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On the Linear Independence of Multivariate 
B-Splines. II: Complete Configurations 

By Wolfgang A. Dahmen and Charles A. Micchelli 

Abstract. The first part of this paper is concerned with global characterizations of both the 
multivariate B-spline and the multivariate truncated power function as smooth piecewise 
polynomials. In the second part of the paper we establish combinatorial criteria for the linear 
independence of multivariate B-splines corresponding to certain configurations of knot sets. 

1. Introduction. A characteristic feature of the univariate B-spline is the well-known 
fact that it has minimal support among all splines of a fixed degree having the 
requisite smoothness conditions determined by the multiplicities of its corresponding 
knots. In particular, for any set of distinct knots x0 < < ... < x,n there is (up to 
a multiplicative constant) a unique function (B-spline) which is supported on 
(x0, xn), has n - 2 continuous derivatives everywhere and on each interval (xj, x1+ ?), 
O ?<j < n - 1, is a polynomial of degree < n - 1. This function has an explicit 
representation as a divided difference 

(1.1) M(txo, ...,x ) - 1 l x _t)+ n 
-=( 1)! [X0. . . nxj( o 

and can be seen to have exactly n - 1 knots x1,..., Xn- interior to its interval of 
support (x0, xn). It is this latter fact that characterizes M(t) as having minimal 
support. For there is no (nontrivial) function sharing the same properties as M but 
having one less knot in its support. These remarkable properties of the univariate 
B-spline (minimal support and the representation (1.1)) are due to Curry and 
Schoenberg [4]. 

One of us has already provided a multivariate version of (1.1) by using multi- 
variate B-splines and truncated powers [5]. However, the analog of the minimal 
support property of the univariate B-spline has yet to be settled in higher dimen- 
sions. The piecewise polynomial nature of the multivariate B-spline is known to be 
much more complicated than in the univariate case. Thus it may be somewhat 
surprising that a global characterization of the multivariate B-spline is indeed valid. 
One of our objectives is to prove such a result. Furthermore, by characterizing the 
restriction of the multivariate truncated power function to hyperplanes, we are able 
to establish a similar result for this density function as well. 

The second and main objective of this paper is to use these results to establish 
some combinatorial criteria for the linear independence of multivariate B-splines 
corresponding to certain configurations of knots. We have already treated this 
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question to some degree in [8] (cf. also [13]), where certain collections of B-splines 
were studied. However, the arguments which insure the linear independence of the 
corresponding B-splines involve, among other things, some restrictions on the knot 
positions, which, although being necessary for the stability of the basis, do not seem 
to be essential for their linear independence. 

Our objective is therefore to explore the connections between linear dependencies 
of B-splines and purely combinatorial properties of the corresponding configurations 
of knot sets. To this end, we shall, for instance, determine the dimension of the span 
of B-splines associated with what we call a complete configuration. (This terminol- 
ogy comes from the fact that the complete configuration for a set of affinely 
independent points in the plane is the complete graph whose vertices are these 
points.) Furthermore, our results will allow us to remove the above mentioned 
restrictions on the knot configurations considered in [8], [13]. 

Finally, we mention that there is a direct relationship between linearly indepen- 
dent B-splines and certain classes of multivariate rational functions. This fact will be 
explained fully later. We also mention in this context that we are able to give a 
simpler proof of some recent results of Hakopian [12] on multivariate divided 
differences and interpolation. 

2. A Global Characterization of the Multivariate B-Spline. A central objective of 
this section is to point out in what sense the multivariate B-spline and related 
functions have minimal support. 

Let us start by fixing some notation and summarizing a few known facts for later 
reference. 

Elements of the Euclidean space RS will be denoted by x, u, z, x (x... s). 
XA(X), [A], vols(A), I A I will denote the indicator function, the (closed) convex hull, 
the s-dimensional Lebesgue measure and, in case A is finite, the cardinality (count- 
ing multiplicities) of a given set A, respectively. The restriction of a given function f: 
Rs -- R to some subset A C Rs will be indicated by f IAj In particular, when A is an 
affine subspace of Rs, f IA will be always considered as a function of correspondingly 
fewer variables with respect to a suitable coordinate system for A. Adopting the 
standard multi-index notation for a, /B E Zs , i.e. I a a, + , +a, xa x 

* I we define the s-variate polynomials of (total) degree < k as usual by 

11k,s ={ 2 CX Ca E R, x E Rs}. 
jai<k 

Let r be any collection of (s - 1)-dimensional sets in Rs. rIk,s(F) will then mean 
the class of all (s-variate) functions f such that ID E 11k,s for any region D which is 
not intersected by any element of F. 

We shall sometimes refer to any (s - 1)-dimensional set p in Rs such that in a 
neighborhood of some point of p, f is in Hlk son each side of p (but not in 'ki5,s in the 
neighborhood) as a cut region for f. The set of all cut regions of a given function f 
will be denoted by F(f), and clearly F(f) C F wheneverf E Ilk,s(F). 

A knot set K {x?,. ... .x n C Rs, n 2 s, will always be assumed to satisfy 
vol s([K ]) > 0. Let us emphasize here that in our notation I K I= n + 1, even though 
K may contain fewer than n + 1 distinct vectors. 
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The B-spline M(X I X?.. . ,x'), or briefly M(x I K), is then conveniently defined 
as the unique density of the functional [5], [14] 

(2.1) RM(X I XI ... X)f(x) dx = n?! AtOX + +tnXn) dt, ... dtn 

where f is any continuous function and 
fl 

S" = (t, .t): t, = I-to, t, > O, iO, ... .,n} 

is the standard n-simplex. 
It is well known [5], [14] that M(x IK) is a piecewise polynomial of degree 

k K -s - 1 supported on [ K ] and that its cut region 

Fs(K) = Fs(x ... {[xI...Ix'] 0 i I < .. < is < n} 

consists of all (s - 1)-simplices spanned by subsets of s elements of K. Furthermore, 
it will be convenient to denote by Hp the (s - 1)-flat spanned by p C Fs(K). 

As for various representations and properties of the B-spline the reader is referred 
to [5], [6], [14], [15]. 

Here we need the following formula for the derivatives of M. Let DZ f 
I -,s z,af/lx, denote the directional derivative of f along z. Then 

(2.2) D M(x I x0,...n) = n E pjm(x I x0,...,xj, Xj+1I. .xn) 

J=0 

whenever z =2O_,in pUiX1, 20,i,n i = 0. 

This allows us to show that M(x I K) C Cn-s-d(Rs), whenever the convex hull of 
any s + d knots in K has a nonvanishing s-dimensional volume [5], [14]. Recently, 
Hakopian [11] pointed out that these conditions are actually sharp. The resulting 
local characterization of the smoothness properties of M( o I K) in terms of the knot 
positions may be reformulated as follows 

PROPOSITION 2.1 (HAKOPIAN). Let H = Hp for some p s( K) and 

l= HIKI -1- KnrHI. 

Then for any x in the interior of [H n K ] relative to H and any X L H, 

O < lim~ |((Dx)'M(x + tX I K) -(Dx)'M(x - t I K))| < ooc. 

So, we may associate with any knot set K the class CK of functions having at least 
the same smoothness properties as M( o I K) with respect to 1s(K) stated in 
Proposition 2.1 and vanishing outside [K]. 

In particular, we are interested in the class 

11ik,s,K rIk,S(FS(K)) n CK, 

which contains by definition at least M(x I K). In fact, we will show that M(x I K) is 

essentially the only nontrivial element of lk,s,Ks 

To this end, let us collect a few more preliminary facts. Any collection F of 
(s - 1)-simplices is called (n, s)-complete if F = Fs(K) for some knot set K C RS 
consisting of n + 1 vectors (counting multiplicities). IF is called (n, s)-incomplete 
when F is a proper subset of some Fr(K). 



146 WOLFGANG A. DAHMEN AND CHARLES A. MICCHELLI 

The geometrical definition of the multivariate B-spline provides a useful way to 
view J'( K). Defining for any n-simplex a = [v,.. ., vv ] the function 

M0(x) = Voln-(u E a: u IR' = XI) 
one may easily conclude from (2.1) that 

(2.3) M(x 1 K) = Ma(x)/voln(a), 

whenever K {vo IR'.... Vn IR'}. Hence Fr(K) is the collection of all projected 
(s - 1)-faces of the simplex a = a(K). This is used in 

LEMMA 2.1. Let x0 be an exposed knot of K = {x0,. . . xn} C Rs (i.e. a vertex of 
the convex s-polytope [K]), and let H be some (s - 1)-flat separating xo from the 
remaining knots x', i > 0, Then 

(i) {p n H: p E J'(K)} can be identified with some (n - 1, s - 1)-complete cut 
region F, (K') for some set K' C H, and 

(ii) any g E Ik, s,K satisfies 

9 I H Etlk ,s-1, KS 

Proof. Choose a= [v0,...,vn], voln(a) 1, such that K {v? IRS,...,Vn IRS.) 
Then the (n - 1)-flat 

H= HX Rns 

clearly separates the vertex vo, vo IR = X?, from the remaining vertices. Setting 
ui = [vi, v?I n H, i = 1,...,n, we observe that 

H na = [ul ...un] 

is an (n - 1)-simplex and 

M(X I K)I |H Ma(X) IH = V?ln-1-(s-1)({U [u E ,. . . nU ] UI|H = X}) 

so that (i) follows with 

(2.4) K' {z I z }n, z= Ui H,i 1,...,n. 

As for (ii) we note that g E 1k,s,K implies F(g) C rs(K) and hence r(gIH) C 
F(M( o I K) IH) = Fs-l(K'). To finish the proof we observe that g E CK implies 

gI H E CK. 
We are now ready to state 

THEOREM 2.1. Suppose K= ..x.... ,xn} C Rs is in general position. Then for 

k = n -s, 

ge H k,s,K iff g(x) = cM(x I K) 

for some constant c E R. 

Since obviously, M(x I K) > 0, for x in the interior of [K], as an immediate 
consequence of Theorem 2.1 we state 

COROLLARY 2.1. Let K C Rs be in general position. Then M( o I K) has minimal 
support, i.e. there exists no (nontrivial) element in rk,s,K which vanishes somewhere in 
the interior of [K]. 
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Proof of Theorem 2.1. We will proceed by induction on the spatial dimension s, 
recalling that the assertion is well known for s = 1 (cf. e.g. [1]). So let us assume that 
the statements in Theorem 2.1 and Corollary 2.1 are valid for s-1 - 1. Let us 
denote by R(K) the collection of all those regions in [K] which are bounded by but 
not intersected by any element of rs(K). 

LEMMA 2.2. Suppose that under the above assumptions F E Ek,s,K vanishes on some 
B E R(K), where (the closure of ) B contains some exposed knot x? E K. Then F has 
to vanish identically on [K ]. 

Proof. Pick any (s - 1)-flat H separating x? from the remaining knots, so that 
Lemma 2.1 assures FIH EE 1k,s-1K" K' - {zl,. .. . ,z} (cf. (2.4)). Since H n B has 
dimension s - 1 and F IHnB 0 ?, we conclude that supp( F H) is strictly contained in 
[K']. Since H was any hyperplane separating xo from x', i > 0, our induction 
assumption implies F H 0 O because K' is in general position with respect to H. 
Hence 

SUPP(F) C [xl,.. .,xn] . 

Note that we have clearly produced at least one further region B1 E R(K), B1 C 

[x..... ,xn], adjacent to some other exposed knot x', say. Repeating the above 
arguments, we remove step-by-step all the exposed knots of K, thereby restricting 
the support of F to some polyhedral domain P strictly contained in [K]. P satisfies 
one of the following conditions: 

(i) vols(P) = 0; 
(ii) no vertex of P coincides with some knot of K; 
(iii) some of the vertices of P are knots of K. 

As to (i) there is nothing further to show. In the case that (ii) occurs, again let H be 
some (s - 1)-flat which is sufficiently close to some vertex u of P. Since there are 
certainly less than n edges [xl, xJ] intersecting H n P (since otherwise u would have 
to be a knot), F(FlHnp) is (n - 1, s - 1)-incomplete. So, again using our induction 
assumption, another finite number of reduction steps would lead us to (i). So, let us 
assume (iii) holds. Then at least s + 1 exposed knots xo,...,xS, say, have been 
removed before, and we let x' E K be a vertex of the remaining polytope P. We may 
again choose a hyperplane H separating xl from the remaining vertices of P. We 
observe that at least one of the n edges [x', xJ], j # i, does not intersect H, since x' 
was originally not an exposed knot. Therefore F(F H) is again (n - 1, s - 1)- 
incomplete, and so the support of F can be reduced further, which proves Lemma 
2.2. 

In order to finish the proof of Theorem 2.1, let F rIIk,s,K and xo be an exposed 
knot in K. Assume that the theorem was proved for s - 1. Let H1, H2 be two distinct 
(s - 1)-flats separating x? from the remaining vertices. Furthermore suppose H1, H2 
have a nonempty intersection with the interior of [K]. By the induction hypothesis, 
there are constants cl, di, i = 1, 2, such that 

(2.5) FIHH = ciM( o I KJ, 

(2.6) M( o I K) IH = dlM( o I Kl), i = 1,2, 
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where K, -H, n {[x0, x'],. ..,[x0, xn], i - 1,2, and dl, d2 are nonzero. Choosing 
a constant a such that ad1 - cl, then F - aM( 0 I K) clearly vanishes on H1. On the 
other hand, since H2 intersects H, and 

(2.7) (F-aM( o I K)) 1H2 (C2-ad2)M( ? I K2), 

F- aM( o I K) also vanishes on H2. Since a actually did not depend on H2, we infer 
from (2.7) that 

(F- aM( o IK)) lB 0 ? 
for some region B E R(K) where B is adjacent to x?. Clearly F - aM( ? I K) E 

rIk,s,K' and so Lemma 2.2 confirms 

F-aM(o?K)=0 on[K], 

which finishes the proof of Theorem 2.1. 
In order to derive analogous results for multivariate truncated powers as well, it is 

useful to introduce the following more general class of density functions. 
For a given c: R -- R and xl,... ,XS E R* we define G,(x I x',... ,x ) formally by 

requiring that [7] 

(2.8) f...f (t + *+tn)f(ttlx? + +txm ) dt ...dt 

=JG,(x Ixl,...,xm)f(x) dx 

holds for any locally supported continuous function f on RX. 
The close connection between GQ, and the B-spline is revealed by the following 

relation [7] 

(2.9) G,(x I xi ... xm) f |(h)hm-s- M(h-lx I xi,. . .,x') dh . 

We are mainly interested in the following choices of co [7]: cl(t) X[O.l](t), 

W2(t) =1, W3(t)= e-t. In fact, in the first case we simply have [7] Ge,,( o I xl,. ... ,xnl) 
= (l/m!)M( a 1 0, X.... . Ixm), whereas w2 gives rise to the multivariate truncated 

powers [5], [15] which will be henceforth briefly denoted by G( o I xI...Ix. ). 
However, in order to make sure that (2.8) makes sense in this case, we have to 
impose the following conditions on the directions {x'}: 

(2.10) 0 4 [x ,... ,x ]. 

It is known [5] that G( o I x',... ,xm) is a piecewise polynomial of degree m - s 
with support 

(X I, .. * ,X ) + = 2 tjxj: tJ 0 , j =1...,m} 

and cut regions 

T7O(x'I....ix) ={xil...Ixis-)+ I 1 < i * < i m}. 

Furthermore, let H be any (s - 1)-flat in 17(x1, . . I xm). Setting 

(2.11) 1 m - 1 - IH n {xl ... ,xm} I 
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the Ith order derivatives of G( o I xl.. ,x"') are known to have finite jumps across 
H [5]. The same cut regions and smoothness properties are obtained for the third 
choice w3(t) [7]. In this case 

(2.12) A(x I x1,...,x1") = G,,(x I xv.....ix71) 

turns out to be a piecewise exponential function (where no restrictions on the 
directions {x'} are required). 

A useful link between functions of the above type and their univariate counter- 
parts is conveniently expressed by means of the Radon transform (cf. [10]) which is 
defined forf E L1(Rs) by 

(Rf )(X, t) = f(x) dx, XE OS = t{y E Rs: I y =1}, 

where Hlyll = (y.y)1/'2 and x -y denotes the standard inner product on Rs. Conse- 
quently one has the identity [14] 

(RM( ? I xo,. . ,x7))(X, t) = M(t I x?,.. ,X xl7), 

i.e. the Radon transform maps multivariate B-splines into univariate ones. 
Similarly we obtain 

LEMMA 2.3. For any X E Os let H,= {x E Rs: x * X = t}, and let G and A be 
defined as above. 

(i) Suppose x1,...,xm satisfy (2.10) and X C Os is chosen so that HA, n 
K x1 ... x m+ is bounded for any t > 0. Then one has 

(RG( ? |xl,..,xm))(X, t) fj X II AxJ) tm -' 

(ii) (RA( o X... ,xm))(X, t) =(1 * (El * Em)(t), Ei(t) to e-A x't, where td 

X R+ (t)td and "* "denotes convolution. 

Proof. (i): Suppose g: R -, R has local support. Note that then supp(g(X .x)) n 
<. ... ,xm + is bounded by assumption, so that we may write (cf. (2.8)) 

... g(tXx1 + ***+tm A xm)dt ***dtm 
0 0 

=AG(x I xl,. . .,xm)g(X . x) dx. 
Rs 

Since [2], [7] 

(2.13) ff(x)g(X x) dx= (Rf)(X, t)g(t) dt, 
s _o00 

the right-hand side of the previous equation reads 

(RG( ? I xl,... xm))(X t)g(t) dt. 
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Assertion (i) follows then from the equality 

fI gtg(t? -xI + +tmx .xm) dt, *. dtm 

= j ( -IAXi t+m-lg(t) dt. 

As to (ii) it is not hard to prove that 

(2.14) jA(xIx,... ,xm)e-6xdx = ( I(I +A xi)) 

holds for Re(X J) > -1. Thus (2.13) again yields 

J(RAN( ? I XiI .. Xm))(X, t)e- dt = fjT (I + A xJ)) 

On the other hand we know that (1 + X XJ)- JR t?i e-Ax'xe-'dt, whence the 
assertion readily follows. 

We are now in the position to state the precise relation between truncated powers 
and lower-dimensional B-splines. 

THEOREM 2.2. Suppose 0 4 [xl,...,xm] and every s of the vectors x' span Rs. 
Furthermore suppose that X E Us has been chosen so that HA, n <xI,...,Xm)+ is 
bounded. Then 

G( ? Ix1,...,xm) fH ( U X XJ) t1' 'M( ? Iz1, .. . 

where z' = HA, n {rx': r > 0), i - 1,... ,m. 

Proof. Choosing z' as above, we clearly have for F - G( o I.X.. . .,Xm) HA 
supp(F) = H,1 n (Xl, ...xm)+ P[z...Zm]. 

Moreover, K' = {zl, ... I, zm} is in general position (with respect to HA t) and 

sro(xl, ... ,xm) IHA= (F) = Fs_I(Kft). 

Recalling the smoothness properties of the B-spline (Proposition 2.1) and those of 
the truncated powers (2.1 1) we conclude 

F E Im-s,s-1,K' 

Hence Theorem 2.1 implies 

F(x) = cM(x K'), x E H1, 

for some c E R. In order to determine the constant c, we recall that JRS M(x I K) dx 
1, so that one obtains, in view of the definition of the Radon transform, 

c=A cM(z I zl,. . . ,z) dz =I G(z I xi, . .. ,x ) dz 

we(RG( o I xe Lexm))(X t) 2.3(i) X xi n+tl e i 

where~~~ 1ehv se-em-23i n h at qaiy 
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As an immediate consequence of Theorems 2.1 and 2.2 we state 

COROLLARY 2.2. Let x1,. .. I xm c Rs satisfy the hypotheses of Theorem 2.2. Suppose 
that F is any piecewise polynomial of degree m - s with cut region F(F) C 

r17(xI,... ,xm) and local smoothness properties as specified by (2.11), i.e. F e 
Cm s(RS). Then, if supp(F) C <x',. . .,x I 

F = cG( ? XI, xl 
M 

for some c C R. 

3. Lagrange Interpolation in Rs. This section is concerned with the connection of 
B-splines and the construction of multivariate interpolation operators (cf. e.g. [14]). 

In a recent paper [12] Hakopian proposed the following interesting extension of 
univariate Lagrange interpolation into a multivariate setting. Let for xo,... ,xs- EC 

Rs (cf. (2.1)) 

I 
.. If f(toxo + + ts-xs-) dt, dts. 

=(s 1)!t IRf(x)M(x xo,...,xs-') dx, 

where M( o I x, .. , Xs- I ) is to be interpreted now as a distribution. 
Then Hakopian showed 

THEOREM 3.1 (HAKOPIAN). Let x., .. . xn be in general position. Then for any 
continuous function f on Rs there exists a unique polynomial P of degree - n - s + 1 
such that 

holds for all O - 
io < ... < iS - I n. 

The two-dimensional case was treated earlier in Part II of [2] which appeared in 
Quantitative Approximation, Eds. R. DeVore, K. Scherer, Academic Press, 1980. 
Theorem 3.1, as well as related results, is based on the expansion of the multivariate 
divided difference functional 

[x ...xn] af = M(x IxO,...,xn)Daf(x) dx, 
Rs 

IaI = n - s + 1, where Daf denotes the partial derivatives off of order a E Zs in 
terms of the functionals f[XO .XS-l f [12, Theorem 1] (which for s = 1 reduce, of 
course, to point evaluations). 

The existence of such an expansion is clear from the recurrence relation (2.2), a 
point which was made in [14]. However, Hakopian provides an explicit formula for 
this representation. This result turns out to be very closely related to our study [7]. In 
fact, by briefly pointing out this relationship, we wish to present an alternate and, as 
it seems, much shorter derivation of Theorem 1 in [12]. 

To this end, let us state the following lemma from [3], [7] which will be also used 
in the subsequent section. 
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LEMMA 3.1. Suppose 0, x?.... , x" Ee Rs are in general position and let for any 
I C {0,.. ., n}, I I I = s, x' be the unique solution of I + xi' x = O, j e I. Then every 
polynomial of total degree ? n + 1- s can be expanded as 

Q(x)= 2 Q(x')Q(x), 
11t =s 

and the polynomials Ql(x) = ll]j 7 ,(1 + x. xi)/(l + x'- xi) satisfy Q1(xj) = j, 
I, J C {0,. . . ,n}, I I.=IJI= 5 

Now let qm(x) be any homogeneous polynomial of degree m and q,,,(D) the 
associated differential operator. In view of (2.2) we can find coefficients iA, 

J C {O,. ... ,n}, such that for smooth g: R - R and K {x0,. ... ,xn} C Rs 

(3.1) fqm(D)M(x IK)g(n-m)(z x) dx 

z A (n-Z(z .x)M(x I K\f xj:j EJ}dx 
JI I= s1 

Integration by parts applied to the left-hand side of (3.1) readily yields the divided 
difference 

n! ()mqm(z)[z . xo,... ,z . xn] g 

Similarly the right-hand side of (3.1) can be rewritten as 

(n-im)! t j[z- (K\{Xi: jEJ})]g. 
IJI m 

In particular we may choose g(t) = 1/(1 + t), which provides 

(n - n! n= IJZn 
(nm)! qm(z)/ .1 (I + z xi) Ai 1 ( I ( + z x) 

and hence 

(3.2) qm(z) (n- )! 2 Jl (? + z-xi) n! j= jc * JI-m JEJ 

(which is easily seen to be equivalent to (3.1) by the denseness of the span of the 
17(1 + at), a E C). Choosing now m = n + 1 - s, we obtain 

qn+l-s(z) = (s 1) 2 Iki rI (1 + z xi), 
* tJL=n+1-s jeJ 

which we write in the equivalent form 

(s- 1)! + z xi) 
n 

iIt=s j(i 

But Lemma 3.1 then says that the coefficients qj are uniquely determined. In 
particular, when qn+I- s(x) = Xa, j a l n + 1 - s, combining (3.1) with Lemma 3.1 
readily gives 

[X ... ns f * ].f =- x f" 

I= {il, * ,iS } Xt1, . . . XIS] 
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where 

( 1)! JJn-s (xl)a II (1 + xI xi), 

which is the desired explicit expansion. 
The relationship of the polynomial P(x) = '(f )(x) given by Theorem 3.1 to 

Hermite interpolation is to be expected. In fact if fx(x) = g(A-x), X E Rs, then, 
using the Hermite-Genocchi formula, again it easily follows that 

6J(fx)(x) = L's-')(g-s 5 1IA. x?,., _ Xn)( -x), 

where L(g I tO,. . ., tn)(t) denotes Hermite interpolation to g(t) at tO,..., tn, and we 
use the usual convention that repeated values correspond to interpolation of 
successive derivatives. Thus in the terminology of [2] the map 0P lifts 

L(s-1)( g-s+1 I 
to,.. * tn) (t) 

to Rs. The fact that this map can be lifted to all Rm is easily obtained by 
differentiating the Newton expansion of L(g Ito,... , , tn)(t) and using the methods 
employed in [2] (Hakopian's map corresponds to m = s). This procedure yields the 
remainder formula for the lifted map 

f(x) - (f )(x) I s 
) 2: II Dx-xif. 

r=0 4L,~x 01... Xn1 JJJ=r i(ZJ 
s-r 

The case s = I corresponds to Kergin interpolation, see [2] for the formula and 
related references, while s = 2 is the lift of the area matching map discussed in Part 
II of [2] which appeared in Quantitative Approximation, Eds. R. DeVore, K. Scherer, 
Academic Press, 1980. 

We wish to mention that Carl de Boor and Klaus Hollig pointed out to one of us 
that Hakopian's mapping is a lifted map in the terminology of [2]. Equation (3.2) 
resulted from a question they raised concerning multivariate B-splines. 

4. Complete Configurations. In this section we will address questions of linear 
independence of B-splines. We begin with an arbitrary collection C( of knot sets in 
Rs, where each member of C has the same cardinality. Our general objective is to 
find a subset f13 C C( such that {M( o I K): K E ?B} forms a basis for 

5(0) = span{M( o I K): K E e}. 
It is to be understood that C, is admissible in the sense that any knot set in C, gives rise 
to a B-spline density. Thus, if K E C, then vols([K]) > 0. 

Returning for a moment to the univariate case, we define for any sequence 
T = {t1. . . , tj C R, ti ti+k?+ , the collection 5 = (K: K C T, I K I = k + 2} of 
knot sets and the corresponding span S,( ) of B-splines of degree k with knots in T 
and supported in [ti, tn]. Here the smoothness of the B-splines at the knots is given 
as usual by their respective multiplicities. In particular, any S(x) E J(5) is to 
satisfy S(i)(ti) 0, j-0,. . . ,k - di, i = 1, n, when d1, dn are the respective multi- 
plicities of t1, tn . It is well known that S(S ) is the set of all splines of degree k with 
knots in T and supported on [t1, tn ] and that 
(4.1) dim5f()= n-k-1. 
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This suggests the following more general question: Let P = {x ,...,x'1} be any set 

of points in RS; what is dim (6Ynm) where GYnm is defined to be the complete 
configuration 

6p -{K C P: I Kl-m}? 
As a first simple observation we state 

PROPOSITION 4. 1. Let P = { x . ... XI} C R', vol,([P]) > 0. Then 

dim S ( nn- I ) s + 1. 

Proof. Suppose that for KJ 1 P\{x"}), j 1,.. .,s + 2, the B-splines M( o K,) 
are linearly independent. Since we can always find c E RS?+2\(0} such that 

I cJxIJ 0, E C 0, 
I sJS+ 2 1?j?S+2 

formula (2.2) would say 
s+2 

0 = DOM(x I P) (n - 1) c cJM(x I KJ), 
J= I 

which is a contradiction. Hence dim (n, n-1) S + 1. 

On the other hand we certainly have again, in view of (2.2), 

dim5(gnPn-1)> dimspan{DzM( o IP): z E Rs} = s, 

which finishes the proof. 
Note that Proposition 4.1 remains valid even if some of the B-splines M(x I K), 

K E gnP_n- I are defined in the distributional sense. 
Both the above observations, (4.1) and Proposition 4.1, are actually special cases 

of the following more general result. 

THEOREM 4.1. Let P - 
{Xl...Xn) C Rs be a set of knots such that 63Pn is 

admissible for some n > m > s. Then 

dim (9n m) -( + ns 

It is worthwhile to note the following contrast to the univariate situation. 

Remark 4.1. Let us suppose that iS( n,m) denotes the space of all piecewise 
polynomials of degree m - s - 1, supported in [P], with cut region F P), and 

having the same smoothness properties as the elements of 5(9n m). Then, one has in 

general 

dim Si( 9n ,m ) < dim05 (g?n,m ) 

where, contrary to the univariate case, the inequality is sometimes strict. 
For instance, choose P = {x,. .. ,x4} C R2 such that all the knots x' are vertices 

of [P]. It is readily seen that then dim 5( %) = 4, whereas Theorem 4.1 assures that 

dim (g4,3)- 3. 
Combining Theorems 4.1 and 2.2 readily gives 

COROLLARY 4.1. Let P = {xl, . . ,n C Rs, 0 X [P] and all s elements of P are 

linearly independent. Then one has for n > m s, 

dimspan{G(o1Q):QCP,Q10 m}1 (s m + - m). 
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As a first basic ingredient of the proof of Theorem 4.1 we state the following 
result. 

LEMMA 4.1. For s < m s n, P = {xl, ... IXn} C Rs one has 

dim ( (Pn,m) =.dim span 11 (I + x xi):IC {I , t , n}, III =n-m } 
jI' 

Proof. For any finite collection e of knot sets K C Rs, (2.9) provides the following 
equality: 

CKA(tXIK) CK| e-hhn-s-IM(th -xIK)dh 
K C , KEEC 

e= h CK CJM(h-x lK)) dh 
onsf~ethhnsI( KEed 

which holds for any x E Rs, t > 0. Hence from the properties of the Laplace 
transform we infer that 
(4.2) M( o K), K E e, are linearly independent if and only if 

A(?o K),KEC, are. 

But, referring again to the properties of the (multivariate) Laplace transform, (2.14) 
implies that A( o j K), K E C, are linearly independent if and only if the rational 
functions 

fJ (I + x * u)', K E C , 
uCK 

are. In the special case when K EG C- n, this in turn is equivalent to saying that 
the polynomials 

H (1 + u-x), KE giPn,m 
uEZK 

are linearly independent if and only if the functions A( o I K) K E gn m, and, on 
account of (4.2), the B-splines M( o j K), K E Yn,m are linearly independent. 

Obviously, the linear space H = span{lI V K(1 + u - x): K E 6n m} satisfies 
H C Hn-m,s' 

Since 

dimflnms= (n- +ms) 

the validity of Theorem 4.1 is tantamount to showing HI-I = L n-ms* When P 
contains n - m + s points in general position, Lemma 3.1 does confirm that 
11 =1 Hn-ms In the general case this equality still holds. One approach to proving 
this is to extend Lemma 3.1 to its "Hermite Form". Rather than taking this 
approach we will make use of (3.2). Thus if q,(x) is any homogeneous polynomial of 
degree 1 ? n - m, there are constants uI such that 

q,(z) = tt Ff 1 (I + z *xj). 
III=/ jCI 

Therefore we also have Hn m H E. This proves Theorem 4.1 as well as 

PROPOSITION 4.2. Let 'gn m be any admissible complete configuration. Then 

H Hn=m,s 
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In the remaining part of this section we will be concerned primarily with methods 
for generating a basis of B-splines for the space 5(6Yn m). At the same time though, 
we will introduce several useful notions applicable to arbitrary collections of knot 
sets C. These ideas are motivated by two obvious facts about the univariate space 
Sj( ). Although this space contains all B-splines of degree k, it is well known that 
the consecutive B-splines corresponding to Ki = ti,... ,ti+k+?}, i 1,...,n - k - 

1, span S(c5). In this case the linear independence of the B-splines M( o IK1), 
i- 1,...,n - k - 1, over [t1, tn] easily follows from the fact that each Ki contains a 
knot which is not in any of the previous sets K 1,. . . ,Ki - 1. It is important to keep in 
mind that this fact is dependent on the order in which these sets are enumerated. 

To place these facts in a general context we introduce the following notion 
Definition 4.1. Let C be a collection of knot sets in Rs. We will say K1, . . , KN E e 

form a strong chain of length N provided that for each i, 1 < i s N, there is some 

p E r(Ki+ 1) and a point x in the relative interior of [Hn n K, I] which is not in 

Ul <Gi U {y e rs(Kj)). 
LEMMA 4.2. Let (K1, K2,... ,KN) be a strong chain. Then the B-splines M( o I K,), 

i-1, ... ,N, are linearly independent over Ul <i<N[Ki]. 

Proof. M( ? I K1) is trivially linearly independent. Suppose M( o I K,), i 1,.... 

j - 1, are also for somej s N. In view of the hypothesis we can find p E T's(Kj) and 
a point z in the relative interior of [H. n Kj] such that z does not belong to 
U <i< U {y E Fs(Ki)}. Suppose H. is m-fold, i.e. H. contains exactly s-1 + m 
knots of Kj. Defining for X I Hp 

LHp(f) lim ((DA )nsrmf(z + tX) -(Dx )n-Snf(Z ) 

Proposition 2.1 assures 

LH(M( o Kj)) #0. 

So _1 I ciM( o I K,) = 0 would imply 

z ciLff (M( o j Kj))- 0 -cJLH(M( o I Kj)), 

and hence cj=0. Thus cij-IcM( o KK) =0, which by assumption means 

ci = ?, i-l,1...,j. 
Note that in the univariate case the sequence of consecutive knot sets is obviously 

the longest strong chain in C. 
This gives rise to the following 
Definition 4.2. A subset Jq of a given knot configuration e is called an s-basis of C if 

there is a chain (K1,.. ,KN) So that 

6J)= {Ki: i= 1,.. IN=I 6J,I), 

and whenever (K'... , KN) is another chain in C then 

N' j1 3j3. 

lS31=Is(C) is called the s-index of C and {Ki: i= 1,...,l'3jI} is called an 
s-generating sequence for C. 

Example 4.1. In the univariate case the consecutive knot sets form a 1-generating 
sequence for ,k+2 and '1((n,k?2) = n - k - 1. 



LINEAR INDEPENDENCE OF MULTIVARIATE B-SPLINES. II 157 

THEOREM 4.2. Let n 2 m > s, P X.I. . x' C Rs. Suppose P contains n - m + 

s points in general position. Then 

Is( 6P,m) (s + n m). 

Proof. We can easily obtain an upper bound on the s-index of 9n,m by combining 

Lemma 4.2 and Theorem 4.1 to conclude that 

Is( iPnm) (s + n ) 

On the other hand the proof of Lemma 3.1 (cf. Lemma 2 in [7]) suggests the 

following s-generating sequence for gn,m. Let Q C P denote any fixed subset 

consisting of n - m + s points in general position. Then V = P \Q clearly satisfies 

I VI= n - n + m - s = m - s > 0. 

Now there are exactly (n-mr+s) distinct subsets 

I, C Q, i= 1--- ( .. 
s n - m 

Consequently, the (n-mr+s) sets K= V U Ii form a strong chain in 9n,m since 

K= V + Ii = m holds by construction. Hence Definition 4.2 says that 

Is( 6Jn,m)> (n - m + s5) 

which completes the proof. 

Note that the s-basis constructed in the above proof forms an s-generating 

sequence for gn,m even for an arbitrary ordering of the sets Ki. However, in general, 

the ordering will matter as is shown by the consecutive knot sets in Example 4.1. 

So, when dealing with complete configurations the dimension of the correspond- 

ing s-variate span of B-splines coincides with the s-index of the configuration. 

However, this simple rule is unfortunately not valid for any configuration of knot 

sets even in one dimension. This is confirmed by the following 

Example 4.2. Suppose xl, x2,... , x6 are pairwise distinct univariate knots arranged 

in increasing order. Let (C = {K1, K2, K3, K4) where 

K1 = {X1, X2, x4}, K2 = {xI, X3, x5}, 

K3 = {x4, X5, X6}, K4 = {X2, x3, X6}. 

It is then easy to see that the dimension of the 5(C) will depend on the position of 

the knots. 

Two important remarks concerning Lemma 4.2 and Theorem 4.2 should be made. 

The first remark concerns the definition of a strong chain. This notion, being based 

on the smoothness properties of the multivariate B-spline, can be weakened while 

still insuring the validity of Lemma 4.2. We only need to require that for each i, 

1 < i < N, there is some p E I7(Ki+I) which is r-fold, i.e. HP contains exactly 

s + r- 1 points in K1+,, such that either p g UI<j<i U {y E Is(Kj)} or, if p c 

U {y E Fs(Kj)} for some j - i, then p is at most (r - 1)-fold relative to Kj. Thus, 

even though p may be contained in each U {-y E Is(Kj)}, 1 s j < i, there is at least 

one point in HP at which the B-spline M( o I K1+1) has a different smoothness than 

any of the B-splines M( o I Kj), j - i. When K1, . . ., KN have this weaker property we 
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will say (K,... ,KN) forms a weak chain. The same argument used in Lemma 4.2 
guarantees that M( o I K,), i = 1,.. .,N, are linearly independent if (K,... .,KN) 
forms only a weak chain. 

Finally, we wish to point out that Theorem 4.2 gives a purely combinatorial 
criterion for the linear independence of B-splines. To emphasize this point let us 
observe that Definition 4.2 and Theorem 4.2 can be rephrased entirely as a 
combinatorial fact. 

Let P be any finite set of n objects and (P),, the collection of all subsets of P 
consisting of m objects. Thus, while (P)m, is for m < n the analog of the complete 
configuration of knot sets gn m considered before, (K), corresponds for K E (P)m, 
s < m, to the cut regions T'(K), K E 62nrnm For any collection C of sets of objects we 
say (K1,... .KN) is a chain of length N in Cif K, E C, i = 1,...,N, and 

(4.3) (KL+i)s U (KJ) 0, i= 1,.. .,N - 1. 
I ?J ? i 

As before the s-index s( C) is the longest chain in C. 
Then it follows that for s < m < I P I 

Is((P)m) - (IPI m +)s 

because we can always identify P with a set of n vectors in Rs which are in general 
position and (K)s with the cut region of M( o J K). Since then every chain in the 
sense of (4.3) gives rise to a strong chain of the same length in the sense of 
Definition 4.1, this identification preserves the notion of chain and index so that 
Theorem 4.2 is applicable. 

Conversely, any collection of knot sets in Rs, each of which is in general position, 
can be identified with a combinatorial structure. For instance, consider 

Example 4.3. Let P= {1,2,...,6}. One may check that {{1,2,3,4}, {1,2,3,5}, 
{ 1, 2,3,6, {l, 2,4,5), { 1,2,4,6), {l, 2,5,6)) form a 2-generating sequence for (P)4 

and 12((P)4) = 6, whereas, 1,((P)4) = 3 because {{ 1, 2, 34}, {2, 3, 4, 5}, {3, 4, 5, 6} } 
is a 1-generating sequence. Thus, if we think of P as a set of 2-vectors (four among 
them being in general position, say), we have a way of obtaining six linearly 
independent B-splines spanning R(i64) while, if P is thought of as a set of 
univariate knots (at least three being pairwise distinct) we obtain three independent 
B-splines. 

5. Regular Configurations. We have seen in the previous section that the dimen- 
sion of the linear span of B-splines on the complete configuration is determined by 
its combinatorial structure. But, unfortunately, according to Example 4.2 this is not 
generally true. Nevertheless, as we shall point out next, there is another large class of 
configurations which has this property and is also suitable for approximation. For 
this purpose we will call a configuration C of knot sets regular if dim S( C) = I/(C ). 

We will continue using the notions s-index, s-generating sequence, s-basis, chain in 
both contexts, i.e. when dealing with the purely combinatorial properties of collec- 
tions of sets of arbitrary objects as well as when identifying these objects with knots 
in Rs and referring to the corresponding cut regions. The proper interpretation will 
always be clear from the context. In particular, the analogy between both concepts 
suggests calling the elements of (K), (abstract) (s - I)-simplices. 
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Let us consider the following definitions taken from [9]. For any s, k e Z+ and 
n = s + k let 

(5.1) X(s, k) {K = {(ji, mi): i = O,.. .,n}:jo M = 0, 

(ir, Mr) ( ir+ 1 Mr+ I ) (jrg Mr) E= {O . ... 9S} X (0, . .. ,k}). 

Note that 

(5.2) A(s, k) =(sk), (Oj1, m j)(s, k). 

For I= {io,..., is) }E Z' we define 

z(I, k) = {{(iir, Mr): r 0 ... ,n}: {(jr, Mr): r 0,...,n} E A(s, k)}. 

There is a simple geometrical interpretation of A(s, k). Let p = [u',...,us], y 
[. ... , v' k] be simplices in Rs, Rk, respectively. Then 

(5.3) P * = 
{GUK = [(Ujo , V"20) - . 9 (Ul,tt vnlpl)]: 

K {(J.r, Mr): r = 0,...,n} E A(s, k)} 
is a triangulation of p X y C RIC. Here a collection T of simplices is called a 
triangulation of 2 when 5 = U {a E f } and the intersection of any two elements of 
5 is empty or a common lower-dimensional face. 

Now suppose i C Zs++l induces an (abstract) simplicial s-complex, i.e. i is 
combinatorially equivalent to a triangulation F of some polyhedral domain S2 in Rs, 
which means that there is a one-to-one inclusion preserving correspondence between 
the sets of all faces of the elements of $ and C, respectively. The configuration 
(5.4) \($, k)= U {zA(I, k): I E i} 

is known to form an (abstract) simplicial n-complex (cf. [8], [9, Lemma 8.9]). 
In particular, when XV {u': i =,.. . ,N} C Rs are chosen so that 

(5.5) @(i) ={p(I) =[ULO,... ui]: I= {io, ... I is 
is a triangulation of U2 U {p(I): I E i}, the collection 

(5.6) J= {[(u'o, emo),..., (uj en)]: ((ij,m ir): r = 0,... ,n} E A($, k)} 

is a triangulation of Q X Ss. Sk = [eO,...,ek], (ej)i = 3ij, i, j = 0,...,k (cf. [8], 
[13]). 

Before explaining the connection with certain spline spaces we state 

THEOREM 5.1. Let A(%, k) be defined by (5.4). Then one has 

Is(A($, k))-| A(, k) l I 
i.e. A($, k) forms an s-basis (cf. Definition 4.1, (4.3)). 

Proof. We have to show that the elements of A($, k) can be ordered in such a way 
that condition (4.3) is satisfied. To this end, we shall show first that the assertion is 
true for k = 0. 

LEMMA 5. 1. Let i C Z' + 1 induce a simplicial s-complex. Then 

Is(S) =l f1 
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Proof. Suppose r i1 = m. Without loss of generality we may assume that $- is a 
triangulation of some bounded polyhedral domain Q in Rs. Hence one can find an 
element of $ such that at least one of its (s - 1)-faces is contained in the boundary 
of Q and is therefore not shared by any other element of i. Choose I,, to be such an 
external element. Next let 'rn- be any external element of $\{Ijt}, etc. Clearly 
{I, . . ., I, ) form a chain. 

So, suppose i {Ii: i = 1. . . , 1 $ J } is a chain so that there are (s - I)-simplices 

Pi E (,,)SI Pi 4 U (I') * 
I j <i 

In order to finish the proof of Theorem 5.1, we only have to show now in view of 
(5.4) that the elements of each A(I,, k) can be ordered as 

A(Ii, k) - {Ki1j:j- 1s..., (+ k)} 

say, so that there is pj E (Ki,j)s, pj ( U I Q6r<j(Ki r)s, and the first components of the 
pairs in - coincide exactly with the elements of pi E (Ii)s above. 

The existence of such an ordering for zA(I1, k) is affirmed by the following 

LEMMA 5.2. For any s, k E Z+ and any fixed i E {O,...,s} there is an ordering 

{Kj:j = ,I...,(s+k)} for A(s, k) (5.1) such that there is 

(5.7) Pj = {(ir mr): r = O,.. .s,'jr # i} E (Kj)s, pj X U (Ki)s. 
I i<j-I 

Proof. The cases s, k - 0 are trivial. Let us first prove the assertion for s = 1, 
k E N. For i = I the ordering 

Kj = {(0,0),.. ., (0, j), (1, j),..., (1, k)}, j = 

obviously works, whereas for i = 0 the reverse ordering will do. 
So, we may assume that we have proved the assertion for s - 1> 1 and all 

k E Z+. For the purpose of advancing the induction step, we introduce the 
following subsets of A(s, k). 

Cm {K EE l\(s, k): (Jn-r, Mn-r) = (s, k - r), 

r=-O, ...,Im, j < s, i< n- ml, m=O0,...,k. 

By definition (5.1) and (5.2) one has therefore 

(5 .8) K Ei C. iff K = K' U {(s, k - m), . .., (s, k) }, K' E A(s -1, k -m) 

and hence again by (5.2) 

lCm 1=1 zA(- k-s)j ( s d k k r ). 

Since obviously Ci n Cj =0, i # j, and 
kk 

z I C I = (s -l+ - 
)-(s5) 

we conclude 
k 

A(s, k) U Cm. 
m=0 
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Suppose now i # s. By assumption there exists for each m = O, . , k an ordering 

{Kjm: = 1,..., (5 1 _ l )} = ?(5- 1, k-m), 

such that 

PT = {(Ijr mr): r 09,-.. -s- 1, jr #11 E (Kr)1, 

but 

pmE U (K )1. 
I Iq<j-I 

So, defining 

[KJ U {(s, k)}; j=19-- .. s 
- I ) 

K.:= Ktim U {(s, k - m),..., (s, k)}; 

J I j=j(m,i) =( s 1- ) + ks + ( 5I + k-m+1 

m-l1,...,k 

the corresponding sequence of (s - 1)-simplices 

p1 = pi U {(s, k=- m)) when j = j(m,i) 

obviously satisfies (5.7) since (s, k - m) never occurs in a preceding block. 
Now suppose i = s. Associating with each 

K= {(jr,mr): r= 0,...,n} E A(s,k) 

the set 

K= {(lr j- SI ,Mr - k ): r 0 ,...,n} 

defines evidently a bijective map from A(s, k) onto itself where i = s is mapped into 
i' = 0. So the sets K may be ordered now by the same procedure as before, thereby 
inducing an appropriate ordering for the original sets K as well. This finishes the 
proof of Lemma 5.2. 

Recalling our remarks subsequent to Lemma 5.1, the construction of an s-generat- 
ing sequence for A($, k) with length I A($, k) i is now an immediate consequence of 
Lemmas 5.1, 5.2, which completes the proof of Theorem 5.1. 

As to the connection with certain spline spaces let again 

cT= (ui'j: i = 1, ...,~N, j = O, ...,~k} 

be a collection of points in Rs such that for some i C Zs+ I 

(5.9) (M ) p(I) = [uio ?o ., uiso] I = {jio 0 .'.. iSI E 

is a triangulation of 2 = U (p(I): I E i}. 
Defining now for K = {(Ijr Mr): r = 0. . . ,n} E ?1( , k) the knot set 

(5.10) C(K) = {UJomo0.. . a,Ujn,mn), 

it was shown in [6], [8], [13] that the collection {M( o j C(K)): K E A($, k)}, forms 
a basis for S(C), C = {C(K): K E A1($, k)}, provided the knots u1'j are sufficiently 
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close to u"0? for all i, j. Moreover, under these assumptions the above basis turns out 
to be very well conditioned. This type of a basis is of particular interest because the 

corresponding spline spaces exhibit very good approximation properties (cf. [6], [8], 

[13]). 
However, one may expect that the above type of restrictions on the knot positions 

is not essential for the linear independence of the B-splines M( o I C), C F (C. In 

fact, Theorem 5.1 allows us to formulate sufficient conditions for their linear 
independence which do not involve distances between knots and instead are satisfied 

for 'almost all' knot positions. 
To this end let us call any configuration of knot sets in RS nondegenerate if there 

exists an s-generating sequence in the sense of (4.3) which at the same time forms a 

weak chain. Then, recalling the remarks subsequent to Example 4.2, we may 
rephrase Theorem 5.1 as 

COROLLARY 5.1. Let C be defined as above with respect to a set of knots ur= {U"'J} 

in Rs. If C is nondegenerate, then {M( o I C): C F C} forms a basis for S(C), i.e. C is 

regular and 

dim 5,(0) -I C = Is(C). 

The simplest concrete condition to ensure nondegeneracy of C is, of course, to 

require that XV is in general position. But nondegeneracy certainly holds under 
weaker assumptions. For instance if 

(i) the collections {(C(K, J): j = 1,... (s+k))} (cf. (5.10)), K, 1 E A( I, k), j 
I. . . (s+k), are weak chains in Cfor 1 i1 i and if 

(ii) vols1l(p n p') = 0 whenever p E C(K), p' F (K'), K n K' = 0, K, K' F 

A($, k), 
then C is nondegenerate since the chain constructed in the proof of Theorem 5.1 by 

composing the 'local chains' in A(I, k) (cf. Lemma 5.2) induces a weak chain of the 
same length in C. 

Condition (i) in turn holds if for instance all K F C are individually in general 
position or if each element of E)($) (cf. (5.9)) forms a proper s-simplex and the sets 

{uJm:j E I, m = 0,...,k} 

are for each I E i in general position. 
The authors believe that the above assertion is even valid in a more general sense, 

namely when the configuration C is induced by any triangulation (cf. (5.6), (5.9)) of 

Rs X Rk with the property that all the vertices of the corresponding (s + k)-simplices 
belong to U {Rs X {ei}: i 0,... .,k}. This latter condition is known to be neces- 

sary [6]. Moreover, when Sk is replaced by any k-polytope with more than k + 1 

vertices, the induced collection of B-splines is always linearly dependent [6]. Hence 

one has in this case, even if the corresponding configuration C is nondegenerate, 

IJ(C) <I CI 
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