MATHEMATICS OF COMPUTATION
VOLUME 41, NUMBER 163
JULY 1983, PAGES 27-42

An Extension of Ortiz’ Recursive Formulation of
the Tau Method to Certain Linear Systems of
Ordinary Differential Equations

By M. R. Crisci and E. Russo

Abstract. Ortiz” step-by-step recursive formulation of the Lanczos tau method is extended to
the numerical solution of linear systems of differential equations with polynomial coefficients.
Numerical comparisons are made with Gear’s and Enright’s methods.

1. Introduction. This paper concerns the extension of Ortiz’ [13], [17] step-by-step
recursive formulation of Lanczos’ tau method [9]-[11] to the numerical integration
of linear systems of differential equations with polynomial coefficients.

Let us consider the differential problem:

(1.1) {A(X))”(X) +B(x)y(x) + F(x) =0, x € [xo, x4],
(1.2) ¥(x0) = Yo,

where y(x) = [y,(x) ---y,(x)]7 is the vector of the » unknown functions, A(x) =
(a,,(x)5,)), B(x) = (b,,(x)) and F(x) =[f(x) ---f(x)]" are two matrices and a
vector of order » whose elements are respectively:

r,j Slj
(1.3) a,(x)= 3 afx*, b,(x)= X bfx*,
k=0 k=0

(1.4) fx)= S fhxk,
k=0

Thereafter the system (1.1) will be synthetically written as:
Dy(x)+F(x):O’ xe['xo’xﬁn]’

having introduced the differential operator D defined by:

an(x)gd; +bi(x) byp(x) - b,,(x)

D= | ba(x) an(x) o+ by(x) -+ byy(x)

ba(x) Ba(x) -, (x) A+ b, (x)
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Following Lanczos’ idea [9]-[11], the solution of (1.1)-(1.2) is approximated by a
polynomial vector y*(x), of degree p, which is the exact solution of a perturbed
system, obtained by adding to the right side of (1.1) a polynomial perturbation term.

The polynomial y*(x), which is called the 7-solution of (1.1)~(1.2), satisfies, then,
the differential problem:

(1.5) {D_y*(x) + F(x) = H,(x),
(1.6) y*(x0) = ¥

The perturbation term H,(x) is constructed in such a way that (1.5) has a
polynomial solution of degree p, and a norm of H,(x) satisfies an extremal
condition on [x, x4, ]

Generally H,(x), following Lanczos, is taken as a linear combination of powers of
x multiplied by Chebyshev polynomials.

As Ortiz [18] pointed out, the above method is of order p, in the sense that if the
exact solution of (1.1), (1.2) is itself a polynomial of degree less or equal to p, the
method will reproduce it.

Ortiz [17] has developed a step-by-step approach to the tau method along the
following lines: let us divide the integration range [x,, x,] into subintervals
[x,, x,+]. The value in x, ., of the solution of the given differential problem (1.1),
(1.2) is approximated by the value in x, ., of the 7-solution obtained applying the
method above described in the subinterval [x,, x,,,], taking as the initial condition
the value in x,, of the solution constructed in the previous subinterval [x,_,, x,,].

Therefore, denoting with y, the approximate value of y(x) in x,, the differential
problem:

(1.7) Dy*(x) + F(x) = H,(x), x € [x,,x,11],
(1.8) Y(x,) =y
has to be solved for each interval [x,, x,,,], in order to give y,.; = y*(x,4 )
H,(x) is the polynomial vector:

s 3

o
Ta(X) 2 7k
k=0

(1.9) H(x) = Tm_az(x)kéoﬂrzkxk

where 1}." and «; are parameters to be determined, and Tm_aj(x) are Chebyshev

polynomials defined in [x,,, x,,, ]

The methods under consideration have been proved to be 4-stable, for every order
p,in[3].

In order to facilitate the construction of the solution, it is convenient to introduce
the canonical polynomials, defined as follows: The ith canonical polynomial of
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order m associated with D is the polynomial vector Q"(x) such that
(1.10) DQ™(x) = x™e;,

wheree, = (¢/),j = 1,...,v,¢/ =§,,.

As Ortiz points out in [13], the advantages of the introduction of the canonical
polynomials are manifold: the solution y*(x) can be easily expressed as a linear
combination of Q/"(x), and they are independent of the integration range and the
initial condition.

However, there are some problems connected with the Q(x) and their construc-
tion; it is possible that some Q"(x) do not exist and the definition (1.10) does not
hold but has to be generalized and more precisely stated. Besides, it is possible that
some operators D have multiple canonical polynomials. These questions have been
discussed by Ortiz [13] for the one-dimensional case. We extend them and his
recursive technique for the generation of the canonical polynomials in Section 2. The
class of integration methods is developed in Section 3, and for clarification the
resulting algorithm is applied to an example in Section 4.

Finally numerical results are reported in Section 5, where the method is compared
with Gear’s [6], and Enright’s [4], [1] methods. From the comparison carried out on
both stiff and nonstiff standard test problems, it follows that the proposed method
compares very favorably with the other two with respect to efficiency and reliability.

2. Canonical Polynomials. This section is concerned with the extension of Ortiz’
theorems [13] to questions related to existence, uniqueness and construction of the
canonical polynomials. We follow his approach; proofs can be extended without
essential modifications.

Definition 2.1. The jth generating polynomial of order k associated with D is the
polynomial vector:

(2.1) Pl(x) =Dx*e,, j=1,...,».

Obviously Pj"(x) is a vector whose ith component is a polynomial of degree at most
equal to k + h,, where A, is given by

(2.2) h,= max{r,,, max {s,j}},

I<j<v

with the further convention that the degree of a polynomial identically equal to zero
is ~1.

Let  be the set of finite linear combinations of generating polynomials

(2.3) Q= {2 s n;f;"m},

Jj=1nerT,

where I’ is a finite subset of N,.

Now the set S, of the indices m such that Q™(x) does not exist can be
characterized:

Definition 2.2. S, is the set of indices v such that there is no polynomial in £ whose
ith component has degree v and whose jth component, for every j # i, has degree
less thanv — h; + k.
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The nonexistence of some Q"(x) causes the definition (1.10) to be generalized, in
such a way as to allow for the so-called residuals. For this purpose we extend to
systems Ortiz’ [13] definition of the residual subspace.

Definition 2.3. The subspace of residuals of D is the subspace R spanned by the
vectors

R} = x’¢,, seS,i=1,...,».
This being stated, the canonical polynomials can be exactly defined.
Definition 2.4. The ith canonical polynomial of order m associated with D is the
polynomial vector Q"(x) such that
(2.49) DQM(x) = x"e,+ RM(x), i=1,....;;mEN,— S,
where R}(x) € Ry is the ith residual polynomial of Q;"(x).
For every m, Q"(x) can be multiple. In this regard, let U, be the subspace

spanned by the eventual polynomial solutions V,(x) of the homogeneous system
Dy(x) = 0. The following result extends Ortiz’ theorem 3.1:

THEOREM 2.1. For every i € {1,...,v}, the multiple canonical polynomials Q["(x),
m € N, — S,, differ by an element of Uy,.

Proof. The proof is by contradiction. Let Q"'(x), Q"(x) be two ith canon-
ical polynomials of order m € N, — S,, and Q"(x) — Q"*(x) & Up. Then
D[Q™(x) — Q™ (x)] is a linear combination of generating polynomials. But it
contradicts the definition (2.4), from which it follows that

p[or(x) — Qr(x)] = R(x) — R™(x) € Rs.
Therefore, it is suitable to introduce the equivalence relation E, defined in
{Q"(x)} such that
(2:5) O (x)EQM(x) = (Q(x) — QM (x)) € Up
and to consider the quotient set L;
(2.6) L= {EM(x)} = {Qr(x)}/E, i=1....r,mEN—S,
instead of the set Q, = {Q™*(x)}. Ortiz [13] called the set L = {L,} the Lanczos

class of equivalence associated with the operator D.

Obviously, if the operator D has no polynomial solutions, £;"(x) coincides with
the canonical polynomial Q"(x).

Now the effective construction of the £"(x) has to be discussed.

For this purpose it is suitable to introduce the following notations:

(2.7) d,=max{s,,r,— 1}, i=1,...,»,
(2.8) Aj:min{lréliilsly{hi—sij},(hj—dj)}, J=1...,
i#j

and to consider, as in [13], the generating polynomials
PrA(x),  j=1,..,0.

The quantities A; have been defined so that, for every j, Pj"“f( x) has at least one
component, say ith, whose effective degree is # + h,. From the definition (1.10) it
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follows formally that D' applied to P"**/(x) defines x"**s¢, as a linear combina-
tion of the Q"(x), m=0,1,...,n+ h,. These can be regarded as recurrence
relations for Q"*"/(x) in terms of x"“'e and QK(x),j = 2, k=0,1,...,n+
h,— 1.

However, in the most general case, the nonexistence of some Q/'(x) requires a
more precise discussion.

Let W, (x) = (w/(x)) be the matrix whose columns are the vectors Pj"“f(x).
There is in the ith row of W, (x) at least one polynomial of effective degree n + A,
and so W, (x) can be written:

n+h, n+h, n+h,

2 P,I(lxk E P’l(zxk"' E Pll(yxk

k=0 k=0 k=0
(2.9) Wn(x) = e e

n+h, n+h, n+h,

2 phxk X ophxt e T ophat

k=0 k=0 k=0

Obviously p;; = 0 for k greater than the effective degree of w/(x).
Let P, be the matrix

pn+h| p72+h| Pn+h|
n+h n+h n+h
(2.10) P=1|Pn"? Pn?* - 2
n+h, n+h, n+h,
pvl pv2 Puy

Since at most the diagonal elements contain a factor n, det(P,) is a polynomial in
n of degree less than or equal to »; therefore, if det(P,) is not identically zero, the set
(2.11) ¥ = {n:det(P,) =0,n € N,}
is finite and card(¥) < »

Now a recursive relation for the elements £(x), i = 1,...,», can be stated. In this
regard, the following result extends Ortiz’ theorem 3.3 [13].

THEOREM 2.2. For every i € {1,...,v} the elements of L, are connected by the
following recursive relations:

y mth—1

(2.12) erM(x)= X d, xmthre, — 2 2 /krEjk(x) ) menN,— V¥,
r=1 k=0
kes,

where

-1
(dlr) = (PnT)
and pj", are the coefficients of the elements of (2.9) for n = m.

Proof. Let x7**" be the class of equivalence modulo E,, i € {1,...,»}, of the
polynomial
y m+h,—1
(2.13) A7*h(x) = 2 d,|x"* e — % 3 phoM(x)|, meN,— V.

r=1 =1 k=0
kes,
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The application of D to x, using (2.4), after some algebraic manipulation, yields
(2.14) Dxt(x) = g X" g d,p; e, + R (x).
Asitis
é d,,pj",“”' =39,

(2.14) can be written as
DX (x) = x"hie, + R (x).

Hence x™*": can be identified with £7**(x).
From this and from Theorem 2.1 an extension to systems of Ortiz’ Corollary 3.3
[13] follows:

COROLLARY 2.3. For every i € {1,2,...,v} the canonical polynomials Q(x),
m € N, — ¥, are connected by the following recursive relations:

y mt+h,—1

215)  Qrth(x) = Sd, |~ S S prok(x)

r=1 Jj=1 k
k

plus an arbitrary linear combination of elements of Up,.

3. Development of the Integration Formulas. As stated in the introduction, in order
to derive the integration formulas, the differential problem (1.7), (1.8) has to be
solved, and the solution y*(x) has to be computed in x,, .

From the results of the previous section, it follows that y*(x) can be expressed as
a linear combination of canonical polynomjals, of the form

(3.1) ()= 3 2 d;0;(x) + Z gV (x),

Jj=11i=
IGES

where the following position has been made:

(32) E Femte, = 1

In the above M, = max{m, 1}, q is the number of the polynomial solution V(x) of
the homogeneous system Dy(x) = 0, &; are integer numbers given by

5.—1, 1<j<g,
(3.3) a:{’ J 9
<

5, = card({s: 5 €5, s <m}).

ck_ o is the coefficient of x* in the Chebyshev polynomial 7,,_ o(X) defined in

[x,, x,,+,], s f are, respectively, the degree and the coefficients of the polynomial
(1.4). 7/, g, are parameters to be determined by imposing y*(x) to be the solution of

(1.7), (1.8).
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So, combining (3.1) with (1.7), from the linearity of the operator D and the
canonical polynomial definition, it follows that

v M, L
(3.4) Dy*(x)+ F(x)= X | 3 dj’(x’ej + Rj(x)) + 3 /jix’ej
J=1 1=0 1=0
IeS

v «
-k Lk
2 2 m—:x;rj e_/'
=1 k=0
To satisfy this equation the coefficients of the same powers x* must be equal. For
every j = 1,...,», the resulting equations for the coefficients of x* are identically
satisfied when k € N, — S, while, when k € S, they yield §, scalar equations.
Denoting by [u]f the coefficient of x* in the jth component of a polynomial vector
u, these equations can be written

ng

1

(3.5) 2 Ed[R'(x)] 0, KkES,j=1,...,»
P= lIIES

Further equations are obtained by making (3.1) satisfy the initial condition (1.8).
Denoting by [w] the jth component of a vector w, these equations can be written

6o 33 S afoy(x)], + S alv)), = Dl = L

p
IGES

From the above discussion, it follows that the linear system (3.5), (3.6) consists of
v + 27,5, scalar equations.
Therefore, to make, in this system, the number of the unknowns 7], g, equal to the

number of the equations, as the number g of the g; is determined by the differential
operator, the number a; of the 7 must satisfy

3.7 2a—v+2s—q
Jj= i=1
Moreover, from (3.5) a, must satisfy also
(3.8) =5, j=1,..»
a, are not uniquely determined by (3.7) and (3.8), therefore they can be suitably
chosen as in (3.3).

Finally, the following class of one-step methods is obtained from (3.1), (3.2), (3.5),
(3.6),

(3.9) Yn+1 = 2 2 de (xn+1) + 2 8V (xn+l)’

Jj=1i=0

(3.10) d = g A A

(3.11) »
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1y 33 Gloy)], + Selv(e)l, = Inl, =1

p=11=0
125,

Remark. If the first-order differential system is originated by a differential
equation of order », choosing the following perturbation term
0

(3.13) H(x)| 0 ,
To(%) 2 7"
k=0

we recover Ortiz’ form [13] of the Lanczos tau approximant for a differential
equation of order ».

4. An Example. The methods derived above are, in this section, exemplified on a
simple differential problem, in order to better clarify the use of the resulting
algorithm.

For this purpose, the following problem is considered:

(4.1) {(xz T T () =0 1O =1,
y3(x) + xpi(x) +3,(x) =0, »(0) =0.

The canonical polynomials will be, now, constructed as developed in Section 2.
The generating polynomials are

n _ nxn-H + nxn—l i _ xn
reG) = (R = (L)
and, applying (2.2), (2.7), (2.8), it follows that
hy=1, h,=0,

A,=0, A,=1.
Therefore the matrix W, (x) is
x4 pxn ! x"+!
VV;:(X)'— ( X+l xn+l+(n+ l)x" ’
and accordingly P, is
_(n 1
F= ( 1 1)'

Applying Theorem 2.2 with elementary algebraic passages, as D has no polynomial
solutions, the following recursive relations for the canonical polynomials are de-
termined:

Q1(x) = s (x7 e, — x'e, = (n = 1T (x) + nQ4™'(x),

01(x) = L5 (=x"ley + (n = Dx"e,
+(n = 1)@ (x) — n(n — 1)Q37'(x)),
n € N, —{0,2).

(4.2)
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Therefore it is sufficient, in order to determine S,, to verify if 0 and 2 belong to S,
and/or S,.

From the definition (2.2) it follows that neither 0 nor 2 belong to S,, because
1 x?
P2x:()and P2x=( )
70 =) 0= L7
belong to Q. Analogously 0 & S|, since 2P0 + P] + P? = ({)) belongs to L.
Therefore
S, = {2}, S, = @.
Now the canonical polynomials and the associated residuals can be constructed.

Q4(x), Q¥(x), Q3(x) are derived from the definition (2.4), the others by (4.2). It
follows that

ao-[22) - (2).
(1) - (2).
+1
=270 eico-(3)
Qz(x)—((l)), R‘z(x)=(8),
Qi (x), R?(x) do not exist,
-2 [ 52
a0 =( 7). Ry =( 7).
3 _ x2—2x—38 3 _[3x?
Ql(x)—(—x3+5x2—2x+2)’ RiCx) ( 0 )
2 _ 2
Q%()C):(2x3i8-)’c_22-|)f ;_xliZ)’ R32(x)=( gx )’
x3
7—2x2+4x+28 —ﬂxz
0f(x) = 1 ) Ry(x) = 2 ,
—-2—x4+4x3—16x2+4x—4 0
x3
—7+6x2—12x—48 69 ,
Q3(x) = 3 , Rix)=|2"|.
Sx— 1227 + 48x% — 12x + 12 0

From (1.9), (3.3) the perturbation term is

H(x) = (71+71;)(X) (x))

From (3.1), (3.2), with elementary algebraic passages, the solution y*(x) of the
perturbed system can be written

(4.3) y*(x)— 2 Crn—101 (x)+7, 2 Ch 1 1+l(x)+”'2025 05(x).

1¢2 1#1
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The (4.3) has to be evaluated at every discretization point, and the T parameters
are determined at every step by solving the linear system (3.11), (3.12).
In particular, setting m = 3, the integration formula is
1 2
yn+1 = Tlo 2 céQi(xn+l) + Tll
0 =

1=

3
A0 (x,y) + 77 2 305(%,41)s
i=0 1=0

171
with the T parameters being solutions of the following system, whose first equation is
obtained by setting the expression of the residuals in (3.11)

_ 2.0 2 AVl £.3.0
c5Ty -i-(3c2 c2)71 6cim, = 0,

1 2
7 2 a[Qi(x)], + 1 3 [0 (x,)] ,+
< 1=0 1=0
171

3
+T20 Eocé[Q,Z(xn)]j = [yn]_/’ ./ = 192

1=

5. Numerical Results. Numerical experiments have been carried out in order to
test the performance of the methods (3.9)-(3.12). For this purpose, the above
methods have been implemented into a fixed-order, variable-step algorithm, taking
as error estimate the difference between the values obtained by two methods of
successive orders. As the methods have been proved to be A-stable [3], they have
been evaluated on problems both stiff and nonstiff. They have been compared with
Gear’s methods and with Enright’s second derivative multistep methods, using,
respectively, the routines EPISODE [2] and SECDER [1]. The comparison has been
carried out on some significant test problems picked out from those proposed by
Hull [5], [7] and Krogh [8]. These problems, listed in the Appendix, have been
classified in the following classes:

(A) Stiff problems with real eigenvalues. These are three systems, of varying size,
with stiffness ratio: 200, 10°, 10°.

(B) Stiff problems with complex eigenvalues. These are four systems with real
eigenvalues —0.1, 0.5, -1, —4, and two complex eigenvalues —10 = ia, where « takes
the values 3, 8, 25, 100, so that it is possible to see the behavior of a method as the
eigenvalues approach the imaginary axis.

(C) No stiff problems. These are three systems; the first has solutions asymptoti-
cally tending to 1, the second has oscillating solutions, the third has an inherent
instability.

In order to test the performance for different ranges of accuracy, each system has
been solved for four tolerances, namely TOL = 1072, 1074, 107¢, 1073,

The method (3.9)—(3.12) utilized (and implemented into the routine TAU) is that
of order three for TOL = 102, four for TOL = 10~%, five for TOL = 1076, 10~8.
Also EPISODE uses these orders in most of the cases, whereas SECDER generally
uses orders higher than these.

All the calculations have been carried out in double precision floating-point
arithmetic with a 60 bit mantissa (approximately 18 decimals) on the Univac
1100,/80 computer of the University of Naples.
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The comparison criteria have been chosen in such a way as to reflect both the
efficiency and the reliability of a method.

The measures of efficiency chosen are:

(1) TIME—the total computing time, measured in seconds. It includes also the
time for calculating the exact local solution in each step.

(2) STEP—the number of integration steps, performed to cover the whole
integration range.

The measures of reliability chosen are:

(1) MAX LOCAL ERROR—the largest local error committed in all steps taken;
the error is measured in units of the tolerance and it is defined as the maximum
norm of y,(x,4;) — ¥,+1» Where y,(x) is the true solution through the previously
computed point (x,,, y,).

(2) GLOBAL ERROR—The maximum norm of the absolute error at the end of
the integration interval. It is measured in units of the tolerance.

Numerical results are presented in Tables I, II, III. They show that the proposed
method compares very favorably with the other two methods. In fact, it is better
than the other two as concerns the efficiency, and it is better than EPISODE and
comparable to SECDER as concerns the reliability.

This behavior is observed for all tolerances and for almost every problem. At the
present time high quality software, implementing the above methods in a variable-
order, variable-step algorithm, is in progress. Users of this package will be requested
to supply, for the differential system that is to be integrated, the degrees and the
coefficients of the polynomials a; (x) and b, (x), as quoted in (1.3).

6. Acknowledgment. The authors are indebted to E. L. Ortiz for his valuable
comments on the paper.

APPENDIX

Class A—Stiff systems with real eigenvalues
Al[5]
y=—05y »n(0) =1
N = "N »(0) =1
y;=—100y;  »(0) =1
yi = =90y, y4(0) =1

x € [0,20]
Eigenvalues: -0.5, -1, -90, -100
A2[5]

y ==y, y(0)=1 i=1,..,10
x €10,1]

Eigenvalues: -1, -32, -243, -1024, -3125, -7776,
-16807, —32768, -59049, —100000
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A3[5]

n= —104)’1 + 100y, — 10y, + y, )’1(0) =1

y; =-10%y, + 10y, — 10y, »,(0) =1

» =~y + 10y, )’3(0) =1
x € [0,20]

Eigenvalues: -0.1, -1, —1000, —10000

Class B—Stiff systems with complex eigenvalues [5]

’)"1' =-10y, + ay, »(0) =1
y; = —ay; — 10y, »,(0) =1
) 3= -4y »;(0) =1
Yi= Va y4(0) =1
y3 = =55 y5(0) =1
L)’é = -1y, ¥5(0) =1
x € [0,20]
Eigenvalues: -0.1, 0.5, -1, -4, -10 = ai
Bl a=3
B2 a=38
B3 a=25
B4 o« =100

Class C—No Stiff system

c1[7]

N=-ntn »(0) =2

Y=y~ 2y, »(0)=0

Vi=V 0 )’3(0) =1
x € [0,20]

Eigenvalues: 0, -1, -3
C2[8]

V=N )’1(0) =0

=2 »nO)=1

x € [0,20]
Eigenvalues: i, —i
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C3[8]

yi=»n n»nO=1
=0 »n0)=-1

x € [0,20]
Eigenvalues: 1, -1
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