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Runge-Kutta Theory for Volterra and Abel 
Integral Equations of the Second Kind* 

By Ch. Lubich 

Abstract. The present paper develops the local theory of general Runge-Kutta methods for a 
broad class of weakly singular and regular Volterra integral equations of the second kind. 
Further, the smoothness properties of the exact solutions of such equations are investigated. 

1. Introduction. We consider the Volterra integral equation of the second kind 

(1) y(x) = f(x) + f(x - s)K(x, s, y(s)) ds, x E I [0, x] , a >-1. 

The function f: I - R' is assumed to be (at least) continuous, the kernel K: S X R" 
-R" with S = {(x, s) 0 ? < s < x < x} is to be sufficiently differentiable. 
For -1 < a < 0 the integral equation (1) is weakly singular and sometimes called 

an Abel integral equation of the second kind. The special case a = - 1 (Abel 
equation in the proper sense) often arises in physical problems (see the references in 
[13] or [7]). Positive values of a are encountered in various biological models [2] and 
in statistics [14]. 

There exist general local existence and uniqueness theorems, and we suppose that 
the existence interval of y(x) is the whole of I. In Section 2 of this paper, we shall 
give smoothness and analyticity properties of the solution. 

For many proofs it will be convenient to assume that the kernel K(x, s, y) is 
independent of s, i.e. K(x, s, y) = K(x, y). This is no restriction of generality, since 
otherwise we may take (x, y(x)) as the solution of the integral equation 

(~~~ ~~~ (x))=(( J(x -sa ( ()) ds. 
AX f(A1) f(X )(K(x, (sOy(s)))) 

The simple relation 

(2) 'h'(h- s)"s,8ds = B(oa + 1, t] + l). hl+a+8 (at,l] > -1), 

where B denotes the Beta-function [1], will often be used in this paper. As an almost 
immediate consequence, product quadrature rules are of the form 

m 
fh(h - 

s)ag(s) ds - 
h'+h ig(cih), 

0 i1= 
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where the xi, ci do not depend on h. This suggests considering the following type of 
Runge-Kutta methods for the numerical solution of (1): 

rnl 

(3) y() = ,n(xn + cih) + h' +a 2 ai K(xn + d.nh, 
, + cjh y(ti)) 

j=1 

(i 1...,m 
m 

P= F,(xn + h) + h'+' 2 biK(Xn + e1h Xn + cih i('t)), 
i= 1 

where xn = nh and FJ(x) denotes an approximation to the lag term 

Fn(x) = f(x) + - s) K(x, s , y(s)) ds. 
- 

o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- 
The method is explicit if a 0 for 1 ? i j. i m. For a - 2 such methods have 
first been used by Oules [11]. For a = 0 Brunner, Hairer and N0rsett [3] have 
characterized the order of the local error of (3) in terms of the coefficients of the 
method. Their paper has in many ways been a model for the present work (far 
beyond the choice of the title). However, in the case of noninteger a an inherent lack 
of smoothness does not permit a direct extension of the results and techniques of [3]. 
So a basically different approach to the order conditions is given in Section 3. 
Finally, Section 4 contains a variety of examples of explicit and implicit Runge-Kutta 
methods (3). 

2. Smoothness Properties of the Solution. In order to construct numerical methods 
for the approximate solution of integral equations (1), knowledge of the smoothness 
properties of the exact solution is indispensable. 

The following theorem states that the solution y(x) of (1) is smooth in any closed 
interval bounded away from 0. It is a straightforward extension of a result in Miller 
and Feldstein [9], and we state it without proof. 

THEOREM 1. Consider the integral equation (1). Assume that f(x) is continuous in 
[0, x-] and real analytic in (0, x-), and let the kernel K(x, s, y) be real analytic in 
S X RW. Then the solution y(x) of (1) is real analytic in the open interval (0, x-). 

However, in general, y(x) will not be analytic at x = 0. Apparently a complete 
answer to the behavior at 0 is as yet unknown in the literature (see, e.g., the recent 
papers [4], [5]). For example, Picard iteration shows that the integral equation 

y(x) = 1 + J( - s)"'13y(s) ds 

has the solution y(x) = 1 + 3x22/3 + O(x473) as x 0. The structure of these 
singularities is well understood for the special case a = - 2 (see Miller and Feldstein 
[9], de Hoog and Weiss [7]). The following result characterizes the behavior of the 
solution near 0 for arbitrary a > -1. 

THEOREM 2. Consider the integral equation (1). Suppose that f(x) = F(x, x1 +a 

and assume that both F(z1, Z2) and the kernel K are real analytic at the origin. Then 
there is a function Y(z,, z2), real analytic at (0,0), such that y(x) = Y(x, xl+a). 
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REMARK. The smoothness of y(x) at 0 is not improved if f(x) itself is real analytic. 
On the contrary, it is easily seen that f(x) and y(x) cannot be smooth at 0 
simultaneously (excluding, of course, the trivial case where a is an integer). 

Proof. Without loss of generality we may assume K(x, s, y) K(x, y) and 
f(O) 0 O. We first give the proof for the one-dimensional case. Let K(x, y) = 

a0 Kk(x)yk. We take an arbitrary analytic function A(z , z2) = 2 a z n (where 
n = (n1, n2) ranges over N0\{(0,0)}, and z (z1, Z2)) and insert A(x, xl?a) for 
y(x) into the integral of (1): 

f(x - s)'K(x, A(s, s la)) ds f(x - s)a Kk(X)( 2 an snl(s1+?)l2 ds 

= Kk(x) 2 Qkn(A)f (x - S) asni(Sl a) ds, 
k 0 

where Qkn(A) is a polynomial in aoo, alo, a0l,... * having only nonnegative 
coefficients. (The sums and integrals can be interchanged because of uniform 
convergence.) 

We now use formula (2) and write 

I(n) = B(l + a, 1 + n, + n2(l + a)) f( -t)atnl(tl+a)n2dt, 

so that the expression above reduces to 

(4) 4(x - s))K(x, A(s, sl+a)) ds = 
Xl+a2I(n)2Kk(X)Qkn(A)Xnl(X l +a)n2 

? ~~~~~~~~~~~~~~~n Ik 

This and formula (1) indicate how we have to choose Y(z1, Z2): We define Y as the 
formal power series in z (z1, Z2) given by 

(5) Y(z1, Z2) F(z1, z2) + z22I(n):EKk(zl)Qkn(Y)z ' 
n k 

The factor Z2 at the right-hand side of (5) allows the recursive computation of the 
coefficientsyn of Y(z) = In ynZ * 

As a next step we proceed to demonstrate that the formal solution Y(z) defined in 
(5) actually represents a convergent power series and hence a (real) analytic function 
in a neighborhood of (0, 0): Let F and K denote convergent majorants of F and K, 
respectively. Define the formal power series Y by 

(6) Azl, Z2) = t(zL, Z2) + Z2I(O)2 Kk(Zl)Qknf(Y)z. 
n k 

Observing I1(n) lI(O) for all n and the nonnegativity of the coefficients of the 
polynomials Qkn, an easy induction argument shows that Y is a majorant of Y. 

Moreover, we may rewrite (6) as 

Y(z) = F(z) + z2I(0)k(z1, Y(z)), 

and the analytic version of the implicit function theorem implies that Y(z), and 
hence also Y(z), are analytic in a neighborhood of (0, 0). 

So we can finally use (4) and (5) to conclude that y(x) = Y(x, xl?a) is indeed a 
solution (and so, by uniqueness, the solution) of the integral equation (1) near 0. 
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In the higher-dimensional case the Kk(x) are symmetric k-linear forms, and 
expressions like Kk(x))yk have to be interpreted as K(x)( y..,y). Then the above 
proof carries immediately over to the general case. D 

COROLLARY 3. If the function F with f(x) = F(x, xl +a) and the kernel K are only 
assumed to be sufficiently differentiable, then the solution y(x) of (1) has an asymptotic 
expansion in mixed powers of x and x' +a as x - 0. 

Proof. We construct a truncated power series YN(z1, z,) as far as possible (say, of 
degree N) according to (5) and put YN(X) = YN(X, Xi"a). Then (4) shows that the 
defect 

8(X) = YN(X) -f(x) -| (x - s)'K(x, yN(s)) ds 

is of magnitude O(XN) + O((x' +a)N) as x 0. 
We may interpret the integral equation (1) as a nonlinear operator equation in 

C[O, x~] (equipped with the supremum norm): 

y = f + T(y) and correspondingly YN = f + 3 + T(YN ) 

The estimate 

IlT(y) - T(z)II <Iy - zllLJ|(.* - s)ads, 

where L denotes a Lipschitz constant of the kernel K, shows that the Lipschitz 
constant of T can be made smaller than one if x is chosen small enough. Subtracting 
the two equations, we obtain that the error y(x) - YN(X) is of the same magnitude 
as the defect. D 

3. Order Conditions. The first part of this section is devoted to the study of the 
local error of Runge-Kutta methods (3) in an interval bounded away from 0. 

Without loss of generality (also with respect to (3)) we may assume that the kernel 
K in (1) is independent of s. We fix x(, in the open interval (0, x) and rewrite (1) as 

(7) y(x) -F(x) + f(x - s)K(x, y(s)) ds for x E [x(, x], 
x,, 

where F(x) = f(x) + Jf(,(x - s)K(x, y(s)) dv. Note that by Theorem I the solu- 

tion y(x) is smooth at x0. Applying one step of the Runge-Kutta method (3) to the 
integral equation (7) we obtain 

rn 

(8) Yi = F(x0 + cih) + h1+ 1 
a1iK(x( + dijh, Yj) (i 1. in), 

j=I 
rn 

Y1 
- 

F(xo + h) + hl+ 
+ 

biK(xo + eih, Yj). 
i= I 

The following two definitions will allow us to state in Theorem 6 purely algebraic 
conditions on the coefficients of the Runge-Kutta method which imply that the local 
errory1 - y(x0 + h) is of a prescribed order. 

As in [3], the following set of trees will play a decisive role. 
Definition 4. Let TV (Volterra-trees) denote the set of all trees which may or may 

not have an index x attached to any of their final nodes. 
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For a tree t E TV we introduce 

fin(t) = number of final nodes of t, 

int(t) = number of interior nodes of t. 

(The root is counted as an interior node.) 
As in [3], we use for t. tq E TV the notation [, TIT t. tq] to designate a 

new t E TV which is illustrated in Figures 1 and 2. 

tR~~~~~ 

2 
T [] T ] V[T ] I ] not in TV 

FIGURE 2 

In Figure 3 we have marked the final nodes. Here we have fin(t) = 7, int(t) = 5. 

FIGURE 3 

Definition 5. Let J(l) = fo(1 - S)aSI ds for 1 > 0. We define functions (pi, p: TV - 
R (i 1, ..., m) recursively by 

m 

zP(x TT ] = a,1d,1?cj-J(l)ck?l?I?a 
m1 (k, I O), 

T(x[k, T']) = bi e,kC - J(l) 
= 1 

and 
m 

Pi(t)= ) aijdJcfp1(l) 
k 

C*p 
J=1 

m 

)(t) be bkeC(pi(t1) ... i(t 
i= T 

for t = [Txk,rI, tl io.. tq] (tj#r,rz x,q 1). 
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In the sequel we shall assume that qpi(T) =0, i.e. 
m 

(9) a A,JO) c"a fori M,..m 

(In the special case a = 0 this is the familiar condition EJ a, = c,.) We are now in a 
position to state the main result of this section. 

THEOREM 6. Consider an integral equation (1) whose kernel K and solution y are 
sufficiently smooth at xo (cf. Theorem 1). Then the condition 

(10) T(t) = 0 for all t E TV with fin(t) + (1 + a)int(t) < p 

implies that the local error of the Runge-Kutta method (3) (resp. (8)) with (9) satisfies 

yi -y(xO + h) = O(hP+e) 

for some - > 0 which depends on the exponent a in (1). 

Proof. Let K(h, s) = K(xO + h, y(xo + s)), and define the function 

g(h) = l +|I(h - s)K(h, s) ds =(h - s)u akalk(O,O)hkS dS 

(l) akalk(O O)h k?+, 
klk!l! h s 

which is seen to be smooth at h = 0. 
As in the proof of Theorem 2, the basic idea is now to regard the functions 

occurring in (8) as functions of two independent variables h, K. At the end of the 
proof we shall then insert h' + for K. We write formula (8) (with F inserted from (7)) 
as 

m 

(11) Yj(h, K) =y(xo + c,h) - cil +Kg(c h) + K 2 a11K(xo + dl1h, Yj(h, K)), 
J= I 

m 
y(h, K) = y(xo + h) - Kg(h) + K z b1K(xO + eih, Yj(h, K)). 

We have 

(12) Y= Yl(h, hl"a), Y, =y(h, hla), 

(13) Y)(h,0) =y(xo + cih), yi(h,0) =y(xo + h), 

and also 
m 

aKYi(h,O) = 
-ci?ag(cjh) 

+ E a11K(xo + d11h, y(xO + cjh)). 
=j= 

This expression can be expanded into a Taylor series in h. This yields 

akYj(h,O) = p Z([f9Tk k)([X T'k+1, 

k, 1>0 

where cpi is given by Definition 5 and the (D's are expressions which only contain 
derivatives of y and K at xo, but no longer depend on the coefficients of the 
Runge-Kutta method. 
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Turning our attention to the higher derivatives of Y, in (11) with respect to K, we 
obtain 

m 

aKY,(h, O) = r a a1 r1 
I [K(xo + di,h, Yj(h, K))] | (r > 2) 

and observe that the right-hand side of this expression will only depend on the 
derivatives aP Y(h, 0) for p < r - 1. Consequently, in a step-by-step fashion we may 
reduce the problem to the case r= 0, which is already known from (13). (The 
reduction from r =1 to r = 0 has actually been performed above.) The structure of 
this reduction process is closely related to the set of Volterra-trees TV. In fact, a 
tedious induction argument (omitted here), which is based on Faa di Bruno's 
formula [1, p. 823] and similar to the proof of Theorem 6 in [8], shows 

I 
ryK(SO <()?(t)h fin(t) r 1 

tC-TV 
int(t)=r 

where again 9p, is given by Definition 5 and 4P only depends on the integral equation 
(1). 

So we have finally found a factorization of Y1(h,K) and y,(h, K) into their 
"Runge-Kutta parts" p, and p and the "integral equation parts" 'I: 

(14) Y,(h, K) =y(xo + c,h) + 7 wp1(t)1P(t)hfin(t)Kint(t) 
teTV 

y0(h, K) y(x0 + h) + E (t)D(t)h t)K 
tEHTV 

Now (10) and (12) complete the proof. O 
Remarks. (a) For a = 0 condition (10) is equivalent to the order conditions given 

in [3]. 
(b) The number of order conditions which have to be satisfied to obtain a 

prescribed local order strongly depends on the exponent a and tends to infinity as 
a -- -1. (Trees grow into the sky.) 

This indicates that the construction of (noncollocation) Runge-Kutta methods 
becomes increasingly complicated for negative values of a. On the other hand, it will 
be comparatively easy to construct high-order explicit methods for positive a (see 
Section 4). 

(c) Figure 4 illustrates how the number e of Theorem 6 depends on a. Consider the 
straight line L: fin + (1 + a)int = p. Then E is the smallest vertical distance between 
L and the points with integer coordinates above L. (This follows from (10) and (14).) 
Wehave0<e-min{l,l +a}. 

Special values for e are: 

E 1 for integer a, 

Fi = fora= a I 1 3 



94 CH. LUBICH 

fin 

p 

' 

int 
0 . 

P L 
5+a 

FIGURE 4 

The second part of this section is devoted to the study of the local error for the 
first steps near 0, where the exact solution is usually not smooth. However, the 
representation of the solution near 0 given by Theorem 2 or Corollary 3 permits 
essentially the same derivation of the order conditions as before. We shall give these 
order conditions for the sake of completeness even if their practical value seems a 
little doubtful. 

In this case the order conditions and the coefficients of the method will depend on 
n, the step-number. 

We fix n > 0 and rewrite (1) as 

(15) y(x) =F ,(x) + (x-s)aK(x, y(s)) ds for x E [nh, x] 
nh 

where Fn(x) = f(x) + fnh(x - s)aK(x, y(s)) ds. 
Applying one step of the Runge-Kutta method (3) to (15), we obtain 

m 

(16) Y Fn((n + ci)h) + h'+a I aijK((n + dij)h, YJ), 
j=l 

m 

Yn+I =JFn((n + I)h) + h' +a b1K((n + ei)h, Y) 

Now the following set of trees will be of importance. 
Definition 7. Let TVo denote the set of all trees which may or may not have an 

index x or a attached to any of their final nodes. Trivially we have TV C TVo. 
The definitions of fin(t) and int(t) remain the same as in Definition 4 with the 

difference that we agree upon counting a-nodes as interior nodes. 
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FIGURE 5 

For the tree of Figure 6 we have fin(t) = 4, int(t) = 8. 

FIGURE 6 

The following definition is an extension of Definition 5. 
Definition 8. Let 

Jn(l1, '2) - | (-s)asIl(n + S)(l+)l2 ds, 

Yi =Yi(n) (n + ci1) , Y, y (n) - (n + 1) 

We define functions qi i T = TVo - R (i =1. . . ,m) recursively by 
m 

'Ti([Tk i -j) T C aijdJycyyj2 -Jn(l1, 12)c yi2 (k, 11, 12 0 0), 
j=l 

m 

T([Txk, .1I i2]) = Cz b1ec,y2 - J(ly, 12)y/, 
,i=1 I 

and 
m 

pi(t)- aijd kjcjIyjZ299.(tl) .. * *m(tq), 
j=l 

m 

:: ) bi ekcII-y,29),(tl ) * ** i(tq 

i=lI 

for t T[xk, T", a2, t j,. tqI (ti T Tx, T, T., q 1). 

Remark. The restriction of qn), T(n) to TV (12 0) yields the functions , T of 
Definition 5. 

The order conditions near 0 are now given by 

THEOREM 9. Consider an integral equation (1) such that the solution y(x) has an 
asymptotic expansion in mixed powers of x and x1 +a as x -O 0 (cf. Corollary 3). Then 

p(n)(t) =-0 for all t E TV0 with fin(t) + (I + a)int(t) < p 
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implies that the local error of the Runge-Kutta method (16) with (9) satisfies 

Yn+I -y((n + I)h) - o(hP+?) 

for some - > 0 which depends on a. 

Compared to Theorem 6 this result states that the lack of smoothness near 0 can 
be compensated by satisfying certain additional order conditions. 

The proof is similar to that of Theorem 6. Instead of the solution y(x) one uses 
the smooth function Y(z1, Z2) with y(x) = Y(x, xLY) of Theorem 2 (or Corollary 
3). We omit the details. 

4. Examples. In this section we will use the order conditions to derive various 
examples of Runge-Kutta methods (3). 

A Runge-Kutta method (3) (resp. (8)) with (9) will be said to have local order p if 
its coefficients satisfy condition (10). 

According to formula (8) the internal stages Y (i 1 ,.. .,m) can be interpreted 
as approximations to y(x0 + c h), and y1 approximates y(xo + h). So it appears 
natural to choose 

(17) dl = cl, e = 1 (i, .=1.. I,m). 

Runge-Kutta methods whose coefficients satisfy (17) are called Pouzet-type methods 
[3], [12]. The following theorem is an extension of Theorem 3.1 in [3]. Here T C TV 
denotes the set of the Volterra-trees without x-nodes. 

THEOREM 10. Let a1j and b, (i, j = 1,...,m) represent a Pouzet-type method (9), 
(17). If 

(18) p(t) = 0 forall t E Twith fin(t) + (1 + a)int(t) < p 

(where p(t) is given by Definition 5), then the method has local order p. 

Proof. The proof is analogous to the proof of Theorem 3.1 of [3]. 

k 
t t . 

t ti~~~~~~~~~ ti i V 

(titR E TV) 

'. t4. i 

~~K ~~~tr 

FIGuR,E 7 
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Under the condition (17) one can see from Definition 5 that many trees in TV 
have identical Tp. Such pairs are sketched in Figure 7. 

Hence, for any tree t E TV we can construct a tree t' E T such that T(t) = (t'), 
int(t) = int(t'), fin(t) > fin(t'). Therefore (18) implies (10). D 

Collocation Methods for xo > 0. We now consider a class of implicit Pouzet-type 
methods which satisfy the order conditions (10) in a trivial way. Choose distinct c, 
(i= 1,... ,m) and determine the coefficients a1j, bi (i, j= 1,... ,m) from the 
Vandermonde-type conditions (cf. [6, p. 142]) 

T, (I T]) = ?, q)([ T]) = 0 (i = 1, ...,1m; 1=- 0, ...,-) 

i.e. (see Definition 5) 
na m 

(19) a Cac J(l) c.+I +a 
b,cl 

- J(l) (I = 0.. .,m - 1). 
J=l = 

This means that each of the product quadrature formulae in (3) is exact for 
polynomials of degree < m. 

Definition 5 shows that the corresponding Pouzet-type method satisfies (18) with 
p = m and hence, by Theorem 10, has local order m. But we have even 

(20) T1(t) = 0, T(t) = 0 for all trees t E TV with fin(t) < m - 1, 

and by (12) and (14) this implies (in the notation of Section 3) 

(21) Y -y(xo + c1h) = O(hm+l+a) (i 1 l,...,M), 

Yi -y(x0 + h) = 
O(hm+ 1+a) 

Remark. For ordinary differential equations (i.e. the case where a 0 O and 
K(x, s, y) does not depend on x) condition (19) is equivalent to stating that the 
Runge-Kutta method is a collocation method (cf. [10]). For arbitrary a, if cm = 1, 
Pouzet-type methods satisfying (19) can be interpreted as collocation methods in the 
sense of [3, Section 4] and [4]. 

There is even local superconvergence en miniature: 

PROPOSITION 11. Let cl,... ,cm be distinct nodes such that the error of the corre- 
sponding product quadrature formula is of order 

m 

(22) hl +a b,g(clh) - (h - s)ag(s) ds = 0(h 

for smooth g(x), where q > m + 1. 
Then the local error of the corresponding Pouzet-type method, whose coefficients are 

determined by (19) and (17), satisfies 

yi- y(xo+h)=O(hr), wherer 
m +2(l+ a)f > 

Proof. The assumption on the product quadrature rule implies 
m 

T([T ]) = bic - J(l) = 0 for I = 0,. q .,-1. 
i=lI 

As in the proof of Theorem 10, this condition yields T(t) = 0 for all t C TV with 
fin(t) < q - 1, int(t) = 1. Together with (20), this gives the result via (12) and (14). 
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As an illustration consider Figure 8 where the (fin, int)-coordinates of the trees with 
nonvanishing qi are marked. The point indicated by "x" is the one for which T 
becomes zero because of (22). D 

fin a < O fi q =m+1, a> 0 

. 0 0 

m * * m+2+a * * * 

m+2(1+a) 
rn-P ~ ~ ~ ~ ~~~~~- 

O int O Eint 

FIGURE 8 

Remark. For a = 0 the local error is actually O(h q+I). (For ordinary differential 
equations this is proved e.g. in [10]; see also [6, p. 143]. By Theorem 10 the error of 
the corresponding Pouzet-type method is of the same magnitude.) An analogous 
statement does not hold for arbitrary a. As the following example demonstrates, the 
result of Proposition 11 can in general not be improved for negative a. (It is obvious 
from Figure 8 how a stronger result can be obtained for a > 0 and q > m + 2.) 

Example. Let a - , m = 2. Choose c1, c2 as the zeros of the polynomial 
x 2-8/7 x + 24/105 (Gauss nodes), and determine b 2, b from (19). Then we have 
q = 4. However, the local error of the corresponding Runge-Kutta method (19), (17) 
is only O(h3), because the order condition for the tree [[ T2]] is not satisfied. D 

Collocation Methods Near 0. For the approximation of the nonsmooth solution 
near 0 the same concept as above leads to nonpolynomial collocation methods. For 
aY= - ,2 such methods have recently been put forward in [13], [5]. 

Choose distinct cl (i =,...,i), and determine the coefficients a,,, b, (i, i 
1, ... , m) from the conditions 

c(n) [fll T2J) 0? TI TL a, 

qp(n)([nr, T'2]) 0 (i 1,.. .,m; l1 + (1 + a)12 ?P), 

i.e. (see Definition 8) 
nl 

2 a11clfr(n + C) n(l2,I 12)cfl?+? (n + 
CJ)20l+a) (i 1,... ,m), 

J= I 

b, c (n + C1)2() Jn(l1, 12) for 1 + (1 + a)12 p, 
i=l 

where m and p are related in such a way that the system of linear equations has a 
unique solution. 

If d,,, e, are chosen according to (17), a similar argument as in the smooth case, 
which is now based on Theorem 9, yields (the notation is as in formula (16)) 
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Y; -y((n + cl)h) = 0(hP+e) (i = 1 m), 

Yn+l-y((n + 1)h) = O(hP+e) 
for some - > 0. 

Explicit Runge-Kutta Methods for xo > 0. To begin with, the explicit Euler method 
reads 

Yn+1 = FJ(xn+l) + 1 + hl+aK(xn+I, Xn 9YJ 

The method has local order 1. It satisfies (19), and (21) shows that the local error is 
O(h2+a). 

Since the number of order conditions (10) depends strongly on a, there is no point 
in constructing high-order explicit methods which have the same local order for all a 
(as it was for Euler's method above). It is more promising to construct methods for 
special, practically important values of a. 

For a = 0, various examples are given in [3]. For a - we begin with a negative 
result. 

PROPOSITION 12. There is no 2- (resp. 3-, 4-) stage explicit Runge-Kutta method (3), 
(9) for a -2 having local order p = 2 (resp. 5, 3) (i.e. local error 0(h P+1/2)). 

S I K V$K ' Y V 
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) 

FIGURE 9 

Proof. An explicit method of local order 2 has to satisfy at least the following 
order conditions (see (18) and Figure 9): 

m 

(i) b = 2, 

m 4 
(ii) 2 li 

1=2 3 

m 1_1 4 
(iii) z b11E a C /2 =0. 

1=2 j=2 3 

For m 2, (iii) yields b2c3/2 = 0 which contradicts (ii). For an explicit method of 
order 2 the following order conditions also have to be satisfied: 

(iv) ~~~~~~m 16 
(iv) Ebi 1. = 15E 

1=2 

m i-I I i 4 
(v) bi-I ('l 1aJkck - 3 c)/ 0. 

i=3 j=2 k=2 

If m = 3, (v) implies b3a32c2/2 = 0. Then (iii) reads b2c3/2 + b3c312 0. Inserting 
this relation in (ii) and (iv), we obtain 

1/2( 1/2-1c/2) 4, -b3c3/2( c/2 /2) 16 

which is a contradiction. 
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Finally, for p 3 also the following order conditions have to be satisfied: 

(vi) 2 bici 2 aijc -3 -C312 = 0, 
1=2 I= 2 !3 

"I i-I 1 
(vii) E bi aij2c- C12 = -, 

m i-1 j-1 k-I 

(viii) z biajaI aklc/ 3 2Ck -0. 
i=4 j=3 k=2 1=2 / 

If m 4, (viii) implies b4a43a32c2/2 = 0, and the contradiction follows in a similar 
but more technical way as above. D 

If we choose m 3, c2 = 2, c3= 1, b2 0 , then (i), (ii), (iii) and Theorem 10 yield 
Example 13. The following coefficients represent a 3-stage explicit Pouzet-type 

method for a I- of local order 2 (i.e. local error O(h5/2)). 

ci Iaij 
C1 ] 

0 0 

2/3 26/3 0 

1 0 2 0 

2/3 0 4/3 b, 

In the notation of (3) the method reads 

Y2 =j,(xn + 2h/3) + 2 /3 h"/2 K(x,, + 2h/3, x, Y), 

Y3 = tn(xn + h) + 2h'/2 K(xn + h, x,, + 2h/3, Y2), 

Yn+ I Jn(xn + h) + 2/3 .h'/2 K(xn + h, Xn, Y1) 

+4/3 *h'2-K(xn + h, x, + h, Y3). 

Example 14. The following coefficients represent a 5-stage explicit Pouzet-type 
method for a = - I of local order 3 (i.e. local error 0(h7/2)). 

cI aij 

0 

1/2 F2 0 

F2 22 
1/2 _ 0 

1 a4l a42 a43 0 

6 -42 48 + 82 36 - 42 

1 ~~~0 0 1 45 ?45 45 ? 

2 0 16 4 4 

0 01 
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where 

a42 = ---a22 - -1.84296978..., a54 
8 32 

a43 = + 27a -a42 = 6.267309622..., 

a4 -2 - a42 - a43 = -2.424339842.... 

The method was derived in the following way: Choose cl 0, C2 C3 =2, c4 = C 
1, b2 = 0, b4 = 0, a52 = 0. Then (i), (ii) and (iv) give bI, b3 and b5. (iii) and (vi) 

imply a32 -2F2 /3, whence a53 and a54 can be obtained from (iii) and (vii). Now the 
value for a42 follows from (viii), and (v) gives a43. Finally, the coefficients a21,... ,a 
are obtained from (9). By Theorem 10 the method has the asserted local order. 

Proposition 12 and the foregoing examples indicate that the construction of high 
order explicit Runge-Kutta methods for negative exponents a is by far more 
complicated than for a =0. The converse situation holds for positive values of a. 

Example 15. The following coefficients represent a 2-stage explicit Pouzet-type 
method for a 1 of local order 4 (i.e. local error 0(h5)). 

Ci aij 

0 0 
1/2 1/8 0 

1/6 1/3 b, 

In the notation of (3) the method reads 

Y2-F ( x + h ) + h K ( x + h x ) + 

Yn+ = Fn(Xn + h) + hK(Xn + h, xx + 2 Y2) 

It was derived from (9) and the following order conditions (see Figure 9) 
(i) bi + b 2 =' 
(ii) b2c2 = l 

(iv) b2c2 = 12, 

By Theorem 10 the method has the asserted local order. 
Example 16. The following coefficients represent a 3-stage explicit Pouzet-type 

method for a = 1 of local order 5 (i.e. local error 0(h6)). 

ci aij 

0 0 
2/5 2/25 0 

1 -1/4 3/4 0 

1/8 25/72 1/36 bi 
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The method was derived from (9) and the following order conditions after choosing 
c3 =1 (see Figure 9) 

(i)b, +b2 +1b3 2= 

(ii) b2c2 + b3c3 6' 

(iv) b2c2 + b3c3 1 

(ix) b2c3 + b3C3 210 

(iii) b2(- C3) + b3(a32c2C- '3) = 0. 
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