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An Extension of Ortiz' Recursive Formulation of 
the Tau Method to Certain Linear Systems of 

Ordinary Differential Equations 

By M. R. Crisci and E. Russo 

Abstract. Ortiz' step-by-step recursive formulation of the Lanczos tau method is extended to 
the numerical solution of linear systems of differential equations with polynomial coefficients. 

Numerical comparisons are made with Gear's and Enright's methods. 

1. Introduction. This paper concerns the extension of Ortiz' [13], [17] step-by-step 
recursive formulation of Lanczos' tau method [9]-[ 11] to the numerical integration 
of linear systems of differential equations with polynomial coefficients. 

Let us consider the differential problem: 

(1. 1) fA(x)y'(x) + B(x)y(x) + F(x) = 0, x E [xO Xfin], 

(1.2) Y(Xo) = Y , 

where y(x) = [yl(x) ... y,(x)]T is the vector of the v unknown functions, A(x) 
(a1p(x)81j), B(x) = (b1j(x)) and F(x) = [fi(x) ... f*(x)]T are two matrices and a 
vector of order v whose elements are respectively: 

(1.3) alj(x) akjxk, bk(x) Xk, 
k=0 k=0 

(1.4) j(X) k i X 
k=O 

Thereafter the system (1.1) will be synthetically written as: 

Dy(x) + F(x) = 0, x E [xo, Xfin], 

having introduced the differential operator D defined by: 

all(x) d + b 1(x) b12(x) bl,(x) 

D = b21(x) a22(x) d + b22(x) ... b2J(X) 
*-.......................... 

bk1(x) bk2(x) ... av>(x) dx + bv>(x) 
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Following Lanczos' idea [9]-[ 11], the solution of (1. )-(1.2) is approximated by a 
polynomial vector y*(x), of degree p, which is the exact solution of a perturbed 
system, obtained by adding to the right side of (1.1) a polynomial perturbation term. 

The polynomial y*(x), which is called the T-solution of (1. )-(1.2), satisfies, then, 
the differential problem: 

(1.5) fDy*(X) + F(x) = Hm(x), 

( 1.6) lY*(x0 ) = Yo - 

The perturbation term Hm(x) is constructed in such a way that (1.5) has a 
polynomial solution of degree p, and a norm of Hm(x) satisfies an extremal 
condition on [x0, xfij]. 

Generally Hm(x), following Lanczos, is taken as a linear combination of powers of 
x multiplied by Chebyshev polynomials. 

As Ortiz [18] pointed out, the above method is of order p, in the sense that if the 
exact solution of (1.1), (1.2) is itself a polynomial of degree less or equal to p, the 
method will reproduce it. 

Ortiz [17] has developed a step-by-step approach to the tau method along the 
following lines: let us divide the integration range [x0, xfi,] into subintervals 
[xn, xn+I]. The value in xn+I of the solution of the given differential problem (1.1), 
(1.2) is approximated by the value in xn+I of the i-solution obtained applying the 
method above described in the subinterval [x", xnn+I], taking as the initial condition 
the value in xn of the solution constructed in the previous subinterval [xn- I, xn . 

Therefore, denoting with yn the approximate value of y(x) in xn, the differential 
problem: 

(1.7) fDy*(x) + F(x) = Hm(x), x E [xn,x,n+1] 

(1.8) Y*(Xn) = Yn- 

has to be solved for each interval [xn x"+ I ], in order to give Yn+ I = *(Xn+ 
Hm(x) is the polynomial vector: 

a1 

Tm-al(X) T kXk 

k=O 

kOt 

Tm-a(X) E TkXk 
k=O 

where Tik and aj are parameters to be determined, and Tm ,,j(X) are Chebyshev 
polynomials defined in [x", xn+]. 

The methods under consideration have been proved to be A-stable, for every order 
p, in [3]. 

In order to facilitate the construction of the solution, it is convenient to introduce 
the canonical polynomials, defined as follows: The ith canonical polynomial of 
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order m associated with D is the polynomial vector Ql (x) such that 

(1.10) DQ72(x) = xme1, 

where e1 = (eJ), j = 1,..., *, ei = 

As Ortiz points out in [13], the advantages of the introduction of the canonical 
polynomials are manifold: the solution y*(x) can be easily expressed as a linear 
combination of Ql(x), and they are independent of the integration range and the 
initial condition. 

However, there are some problems connected with the Q72(x) and their construc- 
tion; it is possible that some Ql (x) do not exist and the definition (1.10) does not 
hold but has to be generalized and more precisely stated. Besides, it is possible that 
some operators D have multiple canonical polynomials. These questions have been 
discussed by Ortiz [13] for the one-dimensional case. We extend them and his 
recursive technique for the generation of the canonical polynomials in Section 2. The 
class of integration methods is developed in Section 3, and for clarification the 
resulting algorithm is applied to an example in Section 4. 

Finally numerical results are reported in Section 5, where the method is compared 
with Gear's [6], and Enright's [4], [1] methods. From the comparison carried out on 
both stiff and nonstiff standard test problems, it follows that the proposed method 
compares very favorably with the other two with respect to efficiency and reliability. 

2. Canonical Polynomials. This section is concerned with the extension of Ortiz' 
theorems [13] to questions related to existence, uniqueness and construction of the 
canonical polynomials. We follow his approach; proofs can be extended without 
essential modifications. 

Definition 2.1. The jth generating polynomial of order k associated with D is the 
polynomial vector: 

(2.1) Pk(x) = Dxke, j= 1,...,z. 

Obviously Pjk(X) is a vector whose ith component is a polynomial of degree at most 
equal to k + hi, where hi is given by 

(2.2) hi = max rll , max {sly} , 

with the further convention that the degree of a polynomial identically equal to zero 
is -1. 

Let Q be the set of finite linear combinations of generating polynomials 

r v 

(2.3) = pn(X) 
tj=l nEr, 

where rj is a finite subset of No. 
Now the set S, of the indices m such that Qr(x) does not exist can be 

characterized: 
Definition 2.2. Si is the set of indices v such that there is no polynomial in Q whose 

ith component has degree v and whose jth component, for every j #? i, has degree 
less than v - hi + hi. 
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The nonexistence of some Q72(x) causes the definition (1.10) to be generalized, in 
such a way as to allow for the so-called residuals. For this purpose we extend to 
systems Ortiz' [13] definition of the residual subspace. 

Definition 2.3. The subspace of residuals of D is the subspace RS spanned by the 
vectors 

Rs = xse, s E S19 i = l, ...,v . 

This being stated, the canonical polynomials can be exactly defined. 
Definition 2.4. The ith canonical polynomial of order m associated with D is the 

polynomial vector Q7'(x) such that 

(2.4) DQ7l(x)- x'e1 + R7(x), i 1,... ,; m E No -S; 

where R7(x) E RS is the ith residual polynomial of Qm(x). 
For every m, Qm'(x) can be multiple. In this regard, let UD be the subspace 

spanned by the eventual polynomial solutions Vt(x) of the homogeneous system 
Dy(x) = 0. The following result extends Ortiz' theorem 3.1: 

THEOREM 2.1. For every i E .1..., P}, the multiple canonical polynomials Qr (x), 
m E N - Si, differ by an element of UD. 

Proof. The proof is by contradiction. Let Qml(x), QM 2(x) be two ith canon- 
ical polynomials of order m E NO - S, and Qml(x) - Qm2(x) X UD. Then 
D[QMIi(x) - QM'2(X)] is a linear combination of generating polynomials. But it 
contradicts the definition (2.4), from which it follows that 

D[Q7 I(x) - QM2(X)] = Rm'(x) - RM2(x) E Rs. 

Therefore, it is suitable to introduce the equivalence relation E, defined in 

{Qm(x)} such that 

(2.5) QrnM(x)E,QMj(x) <(Q,Mk(X) - QM"(x)) E UD 

and to consider the quotient set Li 

(2.6) Li = {I 9 (x)} {Qk(x)}/E,, i 1,...,, m E No- 

instead of the set Q= {Q=Qlk(X)). Ortiz [13] called the set L = {Li} the Lanczos 

class of equivalence associated with the operator D. 
Obviously, if the operator D has no polynomial solutions, Cm(x) coincides with 

the canonical polynomial Q7m(x). 
Now the effective construction of the Et(x) has to be discussed. 
For this purpose it is suitable to introduce the following notations: 

(2.7) di = max{sh,, ri, 1, i = 1,... 

(2.8) Ai m {n min { h -E s}i, (hj -dj)} J = 1 V...,P 

i#j 

and to consider, as in [13], the generating polynomials 

Pnl+A(x) j= 1,...,P. 

The quantities, Ai have been defined so that, for everyj, Pjn+Aj(x) has at least one 

component, say ith, whose effective degree is n + hi. From the definition (1.10) it 
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follows formally that D` applied to Pijn+ (x) defines xn+A le as a linear combina- 
tion of the Q72(x), m = 0, 1,...,n + hi. These can be regarded as recurrence 
relations for Qn+h,(X) in terms of xn +A,e and Qk(X), j = 1,...,v, k = 0, 1,... ,n + 
hi - 1. 

However, in the most general case, the nonexistence of some QY?(x) requires a 
more precise discussion. 

Let Wn(x) = (wln (x)) be the matrix whose columns are the vectors Pi n+A(X). 

There is in the ith row of Wn(x) at least one polynomial of effective degree n + h, 
and so Wn(x) can be written: 

n+hl n+hl n+hl 
k 

p11Xk2 k2 k *** pk X k 
Pi 2 12 ... PI 

k=O k=O k=O 
(2.9) Wn(X) =. ...... . 

n+h, n+h, n+h, 
k 

kVl 
k 

pXk * k xk ppx P2 ... PPP 

k=O k=O k=O 

Obviously pk = 0 for k greater than the effective degree of W,n(x). 
Let Pn be the matrix 

~n+h1 ~n+h1 . pn+ 

(2.10) =~~~~~~~ I I? p~+h 12 p+ 
p pn 11lp2n+h2 . . . n+h2 (2.10) P P2 1 P22 h2 ...pn+h2, 

..................... 

n+h, n+hP ... . n+h 

Since at most the diagonal elements contain a factor n, det(Pn) is a polynomial in 
n of degree less than or equal to P; therefore, if det(Pn) is not identically zero, the set 

(2.11) T = {n: det(Pn) = 0, n C No} 

is finite and card('T) < P. 
Now a recursive relation for the elements fE2(x), i = 1,. .. , i', can be stated. In this 

regard, the following result extends Ortiz' theorem 3.3 [13]. 

THEOREM 2.2. For every i E .1I... ,} the elements of LI are connected by the 
following recursive relations: 

v ,, m+hj-1 

(2.12) 7+h,(x) = idir xm+nr - re, Prtj(x), m E No -1', 

k MS SJ 

where 

(dir) (pn) 

and pjk are the coefficients of the elements of (2.9) for n = m. 

Proof. Let X7m+h' be the class of equivalence modulo El, i E { P1,...,}, of the 
polynomial 

v ,, m+hj-I 
Am+h,(X) = 

,m+h-1 
kQk(Xj 

(2.13) A7+h(X) = E dir Xm+Lre - jz P0 r , m E No - '. 
r 

L=I 
k Mk SJ 
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The application of D to Xl, using (2.4), after some algebraic manipulation, yields 

(2.14) DXm+h,(x) 
X m+hj dl,Jpm+h7ej + R+h(x). 

J=1 r=1 

As it is 

2 dilr PJmr 
+h 

1J - 
r=1 

(2.14) can be written as 

Dxm+h,(x) xm+h,e + R7+h,(x) 

Hence X? can be identified with l2+h(x). 

From this and from Theorem 2.1 an extension to systems of Ortiz' Corollary 3.3 
[13] follows: 

COROLLARY 2.3. For every i E { 1,2,... , P} the canonical polynomials Q7(x), 
m E No - I, are connected by the following recursive relations: 

v v nz+h -1 

to(derive5 te Q+Q 

(x) 
ir drr 

xm+rj 

-2 2 

PirQ 

(x) r= 1 ~~~~~~~~~k Mt Sj 

plus an arbitrary linear combination of elements of UD. 

3. Development of the Integration Formulas. As stated in the introduction, in order 
to derive the integration formulas, the differential problem (1.7), (1.8) has to be 
solved, and the solution y*(x) has to be computed in xn+ I. 

From the results of the previous section, it follows that y*(x) can be expressed as 
a linear combination of canonical polynomials, of the form 

X, MJ q 

(3.1) y*(x) = djQ'(x) + : g V(x) 
j=1 i=O J=l 

i S, 

where the following position has been made: 
a1 

(3.2) dJi TjC kcifk 
k=O 

In the above MJ = max{m, tj}, q is the number of the polynomial solution Vj(x) of 
the homogeneous system Dy(x) 0, aj are integer numbers given by 

(3.3) aj 
Si q jyq 

S q < j P 

s1 card({s: s E Si, s < m 

c_ is the coefficient of xkin the Chebyshev polynomial Tm.a(x) defined in 

[Xn, Xn+1], t1, Ij are, respectively, the degree and the coefficients of the polynomial 
(1.4). Tj, gj are parameters to be determined by imposing y*(x) to be the solution of 

(1 7), (1.8). 
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So, combining (3.1) with (1.7), from the linearity of the operator D and the 
canonical polynomial definition, it follows that 

(3.4) Dy*(x) + F(x) dj'(xle? + R'(x)) + z ix le 
J=1 10 1S =0 

I kZ 
O 

v m a1 
- 2 x 2x Ec ikak jkej. 

j= I=0 k=0 

To satisfy this equation the coefficients of the same powers xk must be equal. For 
every j = 1, . . . , v, the resulting equations for the coefficients of xk are identically 
satisfied when k E No- SJ, while, when k E Sj, they yield SJ scalar equations. 
Denoting by [u]' the coefficient of xk in the jth component of a polynomial vector 
u, these equations can be written 

v Mp 

(3.5) E dp'[Rl(x)].-J 
_ O , k ESi, l, V.... v 

P=l *=0 
i(5sp 

Further equations are obtained by making (3.1) satisfy the initial condition (1.8). 
Denoting by [W]J the jth component of a vector w, these equations can be written 

v Mp q 

(3.6) z 2 d,[Q,(xn)]j + 9 gJ[VJ(xn)] [Ynl], 1 1,... 
p=l .=o 0 p I 

1= 

.(sp 

From the above discussion, it follows that the linear system (3.5), (3.6) consists of 
v + 2J= I scalar equations. 

Therefore, to make, in this system, the number of the unknowns TijI gJ equal to the 
number of the equations, as the number q of the gj is determined by the differential 
operator, the number aj of the T must satisfy 

v v 

(3.7) :: aj = v + 2 i-q. 
J=1 = 

Moreover, from (3.5) aj must satisfy also 

(3.8) ai 25j , j= V,... 

a1 are not uniquely determined by (3.7) and (3.8), therefore they can be suitably 
chosen as in (3.3). 

Finally, the following class of one-step methods is obtained from (3.1), (3.2), (3.5), 
(3.6), 

v M, q 

(3.9) d'Q(xn+l) + : gjVj(Xn+l), 
j=I i=0 j=l 

a1 

(3.10) dj = k i-k Ai. 

k=O 

M~Sp 
p=l .1=0 
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v Mp q 

(3.12) 2 E p p(n)]J + gi[Vt(Xn)]j =[Yn]y j= --^ 
p=l I=O u=l 

5 Sp 

Remark. If the first-order differential system is originated by a differential 
equation of order v, choosing the following perturbation term 

0 

(3.13) Hm(x) 0 

Tm_a(X) 
k 

Xk 

k=O 

we recover Ortiz' form [13] of the Lanczos tau approximant for a differential 
equation of order v. 

4. An Example. The methods derived above are, in this section, exemplified on a 

simple differential problem, in order to better clarify the use of the resulting 
algorithm. 

For this purpose, the following problem is considered: 

(4.1) { (X2 + l)y(x) + y2(x) A0 y1(O) =1 

y2(x) + xyl(x) + y2(x) = 01 Y2(0) 0. 

The canonical polynomials will be, now, constructed as developed in Section 2. 
The generating polynomials are 

pn(x - x + nlXn 
I 

pn(X) (xn ( (x) l x / P2 xn + nXn-) 

and, applying (2.2), (2.7), (2.8), it follows that 

hi = 1, h2 =O 

Therefore the matrix Wn(x) is 
nx nn+ l + nXn- I xn+ l A 

Wnx-V xn+l xn+l + (n +I)xn 

and accordingly Pn is 
p _ {n Il 

Applying Theorem 2.2 with elementary algebraic passages, as D has no polynomial 
solutions, the following recursive relations for the canonical polynomials are de- 

termined: 

IQ(x) = 2 (x el - x e2 -(n l)Qj (x) + nQr2(x)) 

(4.2) nQ(x) -2 (-x 2 e1 + (n-l)xne2 

+ (n - l)Qn-2(x) - n(n -)Qn- (X)) 

n E No-{O, 2} . 
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Therefore it is sufficient, in order to determine Si, to verify if 0 and 2 belong to S1 
and/or S2. 

From the definition (2.2) it follows that neither 0 nor 2 belong to S2, because 

PO () = and P2 (x (2 + 2x) 

belong to U. Analogously 0 ( S1, since 2P? + P' + P22= (') belongs to U. 
Therefore 

Si={2}, S2 0 

Now the canonical polynomials and the associated residuals can be constructed. 
Qo(x) Ql(X), Q22(x) are derived from the definition (2.4), the others by (4.2). It 
follows that 

x,X =( 2 )R?(x) = ( ) 

Q ,(X) =( _2 + 
X-0 lx () 

Q20(x) =() Rl2(X) =(?) 

Ql2(x) ~~~~~~~~~~Rl2(x) do not exist, 

Q2(X)=(( ~ x8 2 + 2)' 

Q,(X) 12;1_ 3+ 2x2 + 2) 14(X=( ), 

8x2 + 2xI-2 R1(x) = 6x2) 

i x 2x2+4x+28 j2 

Q,WX = | 12 |X 0 ()={ 

1_x4+4x3- 16x2 +4x -4 \O 

2 

Q24(x) = 1 , R1(x) = 2x 

2x - 12x3 +48X2 -12x +12 O 

From (1.9), (3.3) the perturbation term is 

2 
2(X)~2T(X 

Hm(X) Q2(( ?i) mi ( 

From (3.1), (3.2), with elementary algebraic passages, the solution y*(x) of the 
perturbed system can be written 

rn-I rn-I mn 

(4.3) y*(x) 2 ? c01Ql(x) + T 0 cm_Ql (x) + i2 0 cmQ2(x) 
i=O i=Oi= 

iQ2 i3 I 
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The (4.3) has to be evaluated at every discretization point, and the T parameters 
are determined at every step by solving the linear system (3.11), (3.12). 

In particular, setting m = 3, the integration formula is 

1 2 3 

Yn+ I = T c] Q (x1 ) + T' ] c'Qi+1(Xn+ 1) + T20 E C3Q (xn+ l) 
,=0 i=O .=0 

I =,, I 

with the T parameters being solutions of the following system, whose first equation is 
obtained by setting the expression of the residuals in (3.1 1) 

-C2T? + (3C2 - CC)-C3T2- = 0, 
1 2 

To E 2QlX )] + T' C' [Q1 '(Xtl )] J+ I 21[QII(Xn)], + 2~ 
.=0 ,=0 

3 

+72 T C3[Q2(Xn)]= [Yn]1 j = 1,2. 
. =o 

5. Numerical Results. Numerical experiments have been carried out in order to 
test the performance of the methods (3.9)-(3.12). For this purpose, the above 
methods have been implemented into a fixed-order, variable-step algorithm, taking 
as error estimate the difference between the values obtained by two methods of 
successive orders. As the methods have been proved to be A-stable [3], they have 
been evaluated on problems both stiff and nonstiff. They have been compared with 
Gear's methods and with Enright's second derivative multistep methods, using, 
respectively, the routines EPISODE [2] and SECDER [1]. The comparison has been 
carried out on some significant test problems picked out from those proposed by 
Hull [5], [7] and Krogh [8]. These problems, listed in the Appendix, have been 
classified in the following classes: 

(A) Stiff problems with real eigenvalues. These are three systems, of varying size, 
with stiffness ratio: 200, 105, 105. 

(B) Stiff problems with complex eigenvalues. These are four systems with real 
eigenvalues -0.1, -0.5, -1, -4, and two complex eigenvalues -10 J+ ia, where a takes 
the values 3, 8, 25, 100, so that it is possible to see the behavior of a method as the 
eigenvalues approach the imaginary axis. 

(C) No stiff problems. These are three systems; the first has solutions asymptoti- 
cally tending to 1, the second has oscillating solutions, the third has an inherent 
instability. 

In order to test the performance for different ranges of accuracy, each system has 
been solved for four tolerances, namely TOL = 10-2, 10-4, 10-6, 10-8. 

The method (3.9)-(3.12) utilized (and implemented into the routine TAU) is that 
of order three for TOL = 10-2, four for TOL = l0-4, five for TOL = 10-6, 10-8. 
Also EPISODE uses these orders in most of the cases, whereas SECDER generally 
uses orders higher than these. 

All the calculations have been carried out in double precision floating-point 
arithmetic with a 60 bit mantissa (approximately 18 decimals) on the Univac 
1100/80 computer of the University of Naples. 
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The comparison criteria have been chosen in such a way as to reflect both the 
efficiency and the reliability of a method. 

The measures of efficiency chosen are: 
(1) TIME-the total computing time, measured in seconds. It includes also the 

time for calculating the exact local solution in each step. 
(2) STEP-the number of integration steps, performed to cover the whole 

integration range. 
The measures of reliability chosen are: 
(1) MAX LOCAL ERROR-the largest local error committed in all steps taken; 

the error is measured in units of the tolerance and it is defined as the maximum 
norm of Yn(xn 1) -)Yn+ , where yn(x) is the true solution through the previously 
computed point (xn, YJ). 

(2) GLOBAL ERROR-The maximum norm of the absolute error at the end of 
the integration interval. It is measured in units of the tolerance. 

Numerical results are presented in Tables I, II, III. They show that the proposed 
method compares very favorably with the other two methods. In fact, it is better 
than the other two as concerns the efficiency, and it is better than EPISODE and 
comparable to SECDER as concerns the reliability. 

This behavior is observed for all tolerances and for almost every problem. At the 
present time high quality software, implementing the above methods in a variable- 
order, variable-step algorithm, is in progress. Users of this package will be requested 
to supply, for the differential system that is to be integrated, the degrees and the 
coefficients of the polynomials aij(x) and bi1(x), as quoted in (1.3). 

6. Acknowledgment. The authors are indebted to E. L. Ortiz for his valuable 
comments on the paper. 

APPENDIX 

Class A- Stiff systems with real eigenvalues 

A1[5] 

y = -.5y1 Y1 (O) 1 
Y2' -=OY2 Y2(0)= 1 
Y3' = - 1??Y3 Y3(0) = 

Y4 = - 9OY4 Y4(0) = 

x E [0,20] 

Eigenvalues: -0.5, -1, -90, -100 

A2[5] 

Yi=-lyi y,(O)= I i= 1,...,10 

x E [0, 1] 

Eigenvalues: -1, -32, -243, -1024, -3125, -7776, 
-16807, -32768, -59049, -100000 
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A3[5] 

(Yi = 10yl+ 100Y2 - 1OY3 +)Y4 yi(O) = 1 

Y2=-13Y2 + 10Y3 - 10Y4 Y2(0)=1 

Y3'-Y3 + 1lOY4 Y3(0) 1 

Y4 _0.lY4 Y4(0)= 

x E [0, 20] 
Eigenvalues: -0. 1, - 1, - 1000, - 10000 

Class B-Stiff systems with complex eigenvalues [5] 

yj = -lOy1 + ay2 y1(O) 1 

-ay1 - 10Y2 y2(O) 1 

Y3= y3(0)= 1 

Y4 -Y4 y4(0)= 1 

Ys= -.5ys Y5(O) 1 

Y6= 1 Y6 Y6 (0)= 

x E [0,20] 
Eigenvalues: -0.1, -0.5, -1, -4, -10 +ai 

Bi a = 3 
B2 a=8 
B3 a = 25 
B4 a = 100 

Class C-No Stiff system 

C1[7] 

Y { -Y1 + Y2 YI(0) = 2 
Y2' = Y1 - 2Y2 + y3 Y2(0) = 0 

'- 'O'- Y tY-2Y3 Y3( X- 

x E [0,20] 

Eigenvalues: 0, -1, -3 

C2[8] 

JYi Y2 Y2(0) = 

Y2 =-Y I Y2(0) =1 

x E [0, 20] 
Eigenvalues: i, -i 
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C3[8] 

{Yj=Y2 Y(O)= 
Y2=Y' Y2(0)-1 

x E [0, 20] 

Eigenvalues: 1, -1 
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