no k elements in arithmetic progression (where 
[0, n - 1] is the set of integers from 0 through n - 1). In 1979, Gerver and Ramsey 
[3] considered the sets Sk generated by the greedy algorithm in this manner, in the 
case where k is composite. We computed thousands of elements of S4 and S6 and 
found them to be distributed quite randomly, on a local scale, in contrast to the very 
regular pattern of Szekeres's sets. We also presented a heuristic argument, supported 
by the computations, that the number of elements of Sk less than n (k composite) 
should be asymptotically proportional to n(k-2)/(k- 1)(log n)1/(k- l). This argument 
hinged on the assumption that the elements of Sk were truly random, in some sense, 
and that the density of Sk in the vicinity of x could be approximated by a function 
p(x) with the following property: There exists a constant p, 0 s p s 1, such that, 
for every c > 1, limx-oo T(cx)/cp(x) = c"P. (It was erroneously stated in [3] that this 
follows from the weaker property that limx + ,0 log p(x)/log x = -p.) 
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At about the same time, Odlyzko and Stanley [4] considered the case where k = 3, 
but the greedy algorithm applies only starting with the third element of the set, the 
first element being 0, and the second element, a2, being arbitrary. They observed 
that when a2 was a power of three or twice a power of three, the set closely 
resembled Szekeres's set S3; these sets they called regular. The remaining sets, called 
irregular, appeared to be quite random for the first few hundred elements, like the 
sets S4 and S6. Odlyzko and Stanley conjectured that, for irregular sets, the number 
of elements less than n should be asymptotically proportional to n' 2(log n)l/2, 

using essentially the same heuristic argument as in [3]. 
Later Odlyzko [5] computed the first irregular set, with a2 = 4, up to several 

thousand elements. Far from decreasing smoothly, the density of this set oscillated 
up and down, with a sequence of peaks and valleys in roughly geometric progression. 
Figure 1 shows the number of elements of this set in consecutive intervals of 10000, 
up to 2.55 X 106 (i.e. 255 intervals of 10000; actually the first interval, here and in 
the other figures, has length 9999). 

The ratio between two consecutive peaks in the density of this set is approximately 
2.5. Odlyzko conjectured that this ratio should tend to +2 = 2.618..., where 0 = 
(1 + r/ )/2 is the golden ratio. Indeed, let r2 be the ratio between successive peaks, 
and assume that each valley is at the geometric mean of the peaks on either side. 
Then two adjacent peaks and the following valley will be in the ratio 1: r2: r3. If 
these three numbers are in arithmetic progression, then the two peaks will tend to 
reinforce the valley; likewise, to a lesser extent, two adjacent valleys will tend to 
reinforce the following peak. But r > I and r3 - r2 r2 -1 if and only if r = 0. 

An arithmetic progression of three terms is a set of the form {x, x + y, x + 2y}. 
In order to test Odlyzko's conjecture, the greedy algorithm was used to generate sets 
of positive integers containing no subset of the form {x, x + y, x + 3y}, {x, x + 
2y, x + 3y}, {x, x + 3y, x + 4y}, and {x, x + 3y, x + Sy}, respectively. The dis- 
tribution of the elements of these four sets (that is, the number of elements in 
consecutive intervals of 10000) is shown in Figures 2, 3,4, and 5, respectively. All of 
these sets appear to be irregular, in the sense that they have no simple nonrecursive 
definition, in terms of the digits of their elements in some base. It would be 
interesting to know whether any of these sets can be made regular by delaying the 
application of the greedy algorithm. 

Table 1 compares some predicted and observed numbers associated with these 
sets. Equation 1 is derived by letting two successive peaks and the following valley 
(assumed to be in the ratio 1: r2: r3) form the pattern of the avoided subset. This 
equation always has the root 1. Of the two remaining roots, one must be positive and 
one negative; the former is used to compute the ratio r2 which follows equation 1. In 
the cases where the avoided subset is {x, x + 2y, x + 3y} and {x, x + 3y, x + 4y}, 
we have r2 < 1, which is meaningless when interpreted as the ratio of successive 
peaks. If instead of taking two successive peaks, we skip a peak, so the two peaks 
and the following valley are in the ratio 1: r4: r5, and we let these peaks and valley 
form the pattern of the avoided subset, we then obtain equation 2. This equation 
also has the root r - 1, and one other positive root from which we can compute r2. 

The observed ratio between successive peaks was computed not from the positions 
of the peaks themselves, but from the positions of the ascending midpoints, defined 
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TABLE 1 
Avoided subset: x, x + y, x + 2y (Figure 1) 
Equation 1: r3-r2 = r2-1, r2= 2.62 
Ascending midpoints: 12 31 79 195 
Ratios: 2.58 2.55 2.47 (2.53 ? .03) 
Number of elements: 1179 1991 3266 5405 
Ratios: 1.69 1.64 .1.65 (1.66 ? .01) 
Exponent: .546 

Avoided subset: x, x + y, x + 3y (Figure 2) 
Equation 1: r3-r2 = 2(r2 -1), r2= 7.46 
Ascending midpoints: 16 67 260 
Ratios: 4.19 3.88 (4.03 ? .16) 
Number of elements 1652 3352 7036 
Ratios: 2.03 2.10 (2.06 + .04) 
Exponent: .519 

Avoided subset: x, x + 2y, x + 3y (Figure 3) 
Equation 1: 2(r3 - r2) = r2-1, r2 = 1.00 
Equation2: 2(r5 - r4) = r41, r2 = 1.82 
Ascending midpoints: 11 19 32 56 95 164 279 
Ratios: 1.73 1.68 1.75 1.70 1.73 1.70 (1.71 ?.01) 
Number of elements 1526 2055 2766 3734 5048 6823 9174 
Ratios: 1.347 1.346 1.350 1.352 1.352 1.345 (1.349 ? .001) 
Exponent: .555 

Avoided subset: x, x + 3y, x + 4y (Figure 4) 
Equation 1: 3(r3 - r2) = r2 1, r2= 0.59 
Equation 2: 3(r5 - r4) = r41, r2 = 1.27 
Ascending midpoints: 9 13.5 20 29 42 62 91 
Ratios: 1.50 1.48 1.45 1.45 1.48 1.47 (1.47 ? .01) 
Number of elements: 1631 2015 2500 3117 3840 4743 5913 
Ratios: 1.235 1.241 1.247 1.232 1.235 1.247 (1.239 ? .003) 
Exponent: .556 

Avoided subset: x, x + 3y, x + Sy (Figure 5) 
Equation 1: 3(r3 - r2) = 2(r2 - 1), r2 = 1.48 
Ascending midpoints: 10 14 21 29 41 59 82 
Ratios: 1.40 1.50 1.38 1.41 1.44 1.39 (1.42 ? .02) 
Number of elements: 1890 2306 2881 3434 4187 5038 6119 
Ratios: 1.22 1.25 1.19 1.22 1.20 1.22 (1.22 ? .01) 
Exponent: .558 

to be the point before each peak at which the density has a value midway between 
that of the peak and that of the previous valley. The positions of the ascending 
midpoints are given in units of 10000, and are estimated by eye in those cases where 
there is some ambiguity. The ascending midpoint was chosen, rather than the 
descending midpoint, because of the empirical fact that, for all five sets, the density 
function rises faster than it falls during each cycle. This means that the valleys are 
not located at the geometric mean of the two adjacent peaks, but closer to the 
following peak. Below the position of each ascending midpoint is listed the ratio of 
the next position to that position;-these ratios are followed, in parentheses, by their 
mean p1 and the standard deviation of their mean. Next is listed the number of 
elements in the set up to the valley immediately before each ascending midpoint, 
followed by the ratios of these numbers, and the mean P2 and standard deviation of 
the mean of these ratios. Finally, we compute the exponent log0 2/log9 t ; this is, 
roughly speaking, the power of n which approximates the number of elements less 
than n. 
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FIGURE 4 

In all cases, the observed exponent agrees well with the conjecture that the 
number of elements less than n is roughly proportional to n1/2(log n)'/2. As n tends 
to infinity, the exponent should approach 1/2, but in this region, where log n is on 
the order of 12.5, the exponent should be about (1/2)[I + (1/12.5)] = .54. 

On the other hand, it is evident that equations 1 and 2 are not of much help in 
predicting the ratio of successive density peaks. 
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FIGURE 5 
An alternative hypothesis is that each valley is caused by the previous peak acting 

in concert with the dense region at the beginning of the set. Thus if {x, x + by, x + 
cy} is the avoided subset, a valley should appear at c/b times the position of each 
peak, and the next peak should occur shortly afterwards. For all the sets except the 
one in Figure 5, this model seems to fit, with the ratio between successive peaks 
approximately 1 + (3/2)[(c/b) - 1]. In Figure 5, this number is very close to the 
square of the ratio between successive peaks, so it is possible that in this case the 
fundamental frequency is actually half of what is appears to be, and the first 
harmonic is unusually strong for some reason. 
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Whatever the precise mechanism may be which gives rise to the peaks and valleys, 
one might expect the following to be true for all sets S generated by the greedy 
algorithm in this manner. 

CONJECTURE. For each set S, there exists a real number a, 0 s a s 1, and a 
function g, where lim, . g(u) = o, such that, for each real number v, there exists 

fv=lim n -aeilog n/ n-a 
u oo 0 n ES n ES 

u?n?u+g(u) u?n?u+g(u) 

One might strengthen this conjecture to state that f, = 0 except for a discrete set 
of v; one might even speculate that this discrete set always consists of all the integral 
multiplies of a single fundamental frequency, characteristic of S. Indeed, this 
last version of the conjecture is true for Szekeres's original sets, where a= 

log(k - 1)/log k, and the fundamental frequency is log k. 
In support of the generality of this conjecture, note the presence of peaks and 

valleys in geometric progression in the set of positive integers with no arithmetic 
progression of four terms, generated by the greedy algorithm (Figure 6; as usual the 
horizontal scale is in intervals of 10000). 

All of the computations for this paper were done on a CDC Cyber 18/30. This 
machine was not ideal for the task, being relatively small and slow; its principal 
advantage was that I could use it for free on nights and weekends. I would like to 
thank H. Pritchett and E. R. Canfield for making this arrangement possible. I would 
also like to thank R. Chambers, who wrote two critical subroutines, one to replace 
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the standard FORTRAN WRITE routine (thus freeing enough memory to compute 
an additional 6000 elements of each set), and the other to store the array of elements 
on a disc when other people were using the machine (making some long computa- 
tions possible; for example, Figure 3 required 72 hours of CPU time). 
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