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A Rapid Method of Evaluating the Regulator 
and Class Number of a Pure Cubic Field 

By H. C. Williams*, G. W. Dueck and B. K. Schmid 

Abstract. Let SC = ?(0) be the algebraic number field formed by adjoining 0 to the rationals 
B. Let R and h be, respectively, the regulator and class number of SC. Shanks has described a 
method of evaluating R for ?2(D /), where D is a positive integer. His technique improved the 
speed of the usual continued fraction algorithm for finding R by allowing one to proceed 
almost directly from the n th to the mth step, where m is approximately 2 n, in the continued 
fraction expansion of xDT. This paper shows how Shanks' idea can be extended to the Voronoi 
algorithm, which is used to find R in cubic fields of negative discriminant. It also discusses at 

length an algorithm for finding R and h for pure cubic fields 2(15), D an integer. Under a 
certain generalized Riemann Hypothesis the 4deas developed here will provide a new method 
which will find R and h in O(D2/5?e) operations. When h is small, this is an improvement 
over the O(D/h) operations required by Voronoi's algorithm to find R. For example, with 
D = 200171999, it required only 5 minutes for an AMDAHL 470/V7 computer to find that 
R = 518594546.969083 and h = 1. This same calculation would require about 8 days of 
computer time if it used only the standard Voronoi algorithm. 

1. Introduction. Let S; be the set of rational integers, and let 8 be the real root of 
the irreducible cubic equation 

(.1) X3 -BX2 + Cx-D = O, 

where B, C, D E 2; and the discriminant A\ of (1.1) is negative. Let YuC = (8) be the 
cubic field formed by adjoining 8 to the rationals C, and let 2[8] be the ring of 
algebraic integers in N. It is well known (see, for example, Delone and Faddeev 
[6,pp. 111-112]) that 2 (8) has an integral basis {1, A, P}, where 

(1.2) i nml + m28 + m382)/a, v = (n, + n25 + n382)/a, 

a, ml, m2, m3, n1, n2, n3 E , a> O, and 

gcd(m, im2, m3, n,, n2, n3, a) 1. 

Also, if e = m2n3 - m3n2, then e a. 
If X E N, we denote its conjugates by o' and o". We also write the norm of X as 

N(,) and define it as N(w) = 'w". From the simple fact that 

1 1 1 (A. (A.) X,, 

N(,o) 8 8' 8" = 80 8/'o 8/"''" 
82 8/2 8//2 82o 8/2,/ 8,,2,,, 
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we can deduce that if w = (q1 + q28 + q382)/q4, q, Ez (1 1, 2, 3,4), then 

ql q2 q3 

(1.3) q 3N(X)= Dq3 q1-q3C q2+ Bq3 
Dq2 + DBq3 (D - BC)q3 - q2C ql + Bq2 + (B2 - C)q3 

If E CZ [8] and I N(E) I= 1, we say that E is a unit of XA . In the case of the complex 
cubic fields which we are discussing, there exists E0 E 2 [8] such that E( > 1 and, if E 

is any unit of 'X, there exists some n &E G for which E = E. We call E( the 
fundamental unit of XY, and we call R = log E0 the regulator of SC. We denote the 
class number of Jh( by h. 

When B = C = O we say that % 2 = ) is a pure cubic field with radicand D. 
We may assume with no loss of generality that D = g1g22 and g1 g2 is square free. 
When D Z ? 1 (mod 9), put t = 0; in this case values of mi, n,, a in (1.2) are a = g2, 

ml = 0, m2 = g2, m3 = 0, n O = 0, n2 = ?, n3=1. When D-+1 (mod9), put 
t = 1; in this case values of mi, n,, a in (1.2) are a = 3g2, mI = 0, m2 = 3g2, 
m3 =O,n =9 

--2 
m3 = ,n1 g22 2 = g2, 3 = 1. Put J = 31-Cg1g2. 

Several previous papers (see Williams [16] for references) have dealt empirically 
3 

with the problem of the distribution of those values of D for which h of Q(2'D) has 
value 1. It was very difficult to continue the computations for D > 2 X 105, because 
the values of the regulators, which were needed in the determination of h, were 
taking so long to compute. Thus, in order to continue these calculations, a faster 
method of evaluating R is needed. In [12] Shanks discussed a rapid technique for 
finding the regulator of a real quadratic field Q(rDi) when D is large. His technique 
improves the speed of the continued fraction scheme by allowing one to proceed 
almost directly from the nth step to the mth step in the continued fraction, where 
m 2 n. * * Recently Lenstra [9] and Schoof [11] have given another version of the 
ideas in [12]. Both Shanks (in [19] and [13]) and Lenstra (in [9]) pointed out that it 
should be possible to extend Shanks' ideas to the cubic case Q(8). In this paper we 
describe a means by which this can be done in the case of a pure cubic field. Instead 
of using the usual continued fraction that Shanks discussed, we will centre our 
discussion around the continued fraction algorithm of Voronoi [15]. While we have 
tended to restrict our discussion to the pure cubic case with D > 105, the main ideas 
presented here can be extended to any cubic field with negative discriminant. 
Indeed, Section 2 and much of Sections 3, 4 and 7 are quite general in this respect. 

In Table 1 below, we summarize some of the notation used in this paper. 

TABLE 1 

Symbol Description 

The set of rational integers. 

B, C, D, 8 8 is the real zero of an irreducible polynomial 
x3- Bx2 + Cx - D with integer coefficients and 
negative discriminant. 

**We use the symbol - to denote "approximately equal to". 
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TABLE 1 (continued) 

=n (68), ~2' The cubic field formed by adjoining 8 to the rationals 
6) 

Qn [ 8 ] The ring of algebraic integers in 2(8). 

e, a For any basis { 1, I, v} of [28], we have 

It = (MI + m28 + m382)/a, v =(n, + n26 + n382)/a, 

where mi, m2, m3, n1, n2, n3, a , a > 0, 

gcd(m, im2, im3, n1, n2, n3, a) = 1. The values of a 

and e = m2n3 3-n2m3 are independent of the choice of 
basis. 

The fundamental unit of X. 

R = log E0 The regulator of X. 

h The class number of K. 

3 ~~~~~~~2 
g1 g25, J When B = C = 0, 0= (D), where D = gIg21, g,g2 

g, g2 are square free and gcd(g,, g2) = 1. Also 

f, Dn-4l(mod9), 
LIp D 4-+1(mod9), 

J = 31-'gg2, and A= -3J2. 

GL,1( 6X ) The group of all n X n matrices with rational integer 
entries and determinant equal to ? 1. 

w, w', w" If C we say that w', w" are the two conjugates 
N(w) of w.N(w) = w'w". If w z 2 thenN(w) = 3 

Q2 2Q = (w, (w' - w")/2i, (w' + w")/2), where i2 +- 1 0. This 
is equivalent to writing Q2 w or w Q2. 

65 = (XKIX2,X3) For X1,X 2 X3 
- 

X, we have 

-Y 'iJ - ) E6 KX1= , 29 3)= {QIQ Q*@ = IIXI + 12/2 + 13/39 

'1l 12' 13 Ez- g. 6R has a basis {X1, X2, X3}- 

76" = (YXI, YX2, YX3)- lf 6A= (1, I, v), 
A v Ez & , we say that 61 is a 1 -lattice 

f, p If 6Aiis a 1-lattice (1, t, v ) with 
= (MIn + m28 + m382)/P, = (n, + n28 + n382)/p, 

where m1, m2, m3, n,, n2, n3, p & p > 0, 
gcd(m1, m2, M3, n1, n2, n3, p) = 1, then the 

values of p and f = m2n3 - m3n2 are independent 
of the basis selected for 6. 

C, C1 C = {(X, Y, z)ly2 + Z2? 1, (X, y, Z) E 63}, 

C1 = {(X, y, z)xI 1, y2 + Z2 1,(X, y, Z) E 63; 

here 63 is Eucidean 3-space. 

0g, Eg eg ( Og) is the relative minimum adjacent to (1, 0, 1) 
in a reduced lattice 6. 
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TABLE 1 (continued) 

it l, e,1, a?, 9st1) (=1, ii, v), where (1, ii, vi} is any basis of 
OI[8]. 0'") is g' nispand e, isf for6{,1, 

where 
6A +j= (1/1 '))6t1 (j = 1, 2, 3,...). 

R,1, 6,1 6, fln-'l9(i) R, = log 6,1. 

6 cS, if6A and S are 1-lattices and66i = -y$ y X. 

F(Q), E F(Q) = fqSQf(q), where the product is taken over all 
primes q < Q where q -1 (mod 3) (see Section 3). 

E 3c2JF(Q)/2nT. 

c, d1, d,, d;' c is a solution of 

{x -D (mod a2), 

3x 2 _ o (mod a). 

If p is a prime, d, (d,, d;') is (are) solution(s) of 

X3- D (mod a 2p.), 

{x c (mod a) 

such that none of d,, d,, d"' satisfies 
x3 -D (mod a 2p '1) 

3 

P, P', P", If a is any ideal of 2[8] (8 = D), and a has no 

r, s, s', L( a) rational integer divisor, then a has a basis of the form 
{P, P'(r + 8), P"(s + s'8 + 82)/a), where P, P', P", 
r, s, s' E (S, P'P" I P, P" I a and (5.5) holds. L(a) = P. 

m, n, n' A canonical basis of 6i (-6 'it ) has the form 

{l,IfI(m + 8)/p,(n + n'8 + 82)/p}, where 
m, n, n' ( S. Also, if a above is the ideal to 
to which 6i corresponds, then p = uP/P", 
f = aP'/P", F" = a/gcd(a, f ), m r (mod p/f) 
n' s (mod f ), n s + r(n' - s) (mod p). 

wp =(((,, 7s,) If Q E 6Aand Q co, then (,, = (2 w- ' - co2 
- =")/2i, = (w' + c")/2. When 

f= 2(D) and w (q1 + q28 + q3)/P 

ql, q2, q3 & ~, then , = 38(q2 + q38)/2p, 

-3 8(q2 - q38)/2p, w = (2q, - 8q2 - 82q3)/2p. 

Fg (~ Yg), Yh Fg is a point of a 1-lattice 6 (-6 I1) such that 
Fg E C,1 and 1 ygI # 1. Further, Yh is any element 
of% suchthatA t 1, KYg, Yh)> 

3 3 = 3.002 82. 
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TABLE 1 (continued) 

3 2/ x<,, y,,, x ,, ys,, For Q co ) (E 6R, 6A-Rp 8 -- >, X = (q, + q28 + q38) 
X,, YW, wedefinex,, = q211 + [I,8]q3,yw = q2II -[II]q3, 

x<, = [38I2]q2 + [382I2]q3, T, = 3812]q2 -[3 38212]q3, 

XX = [8I3]q2 + [8213]q3, Yw = [8I3]q3 - [82I3]q3, where 

II1 '2 13 E I, > 3.1(4/8)3/), I2 > 2(3,8)3/3 3, 

I3 > 489,/8A. 

K,(a, b), K,(a, b) = (h), K2(a, b) a()' K3(a, b) 
K2(a, b), 
K3(a, b) 

2. Ideals and Lattices. In this section, we give a brief discussion of some of the 
elementary properties of the ideals of ??[4] and the lattices over 2(8). For a more 
detailed description of these ideas we refer the reader to [6]. 

Let XI, X2, X3 E ?Q(8) such that 
3 

z 1i1X1 0 (=l, 2' 3 E 0) 
i=lI 

if and only if I '12 13 = 0. We say that - {(w, c', co") = I/,XI + 12X2 + 
13X3; 1', 12,13 E } is a lattice over 2(8) with basis {XI, X2, X3}. Since we are 
dealing here with cubic fields with negative discriminant, we see that W' and W" are 
complex. In order to work in real lattices, we use 

(2.1) 6T= {Q = (o,(o' -")/2i, (o' + w")/2)l 

X= II/X + 12X2+ 13X3; 11, '12,13 E } 

where i is a fixed zero of x2 + 1. Since 2 is uniquely determined by w, we often 
identify 2 with X and write Q2 wX or Xw Q2. 6R is completely characterized by 
xA, X2, X3. We say that {XA, X2, X3} is a basis of 6A, and we write 6R =<XI, X2, X3). 
Throughout this paper, we shall be restricting our attention to lattices of type 6 over 
?(8) which have a basis of the form {l, A2X X3). We will call such a lattice a 
1-lattice. We also note [6, p. 274] that if Q (2 ), 1 (D ?) E 6R such that '" = '0, 
then w = ?4. Further, 

(2.2) 1o'12 = I C= ( o,2Yi,- )2 + ( 2 ) 
Let GLJ( ,) be the group of all n X n matrices T such that T has entries from S only 
and I Tj= + 1 If 6 = (<,IA2, 2X3) and 6A* =( l, 2,h3 ), then 61 =6 ,* if and 
only if 
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where T F GL3("Z). If ) KXy, X2, X3 and y(0) '.X, we define y'. to be the 
lattice yYX1, )YX2, yX3) If 

(2.4) Y (X 2 | T( /1 |) 

where T C GL3('Z), then (R * KyYX, YX2, yX>3) is a 1-lattice. If lR and (JR * are both 
1-lattices and R * =yIR, we say that (R and (1 * are similar and write this as 

(11 *. Since both 'IR and 6R * are 1-lattices, this relationship is clearly an 
equivalence relationship. 

Let a # 0 be any ideal of ') [8]; then a can be written as 

al = K1, K25 K35 .. * K,l I 

= { ,K,1, E i 1,2, 3,. . . ,n 

where the K,'s are generators of a and K, F 2[8] (I 1, 2,3.n). Also there exist 

V'I' V2, 1)3 E 2'Q [8] such that 

a {zliI'i1',il2,l35 12}1 

This set {'l, v25 v) is said to be a basis of a. If a has another basis {TX, 52, T3), then 

(2.5) T =Tv2 ) 

where T C GL3(?Z). Since v,, T, F [8] (1 1, 2, 3), by (1.2) we must have 

(J| 
2 =Ml a, a =M2 

where Ml and M2 are 3 X 3 matrices with rational integer entries. Since 1, 8 82 are 
independent over 2, we see that 

(2.6) M2= TMI. 

We also point out that, if the ideal a has the basis {1)P, '2' P3} and 

(2.7) dIP2) = T( T2) 

where 4 E [X1, T12, 3] = , T F a, and T E GL3(S), then {X1, T21 T3} is a basis of b. 
We say that two ideals a and b are equivalent, written a - , when there exists two 
nonzero principal ideals [a], [/3] such that [a]a - [/3]b. Thus, if (2.7) is true, we see 
that a - b. 

If { , ?29 W} is any basis of 2[8], we know (see, for example, Landau [8, p. 117]) 
that any ideal a of 2[8] has a basis {a 1, a2, a3}, where 

a1 = all?l7 a2 = a2l,w + a22W2, a3 = a31W + a32W2 + a33W3. 
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Here all a E , and a1 , a,,, a33 > 0. Since '2[(] has a basis with w= 1, we can 
assume that a has a basis {al, a-,, a3), where a, > 0 and al E 'c. We define L(a) to 
be a,. Furthermore, by (2.5) and the fact that 1, w,, 03 must be independent over 'S, 
we see that there is only one possible value of such an a, for any ideal a. In fact it is 
the least positive rational integer in a. If we let N(a) denote the norm of a, then 
N(a) = a,,a--a33, and we see that L(a)IN(a). 

If we put '?{ - (1, a,/a 1, a3/a>), we say that .14A is the 1-lattice which corresponds 
to the ideal a. In view of the above remarks there can only be one such 1-lattice. 
Notice that if tii is a 1-lattice which corresponds to a and a [m]b, where m E '. 
and b is an ideal of i2 [8], then ' F also corresponds to b. 

From the above definitions and results, it is clear that if 6 is a 1-lattice which 
corresponds to an ideal a and A,R * is a 1-lattice which corresponds to an ideal b, then 
a - b if and only if 't1 - 'e1*. We can be more specific about this in 

LEMMA 2.1. Let (' be a 1-lattice which corresponds to the ideal a and let G)t be a 
1-lattice which corresponds to the ideal b. If 'A y'A *, then 

[L( b)] at = [L( a )-y] b. 

If a - Ii and[4]= [4jb, where 4, 4 E [J], then 

where y = L(b)+/L(a)+. 

Proof. Follows easily from (2.3), (2.4), and (2.5). 0 
We also have 

LEMMA 2.2. Let 'R and 'R * be 1-lattices. If 6R corresponds to the ideal a and 
' 'Ai *, then there exists an ideal b such that 6R * corresponds to b. 

Proof. Since 'A - 'AR *, we have 'R A y6 *, and ? ( y) E 2a3. Let a =[a1, 2, a3] 
where {a, a2, a3) is a basis of a and a, L(a). Then ' = (1, a2/a1, a3/a1), and 
(' * = y , 7 y'a,/a1, ( -3/l1a ) Now A * <1, Ki , K2 K 2 K ; thus, if we let 
K ji1/ln, K2 = 1J2/m, where m E S and ,i 1 E 2[2S], we have, by (2.3), 

a, 2m ,Y 

where T E GL3(0>). Since F E 'A, it follows that a1y E a; hence, b = {mll + 1yl2 
+ 213 I'1, 12, 13 E ?Zi } is an ideal of 4[ 8], and 'R * corresponds to b. D 

We conclude this section with a consequence of the following important defini- 
tion. 

Definition. Let 5 and 52 be 1-lattices, and suppose that I corresponds to the 
ideal a and 52 corresponds to the ideal a2. We define the lattice 51A2 to be the 
1-lattice which corresponds to the ideal a 1 a 2. 

From this definition and Lemmas 2.1 and 2.2, it follows that, if ci (i 1,2,3,4) 
are 1-lattices, Si corresponds to the ideal ai (i = 1, 2) and S, I 53, 2 4, then 
1s,2 354 
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3. Outline of the Method. In this section, we will sketch the overall method which 
we will use to determine 6A and h for C(8). We first require some further results 
concerning 1-lattices. 

Let 6jT be a lattice as given by (2.1), and let 2 (w o) E 6i. We define the normed 
body of 2, written 6i(2), to be 

t(0) = {(x, y, z)I(x, Y, z) E & 3,IxI?IoI,y2 + Z2 S '"}, 

where b3 is Euclidean 3-space. We say that 2 (:# (0, 0, 0)) is a relative minimum of 6{, 
if 

6x(2) n 'i, = {(0,0,0), Q, 2 -Q}- 

If 2 (~ o) and 1 (D 4) are relative minima of 6 such that 

0 < 4< W, 4'4)" > co'co, 

and there does not exist a ' (~ 4,) E 6 such that 

< < W9 CV+ < o'o", 

we call 2 the relative minimum adjacent to (. (Actually Voronoi [15] used the term 
relative minimum of the second kind adjacent to 4.) 

LEMMA 3.1 (VORONOI [15, Sections 21, 22]). Let 6R be a 1-lattice in which the point 
(1,0, 1) is a relative minimum, and let E (0 6) be the relative minimum adjacent to 
(1,0, 1) in '.. Then there exists ' (> 4) E i, such that 6f = (1, 6, A). 

Proof. Let 6iL = (1, X2 X3), 0 = a + bX2 + cX3 (a, b, c E &S), d = gcd(b, c). If 
d> 1, find r such that r a (mod d) and IrI -d/2. Put 4= I(r - 6)/dI. Clearly, 
there exists 4 EE 6i such that 4 - 0. Also, 0 <4) <Ir/dI +1I/dOl 1/2 + 0/2 <6 
and 4)f' I Ir/dI + fl'/d I 1/2 + I1'/2I< 1. As this contradicts the definition of 6, 
we must have d = 1. Since gcd(b, c) = 1, there exist y, z E S such that bz - yc = 1. 
Putting 4 x + yX2 + zX3 for any x E ~, we see that 

Qf =T(X2)9 

where 

T= a b c and TEGL3('). 

Hence {1,1,0i} isabasisof 6. O 
We call a 1-lattice in which (1, 0, 1) is a relative minimum a reduced lattice, and we 

call a basis of the type {1, O, 4} in Lemma 3.1 a reduced basis. 
Let a be a primitive ideal (an ideal with no rational integer divisors). We say that 

a is a reduced ideal if and only if there does not exist a E a such that both 
a 1< L(a) and a'lj< L(a) hold. (This is essentially the idea of Berwick [2, pp. 

418-419] and [3].) It can be easily deduced from the results in [15, Section 39] that 

when a is reduced. Note that a is reduced if and only if its corresponding lattice is 
reduced. 
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If ?J{, is the lattice which has as a basis an integral basis of 2[8], then 6it is a 
reduced lattice, because (1, 0, 1) must be a relative minimum in such a lattice. Let 6i 
be any reduced lattice, and consider the sequence 

(3.1) E) I -(1,0, 1), (E)21 (839 .. (8 .9 

where 0),+I is the relative minimum adjacent to 0, for i 1, 2, 3,... , . We call 
this sequence the chain of relative minima of (R. We know (see [6] or [18]) that such a 
chain will be of infinite extent. Also, if On '_ E then 91 < 92 < 63 < ... < i <*- 

Hence, if ( (D p) is a relative minimum of 'i with 0 > 1, then 4P = ?)k for some 
k : 2. 

If E (> 1) is any unit of 61A, we see that, since N(c) = 1, we must have E (> e) a 
relative minimum of 6I, and therefore E- E)k in the chain (3.1) in 6it. Thus, if we 
can find the chain (3.1) in 6t,, we should be able to find cO. In [15] Voronoi 
described how to find the relative minimum adjacent to (1,0, 1) in a reduced lattice. 
A version of this algorithm suitable for computers is described at some length in 
Williams, Cormack and Seah [18]. This solves the problem of finding the elements of 
(3.1). For, we find 1) = 02 by using Voronoi's algorithm and embed 1, <(l) in a 
reduced basis {1, , #(l)} of (I. Let 'i2 (1, 1/9g'), 9(I)/O I)). Clearly 6i2 is a 
reduced lattice, and we find 0(2), the relative minimum adjacent to I in 't 2. We have 
93 - 99)o2) If { 1, 9 n), @(n)} is a reduced basis of 6it, then define 6-t,l by 

6n? - (1, 1/0n), 9(n)/9n)) 

and continue the process by finding (t" 1), the relative minimum adjacent to (1,0, 1) 
in the reduced lattice 6'I,+ l We have 

=n?2 9(1)9(2) ... 0(n+l1) 

Hence 

k-I 

9k II 96 

and 

k-I 

R = log eo- log 0'). 
i= 1 

Also, t On19Jn; hence, (APn - 'I s We further point out that if EO 9k then 

k-l+m Rm ' s(k-1)+m ='m and 0(k-1)s?m 
What we now wish to do is to find, as Shanks did in the case of Q(VTh), a method 

of getting Om, where 0m is close to 02, when we know 0, In order to do this, we first 
require two results which are due essentially to Voronoi [15, Section 39]. As we will 
often have need of 6Y(1, 0, 1), we will denote it by Ce. We also denote the set of 
points ((x, y, z) I (x, y, z) E &3,y2 + z2 ? 1} by e. 

THEOREM 3.2. Let 'i be any 1-lattice. There exists a reduced lattice 6i* such that 
6t* - 'A. Further, there exists P (- y) E 'i such that y6i* = 'i and 0 <y y 1, 
IY'Ij 1. 



244 H. C. WILLIAMS, G. W. DUECK AND B. K. SCHMID 

Proof. Let 6J K1, X2, X3). If (1,0,1) is a relative minimum of , we are 
finished. If (1, 0, 1) is not a relative minimum of 6 then there must be a P 
(z p) E 6J{ such that 

(3.2) p # 0, IpI'<1, IP'I' . 
Since any such p must be of the form p = a + bA2 + cX3, where a, b, c E there 
can only be a finite number of points P (, p) E 61., which satisfy (3.2). Let this 
number be n. 

If d - gcd(b, c) and d > 1, let = (p - r)/d, where I r I, d/2 and r-a (mod d). 
We have 0 =#- O, I 0 I pd I + I rd I 1, I O' IIp'ld I + I rd I 1, and 0 = (a -r)/d 
+ (b/d)X1 + (c/d)X2. Thus we may assume with no loss of generality that we can 
select a fixed e (t 0) of 6R/ such that 

(3.3) 0 # 0, 101< 1, I,'1< 1, 

and 

0 = a + bXI + cX2 with gcd(b, c) = 1. 

By using the argument of Lemma 3.1, we see that we can embed 0 in a basis of ~'. 
In fact, let 6J= (1, 0, 1), and let 6R' = (1/0A. Then 'Ii' is a 1-lattice and ~'V- 'AR. 
If 6' is a reduced lattice, Y =IO 1 and we are finished; if 'R ' is not a reduced lattice, 
there must exist ID (t ?) C -t' such that 

(3.4) ?' 01 ?, 1? < I1, 1?' < 1. 

Again, there can only be a finite number of such elements in (', and we denote this 
number by m. If 4D is any such element, then 

? 1/0 + 12 + 134/0, where/l, '2' /3 E 

hence, X (- X = 0? =1 + 120 + 134 ) is an element of 6R., and X 7# 0, I X I= I 0P I< 1, 

I X' II= I '0' I< I by (3.3) and (3.4). It follows that m ? n. Since, however, 4 0# 0, we 
see that m #: n; thus, m < n. We can then repeat the above argument on '11' instead 
of k. Since, in each new 1-lattice 6P(i' (- 4R(j'I)) that we develop, we have fewer 
and fewer elements P (t p) such that (3.2) holds, we must eventually reach the point 
where we have a 6A(k) such that %(Rk) is reduced. The result of the theorem follows on 
putting %R* = 6f{k) and noting that 6@(k) _ qL. D 

COROLLARY. If a is any primitive ideal of [6], there exists X C a and a reduced 
ideal b of [8] such that 

[X]b =[L(b)]a 

and 

L(a)'I ?XA ? L(a), I IX'I L(a)a 

Proof. By the theorem there exists F ( -y) C 6Y and a reduced lattice * such 
that y 61* = 6P, 0 < y < 1, I-y'j 1. By Lemma 2.2 there exists an ideal b of 2[8] 
such that * corresponds to b. By Lemma 2.1 

[L(b)] a = [L(a)y] b. 
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Put X = L(a)y E a. We must have 0 < X-L(a), IX'I L(a). Since X E a, we 
have X 0 O (mod a ) and N( aL) I N(X). Thus N(X) - X I X' 12 : N(a), and 

X - N(X)/I X' 12 : N( a)/L(a )2 : L(a)1l. 

THEOREM 3.3. Let 'IJ and (11 * be two reduced lattices; then , * if and only if 
'J1 = 0'9R *, where E (> 0) is a relative minimum of 6RQ. 

Proof. Let R have { 1, L, v} as a reduced basis, and let 6q, have {1, p, ) as a 
reduced basis. If ('t = 0('R *, then ('J - ". 

If 's1 - Q1*, then ('t = -"t * for some E (0 0) E 6'il. If e is not a relative minimum 
of ('ia, then there must exist Q (> o) E 6 such that Q E = (e), and Q # (0,0,0), 
E, -e. Hence I1 < I 01 and I w' I <I<' I . Since X E % and {0, 0@, 04+} is a basis of 'iV, 
we must have a, b, c E "Z such that X - a0 + b04 + c4#. If p = o/l - a + bk + 
c# and P t p, then P E {R *. Since Ip<I<I/O< I and Ip' II'I < 1, we see that 
P E Q. Since P =# (0,0, 0), this is impossible; thus, 0 is a relative minimum of 6 

D 
Let a be any nonzero ideal, and let GA be the lattice which corresponds to a. By 

Theorem 3.3 we see that Voronoi's algorithm can be used to find all the reduced 
ideals which are in the same ideal class as a. In fact, if we put = 1, a, a 
then with Voronoi's algorithm we can find an, n 9On E ([6] such that 'Al is the 
lattice which corresponds to a,, and 

[ofn ] a n = [ L ( an)] 

Since cR I above corresponds to the ideal o = ?[8], we must have o2 = o and 

.I 2 = 1Also, since 6IPj 
-- cI and 6k we have 

(i j(k I I 
g 

by the remark at the end of Section 2. By Theorem 3.2, there exists a reduced lattice 
S such that 5 j, k 6 Let F (- Y) E YjYk such that yS ='YAjYtk Then by 
Lemma 2.2 we get 

6AI t tj Ok6YjWk 9 

where t = L(caja k)/L(aj)L(a k); thus, 

(3.5) 6I = ?' 

where 

Ytojok. 

Also, since Iy'l? 1, 0 cy < 1, L(ctj)L(ack) 2 L(aCaCk) > 0, I O'I< 1, I kI< 1, we 
get ip' 1. Thus ? > 1 and ?. OJk. 

Since 5 and ,1 are both reduced lattices, we see by Theorem 3.3 that 40 (D ?) is a 
relative minimum of 61I Hence k =m for some m and 5 = , lf Cf a1ak = [s]a, 

where a is a primitive ideal, we see that sL(a) = L(ajak). Also, since L(a)Y s 
yL(a) s L(a) and L(at), L(aj) < VIA j1/3, we have ty = sL(a)y/L(aj)L(ak) > 

(3/1 4V 1)2. Thus, if j and k are such that Oi and Ok are large, then we have Om 0 Oj0k 
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and m j + k. In fact, when S' = D E E, and j = k = n, we will see in Section 6 
that 

(3.6) , = y/w, 

wherew GE Zand wI3g1g29 
In the sections that follow, we will show how to determine 62, -y and S, given GR ,. 

We call our algorithm for finding y and S from %, the doubling procedure, as it 
allows us to find 

(3.7) logf 2logO,, + logy - logw, 

when we have 6X,, and log On. The difficulty in using the doubling idea is that, while 
we can now skip over many of the steps of Voronoi's algorithm, we need to know 
where we are going in order not to skip an important step such as the k th step when 

Sk = 'C* Thus, we need to have some estimate of R, which is what we are trying to 
find. We can, however, estimate hR by using the Euler product method. For the pure 
cubic case (see, for example, Barrucand, Williams and Baniuk [1]) we have 

hR = J 43(I)/2tr, 

where 4>(l) - '(l)/D(I) is given by the Euler product 

1(l) -f lf(q). 
q 

Here, the product is taken over all the rational primes q and f(q) is given by the 
following: 

(i) if qlIJ, then f(q) = 1, 
(ii) if 3 t J, then f(3) = 3/2; 

(iii) if q -1 (mod 3) and qIJ, then f(q) = q2/(q2 - 1); 
(iv) if q 1 (mod 3) and q I J, then 

f(q) q2/ (q- 1)2 when (D/q)3 = 1, 

q2/q2 + q+ 1 when (D/q)3 #1. 

Since 

C,- q2/(q 2 I) 
q=-I (mod 3) 

converges (approximate value 1.414064387), we can approximate (I(l) by evaluating 
the product over the primes q -1 (mod 3) only. The real difficulty lies in knowing 
how many primes to use. Put Q > 3, 

F(Q) f(q), 
qaQ 

q-=I (mod 3) 

and 

C2=f(3)c1 I (q2- l)/q2?3/2c,. 

q=--l (mod3) 
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We used Q -106 for D -< 2 X 107, Q - 107 for D 2 X 108, and Q = 108 for 
D > 109 and evaluated our estimate E of hR from 

(3.8) E= 3C2JF(Q)/2rr. 

We discuss in Section 10 how good an approximation we expect E to be of hR. 
If we divide E by 2", we get 

E 2KU. 

Voronoi's algorithm can be used to find 6n and 

n-I 
Rn = log fin = 2 logo - 1 

i= I 

where Rn < U and Rn+1 > U. The doubling process can then be used K times to find 
6 t and 

R 2KR. 

We can then resume using Voronoi's algorithm, starting at 6t to find (t+l 

4t+21 ... until we find 6Ak such that N(Ok) = 1. Then probably Rk = log Ok = hR. 
What we do not know is h or R. The next step, therefore, is to find h. Since 
R = log E0 > Rn and R < Rk, we have h < Rk/Rn 2K. We now attempt to find all 
the primes less than R k/Rn which divide h. If p is such a prime, then Rs hR/p for 
some s. If we let 

hR/p- 2UJ, 

we can repeat the procedure described above to find 6i{U and RU such that 
RU < hR/p and hR/p is close in value to RU. We can then apply Voronoi's 
algorithm to 6JU to find 6Au+i, 6A u+2'... until we either find 6Yt, such that 
N(9s) = 1, in which case p I h, or we find 6Y% such that Rv > hR/p, in which case 
p t h. If we find a p which does divide h, we must replace 6k by gt1,, Rk by Rv, and 
repeat this procedure to determine the precise power of p that divides h. When this 
process has been completed for all primes less than R k/R ,n, we have the value of h 
and also that of R = Rh/h. 

This has been only a brief account of the algorithm for finding h and R from an 
estimate E of hR. We give a much more detailed algorithm in Section 10. 

4. Some Simple Properties of 1-Lattices Equivalent to 63 ,. Let 6l be any 1-lattice 
such that 6, - 6 , and let 'RJl have basis { 1, ii, P}, where 

, = (m+I + r23+n33)/, 2 (if + h28? + h382)/a, a > 0, 

U, mI,, n, E ' (i = 1, 2, 3) and gcd(m-1, -i2 in3, n 0 n3, a) = 1. When YC is a pure 
cubic field, values for the integers mi, ni, and a here are given in Section 1. Put 
e - m n rn3. Since h nm - 3, there must exist , E& 2[8] such that , = A 
and 
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where It ( <1, t, v ) and T C GL3(XZ). Let 

,u= (Ml + m28 + m382)/p, J = (n, + n28 + n382)/p, 

where p > 0, p, m,, n, F 'Z (1 1, 2,3) and gcd(mi, m2, M3, n,, n2, n3, p) 1. Put 

f = m2n3 -n2iM3. 

We point out that if 

I p 0 0 
M= m i m2 m3 

n n2 n3 

then there exists a U F GL3( ) such that 

p O O 

(4.2) UM = m b O 
n n' nil 

where n" = gcd(n3, i3) and b f/n" E 'Z. We call the corresponding basis 

(4 3) {I ~~~~~m + bS n + n'S + n t8 
2 

(4.3) m+h~~5 _ _ _ _ _ 

t p ~~~p f 
a canonical basis of Q11 . Note that gcd(m, b, n, n', n", p) 1. 

We can find U by the following procedure. We may assume that n73 > 0; for, if 
this is not so, we can replace y by -,u. If we use the Euclidean algorithm to find 

n3 - q(m3 + r( ( 0< r() < M3), 

m3 -qjr( + r (O < r1 < rO), 

r -. 2- q,r, , + rA (rA0 =), 

then we see that rA n" and QA QA I ... Q(, where 

I O O 

Q,=- 0 -ql I 
2 I O 

is a suitable matrix for U. 
We now prove a more general version of Theorem 3.1 of [18]. 

THEOREM 4.1. In the notation above, if N = N(4), then IN p2 IeI/Cr 2If; Ialso, 
flP. 

Proof. From (4.1) we get 

acr = -H x128 + X13 s2 

04t - x21 + X228 + X23382 

cr44 = X31 + X328 + X33 2, 

where x, EE %~(i = 1, 2, 3;j = 1, 2, 3). If 

or o 0 
M = mi mi2 m3, 

if, f2 n 3 



REGULATOR AND CLASS NUMBER OF A PURE CUBIC FIELD 249 

then X = (x_,)3X3 -TMand I XI ea. Since4 E 62 [8], we have X ='" ' 2[], 
and therefore a = 11 + 128 + /3 82, where 1, G (i = 1, 2, 3). Thus, 

02A =4 2N, 

o2Xt, 
- 

C2N, 
- 

UI + U28 + U3 82, 

o2Xpv - o2Nv v v1 + V26 + V382, 

where u, v, E " (i 1, 2,3). Also, since XAtL and X4v G f [3], we must have 

gcd(u1,U2, u3, V1, V2, v3) -O (mod a). 
Now 

(02N ? 0) 
U{ U2 U3 

VI V2 V3 

11 12 13 

= X D13 11-C13 12+ B13 

DI2 + BDI3 (D -BC)13- 12C 11 + B!2 + (B2 -C)13 

By taking determinants of both sides of this expression, we get 

a2 (U2V3 - V2U3)N =+eaN(coX) 

by (1.3). Hence 

(4.4) u2v3 - v2u3 = tea2N. 

If we put d* = gcd(u1, u2, U3, V1, V2, v3, a2N), then p - C2 I N I/d* and If 
=e o2 I N l/(d*)2 from (4.4). It follows that Ifl= e/p/d* and IN = 
p21 eI/lfI o2. Since ald*, d* plel/lfl and elo, we must also haveflp. D 

THEOREM 4.2. If S1 (w &) ? 6T and , = (q1 + q28 + q382)/p, then a If I pis a 
divisor of N(pw) and fI q' (i = 1, 2, 3), where p2ct'W= q' + q'3 + q382. 

Proof. Since S2 E 6A, we have a, b, c E S such that w = a + bA + cv. Also, since 
4', 4q, v E 2[8], so is X = & 243[8]. It follows from Theorem 4.1 that 

I N(pew) 1-1 p3 N(w) 1= p3 1 N(X)IN 1= P if 1(J2 1 N(X) 1/ el I 

Since e l a and N(X) ? 4, we have the first part of the theorem. Since 

co ("IN(w) = / /= "/() 
we have w'" = X'X"4/N. Thus 

Ip2o'I" -Iq' + q'3 + q3821- G2IfI IX'A"4'///e . 

Since e 1 a and X'X"4 E ' [ 8 ], we must havef I q' (i = 1, 2, 3). D 
Now consider the sequence {y,} (i 1, 2, 3,. .. ,s) where y= 1 and T (> y,) ? 

(i = 1,2,3,.. .,s). Put 6A = y(i-l) =yly/Yi- (i = 2,3,4,...,s), and suppose that 
1 and can be embedded in a basis { 1, y(l 1) y(l)} of 5y . If we define 

'Y= 1 Y(i 5If wedefine 
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then I is a 1-lattice and S - Si _ . Further, if { 1, ,il, vl} is any basis of S then 

where T,_ - e GL3(9Z) and { 1, u,_ v,._ 1} is any basis of 5,..-. . Hence 

(4.5) + ,(IL - =yl J2 j/ 

where J1, J2 E GL3(0). 
For j = (mi + m28 + M3382)/p, v, (n, + n28 + n382)/pl, such that m,, n,, p, 

CE (j = 1, 2, 3), p, >0, gcd(mr, mi2 , Mi3, n, n2 n13, pi) 1 put f irM2n3- 
m3n2. By Theorem 4.1 and (4.5), we see thatJ; I p, and 

(4.6) I N(yXat) 1-I= I2 e I/a2 |I I 

We now describe how to find a basis { 1, fr, P,} of 5, when we know the basis 
{, 1 Wg r i)} Of Sr-I 

Let 

y(r-) (ml + M28 + M3)/pr_, y(1)Y (nI + n28 + n3 2)/p 

where Pr-i M1I, M2, M3, n1 n2, n13 E A Pr- I> 0 and 

gcd(m1, M2, M3, n,, n2, n3, Pr-,) 1. 

Define m', mi, m'3 by 

p2 y(r-1)' (r-1) = r + Mrn8 + M38 2 
Prig Yg 

l 3 

where m', m, m E S. Put 

(4.7) d, gcd(m', m' m') Fij m /d,, Pr3 I P-N(Yg )Id,. 

If P < 0, replace mi, m2, mi3 by -ml -I 2, -im3 and -r by --r. This transformation 
does not change the values of m', m m'3. 

Define nh, n2, n3by 

(4.8) iil + ii28 + n382 
- (imi + 1128 + m-382)(n, + n28 + n382), 

and put 

(4.9) d = gcd(n-, n2 n-), n = l/d2 (i = 1, 2, 3). 

We have 

l/ygri) = Pr_i(mi + r28 + m33)/Pr 

y(r-i)/y(r-i) = (ii + h28 + n38 )/Pr 

Since 

d d2(n* + n*8 + n32) - y 1= 1 + Pr + 1332 
1 2 1 2 3 ~~(r..i) Pr1 + n + VI32 

it follows that d1d2 nr i (i = 1, 2, 3). Thus dId2 is a divisor of the gcd(-r n2 prn3) 
and djd2 l Prfr- ,. By Theorem (4.2), we have Ir- IPr- I N(Prp ler- I)); thus, fr- iPr- I 

di-r. If d = gcd(d2 Pr-l) then dfr_. Idipr and ddcI I rfr-i; therefore, dlIor. We have 

now proved the following theorem. 
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THEOREm 4.3. If{1 .r-1) .4r-1)} isabasis of 1y then { 1, ir, Vr} is a basis of Sr, 
where 

P l/= 1/y(-)| (m* + m*3 + M*82 

Vr Yh r/ y(r ) l=(n* + n*28 + n*82)/P 

Pr = r/d> 0, m* = pr-Iml/dd, and gcd(m*, m*, m*, n , nn , Pr) 1. a 
By (4.6), and the fact that r1) =Yr/Yr- 1i we find that d, = N(y rl)P- 1/Pr 

fr- l I PrPr- i/lfr I d, and therefore. 
(4.10) mI =Ifr- 1Prm*/IfrLI 

We call the process of finding a basis of 5r from a basis of 5r- the invert process. 
When 3 D, we have m m - Dm2m3, m2 Dm3 -m2m1, m3 = 2 
mIm3, Pr = mlmi1 + D(m2m3 + m3m2), nh = fin1 + D(m2n3 + m3n2), nf2 

hi2n, + hi,n2 + Dh3n3, n3 = h3n, + m2n2 + hiin3. In this case, if 1-yr r- w 1 
and Iyrl) '' 1, then by Lemma 7 of [15], we have i-' ImIm< pr (i = 1,2,3), and 
therefore 'I- mi < 2P2- I /I fr 1I (i = 1, 2, 3). From (4.10), we get 3'I m* < 
2prL 1 /Ifr-i | (i = 1, 2, 3). 

We conclude this section by defining, as was done in [18], what we mean when we 
say that we transform a basis { 1, ut, v} of 6R by K, where K E GL2(0). When we 
replace the basis { 1, t, v} by the basis { 1, Ai, v}i, where 

(A16) =T(tL])~ 

T= 1 OT)O 
T = t2l K T 

KT iS the transpose of K and t2l, t3l are integers selected such that the new values 
mil, n- of ml and n, satisfy 0 < mil, ii, < p, we say that we have transformed the 
basis { 1, A, v) by K. Note that since I Tj= + 1, the new basis is in fact a basis of @. 
Also, if ii = (mi- + m-28 + m-3 2)/p, = (ii1+ ?-26 + n382)/p, then 

jml n, ml nl 

m-2 ii2 = m2 n2 K 

m-i3 n3 m3 n3 

and 

mi- -ml (modp), ii n' (modp), t21 =(m -i1)/p, t31 (n' -ii1)/p. 

5. The Bases of the Ideals of 2[8]. In order to determine a method for finding a 
basis of 6A2 from a basis of 6n it is first necessary to discuss the integral bases of 
the ideals of 2[8]. The integral bases for the ideals in any cubic field were 
determined by Voronoi [14]. However, as this work is not easily accessible, we 
summarize some of his results here. There are a large number of cases, and this is 
one of the reasons that we will restrict our discussion, here and in the next section, to 
the case of the pure cubic field 2(g), where D =g1g as in Section 1. 
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If p is a prime ideal of 2[8], then 1' must divide [p], where p is some rational 
prime. It is well known (see, for example, Cassels [4]) that the principal ideals [p] of 
'2 [8] factor as follows. We have 7 cases. 

(i) p I g,. Here [ p] = where = [p, 8]. 
(ii)p = 3, 3 t D, D i ? 1 (mod 9). Here [3] = V., where 

0 =[3, 1 + 8] when D=-+ (mod 3). 

(iii)P g2. In this case [ p ] = V 3, where p [p, 82/g2]. 
(iv) p = 3, D-- I (mod 9). We have [3] r2 -t, where 

r=[3,1 v+,(l ?8?62)/3], 

B=[3,1 +8,(-28+82 )/3], 

and the signs are determined from D -- I (mod 9). 
(v)p --I (mod3),plD. Here[p] =q, and 

p -- [p, d-8], q [p, d2+ d6 + 82] 

where d is the unique root of the congruence 

(5.1) x3-D (mod p). 

(vi)p -I (mod 3), p t D, (D/p)3 = 1. In this case, [p] p where 

p = [p,d -8], p' =[p, d' - 8], P" = [p,d" -8 ], 

and d, d', d" are the three distinct roots of the congruence (5.1). 
(vii)p -1 (mod 3), p t D, (D/p)3 # 1. Here [p] is a prime ideal of 2[8]. 
Let c e f be defined as being a solution of the system of congruences 

(5.2) 3x2-O (mod a) 

Also, when the system of congruences 

(5.3) x3 D (mod a2pi), 
x _c (mod a) 

has a single root (mod up'), denote it by di; when (5.3) has 3 roots (mod up'), denote 
them bydi d9, d, . Since 3d72 : 0 (mod up'), we may assume that none of di, d', d' 
satisfies 

x3 D (modup'+'), 

when p t D. 
Voronoi found the bases for the prime ideals given above, their powers, and 

certain products of their powers. We give his results for each of the cases (i) through 
(vi) below. We assume here that i E - and i > 0, unless otherwise stated. 

GROUP A 

CASES IDEAL a IDEAL BASIS OF a 
(i),(ii),pl {p,-dl + 8,(-cd - di+ c + 2)/u} 

2 {p, p(-c + 8),(d 2+ d16 + 82)/u) 
(iii),plu {p,-c + 8,(C2 + CS + 82)/U) 

2 r{p,-d2 + 8, p(C2 + R 2+6 2)/a} 
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Notice that in each of these cases in Group A, we have d -c (mod a), d1 D 
(mod p) and c D (mod a); hence, p has a basis of the form 

{p, -D + 8, (D2 + DS + 62)/a} 

Also, p 2 has a basis of the form 

{p, p(-D + 8),(D2+ DS +82)/a} 

when p a and p 2 has a basis of the form 

{p, -D + 6, p(D2 + DST + 82)/a} 

when p I a. Thus, if t is either p or p 2 here, then t has a basis of the form 

{P, P'(-D + 8), P"(D2 + DS + 82)/aA } 

and t2 [P'P"]u, where u has 

{P, (P/P'S)(-D + 8), (S/P")(D2 + DS + 82)/a} 

as a basis and S = gcd(P, a). 

GROUP B 

CASE IDEAL a IDEAL BASIS OF a 
(iv) r {3,-c + 8,(c2 + cS + 82)/a} 

r { 3',3'(-c + 8), (di2 + did + 82)/a} 
r2'+' 1 >0) {3'1 ,31(-c + 8),(di + di A + 82)/a} 

{3', -d, + 6,(-cd,-d2 + c + 82)/a} 

{3, -c + 8, 3(c2 + cS + 82)/a} 

rVl+ f31+{3?1, -d, + 8,3(-cdi-dd2 + cS + 82)/a} 

(v) ,p. {p',-di + 8,(-cdl - d,2 + cS + 62)/a} 

{p', p'(-c + 8),(d A+ did8 + 82)/a} 
(vi) ' {p',-di +,(-cd, -di2 + c +82)/a} 

p l(p ) tp{P, p'(-c + 8),(d",2 + d73A + 82)/a) 
4 I?J(P )I {p?J, p'(-d1 + A),((d;,2 + d"7 + 82)/a + p'Q)). 

In case (vi) here, Q is determined by the congruence 

Q(dj - d')/a (d D)/a 2p (mod pJ). 

Naturally, there are similar results for ( p)', (Ii/)+?J(I "t)i, etc. As we did not specify 4 
or P' here beyond saying that they were any two of the three ideals whose product is 
[p], these other results can be easily deduced from those given here. 

Each of the several ideals described in Groups A and B here can be represented by 
a basis of the general form 

{P, P'(t + 8), P"(u + u'S + 82)/a,A 

where P, P', P", t, u, u' E ?, P is a prime power, P'P" I P, and P" I a. Further, it is 
a simple matter to verify that for each of these ideals we have 

u-tu'+ t2 0 (mod P/P'), 

(5.4) u u (mod aP'/P"), 

U(U' + t) _D + tu'2 (mod aP/P"). 
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That this representation of these ideals is essentially unique follows from the 
following lemma. 

LEMMA 5.1. Let a and b be any two ideals of 8 [6] such that a has a basis of the 
form {P, P'(r + 8), P"(s + s'8 + 82)/a} and b has a basis of the form {Q, 
Q'(u + 8), Q"(v + v'8 + 82)/a}, where P, P', P", r, s', s, Q, Q', Q", u, v', v E 0Z'. 
Then bIa if and only if QIP, Q'IP', Q"tIP' and 

P'r-P'u (mod Q), 

Pits'-P"v' (mod aQ'), 

P"s P"v + P"u(s' - v') (mod aQ). 

Proof. b I a if and only if b D a; thus b 6 a if and only if each of P, P'(r + 8), 
P"(s + s'8 + 82)/a is contained in b. If 

M aP aP'r P"s M (aQ aQ'u Q"v 
M 0 =uO aP, P' st , M-2 = O aQ' Q"v' 

O O Pit O O Q i 

then P, P'(r + 8), P"(s + s'8 + 82)/a C b if and only if there exists a matrix 
X= (xij)3X3 wherex,j C Z(i ( 1,2,3;j = 1,2,3) such that M, = M2X. The result 
follows easily on multiplying M2 by X, equating the product to M, and attempting to 
solve for the rational integers xij. l 

COROLLARY. Let a and b be given as above, and suppose that P I P'. P"a 
Q, P, Q', P', Q", P" > 0; then a 6 b if and only if 

Q=P. Q I=PI. Q"it=Pit 
and 

r--u (mod P/P'), 

st = vI (mod aP'/P"), 
s -v + u(s' - v') (mod aP/P"). 

Proof. Follows easily from the lemma and the fact that a b if and only if a 6 b 

and bIa. 0 
From these results we are now able to deduce the following lemma. 

LEMMA 5.2. Let a and b be ideals of B[8] such that a has a basis of the 

form {P, P'(r + 8), P"(s + s'8 + 82)/a} and b has a basis of the form 
{P, P'(t + 8), P"(u + u'8 + 82)/a}, where r, s, s', t, u, u', P, P', P" C 
P'P" I P, P" a and t, u, u' satisfy the congruences (5.4). If a = b, then r, s', s, P, P', 

P" must satisfy the congruences 

r3--D (mod P/P'), 

5'3--D (mod aP'/P"), 

(5.5) s-rs' + r2 0 (mod PIP'), 

5 5f2 (mod aP'/P ), 

s(s' + r) _ D + rS'2 (mod aP/P"). 
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Proof. Since a b, we must have 

r t (mod P/P'), s' u' (mod aP'/P"), 

s _u + (s'- u)t (mod aP/P") 

from the corollary of Lemma 5.1. Using these results together with the congruences 
(5.4), it is a routine matter to deduce the last three congruences of (5.5). The first two 
can be easily deduced from these last three. Li 

Voronoi [14, Section 44] also proved the theorem which follows. 

THEOREM 5.3. Suppose a and b are ideals of @2[6] such that a has a basis of the 
form {PI, P'(r1 + 8), P ,(sI + s68 + 82)/a} and b has a basis of the form {P2, 
P2(r2 + 6), P5'(s2 + s26 + 82)/a}, where r,, s,, s', P PI', PI" E 5, PE'P" l P" 1 a 
(i 1,2). If gcd(PI, P2) = 1 and c = ab, then c has a basis {P3, P3(r3 + --), 
P3"(S3 + s6S + 82 )/a}, where 

P3 = PI P2 P3 - I 

{r3 r I (mod P1/PI), [S3sj (mod aPSI/Pj), 
(md,/P), 3 sI (mod aP?/P3"), 

r3--r2 (mod P21P2), l3I-5I (mod aP2/1P3 ), 

JS _ r1(s' - s') (mod aPI/P3j), 

l 53--52 + r2(s s') (mod aP2/P3)- 

Let a be any ideal of 2[8] such that [p] does not divide a for any rational prime 
p. Then, since a can be written as a product of powers of distinct prime ideals, we 
have 

(5.6) a t1t2t3 tk, 

where the t, (i = 1, 2, 3,. .. ,k) are ideals of Group A or Group B above. Since t, 
(i 1, 2, 3,. . .,k) has a basis 

{p n, p"l(t + 8), pl'(U + U68 + 82)/a} 

where p"Ia, n, m, +11, m,Ill,O, andgcd(pl, pJ) for ij, we see by Theo- 
rem 5.3 that a has a basis of the form 

(5.7) {P, P'(r + 8), P"(s + s'8 + 82)/a}, 

where 

k k k 
P nl7, P'J pr, PItzlp' P = piJ Pi' P = pi , I Ip Pi 

i=l i=I = 

r, s, s' E S, P'P" IP, P" Ia, and gcd(P, P', P") 1. Note that P L(a). It is also 
true that the congruences (5.5) are satisfied. This follows from the theorem below. 

THEOREM 5.4. Let the ideals a, b, c be defined as in Theorem 5.3. If 
r,, s', sI, Pi, Pi', P," satisfy the congruences (5.5) when i = 1 and i = 2, then 
r3, s5, s3, P3 ', P3", also satisfy (5.5). 

Proof. We will only show that 

(5.8) S3(5 + r3) -D + r3s 2 (mod aP3/P3'). 
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The remaining results can be derived in a somewhat similar fashion. We first note 
that the congruences of Theorem 5.3 must be satisfied; hence 

r3 =r1 + k PI/Pt, St s 5 + k2aP/P3". 

s- + ar k2P'/Pj (mod aPI/P3j), 

where k1, k2 E 2?. From these results, we get 

(r3 + 53)53-(r, + s' + k1P1/P + k2aP /P)(s1 + ar,k2P/Pj) 

_(r, + s )sl + a(r1 + s')rIk2Pj/Pj 

+k s1 P1/P' + ak2s1Pj/P' + k22r1(aP'/P3j)2 (mod aP1/P') 

and 

D + r3s2 -D + r sl2 + 2ar s'k2Pj/P' ? 2r(pp3)2 

+k Xs P /PP' (mod aP/P3'). 

Since 

(r, + s')s, D + r,s"2 (mod aP1/Pj'), 

s (mod aPI/Pf'), 

s r sI - r2 (mod PI/P1'), 

we get (r3 + S3)S3 -D + r3s3 (mod aPI/P3j). Similarly, we also get (r3 + 53)53 -D 

+ r3s 2 (mod aP2/P3). Thus, since gcd(P,, P2) = 1, we see that (5.8) must follow. 
3i3 

COROLLARY 5.4.1. For a basis (5.7) of an ideal of 2[8] we must have 
r, s, s', P, P', P" satisfying (5.5). 

COROLLARY 5.4.2. For a basis (5.7) of an ideal of 0,[8] we must have 

(5.9) 52 + SS _ 2s'D + r(s'3 - D) (mod aP/P"). 

Proof. From the theorem we know that the congruences (5.5) must hold; hence 

(s - s12)(S - rs' + r2)- 0 (mod aPI/P") 

and 

(s' + r)s D + rs'2 (mod aP/P"). 

From the first of these congruences, we get 

52 + s'S 
s ss'r - sr2 + 2s's - s'3r + s/2r2 (mod aP/P"). 

Using 

sr _ D + rs'2 - ss' (mod aP/P") 

to substitute for sr in the first term of the above, we get 

52 + 5 s'D + s'2r2 + s(s' + r)(s' -r) 

2s'D + r(s'3- D) (mod aP/P"). D 

We also require two simple lemmas. 

LEMMA 5.5. Let D - -+ 1 (mod 9), and let a be an ideal of [8 ] such that a has a 
basis of the form (5.7). If 3 1 P and 3 1 P", we have r I a when S,2 + 2s -3 (mod 9) and 
P- I a when 5,2 + 2s-6 (mod 9). Here r and a are the ideals of case (iv) in Group B. 
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Proof. Clearly, since 3 f P", we see that r , f a. However, since 3 j P, one of r or b 

must be a divisor of a . If r I a, by Lemma 5.1, we have 

s '=c (mod a), s c2+ (s'-c)(-c) (mod3a). 

Since 3 a, we see that s'2 + 2s (s' -c)2 + 3c2 3 (mod 9). If la, by Lemma 
5. 1, we have 

s'c (mod a), s--cd, - d2 (s' -c) (-d,) (mod 3 a 

Hence, s -di - dIS' (mod 9) and s + 2s (s' - d )2- 3d I-6 (mod 9). D 
If a is an ideal of -' [8] such that a has a basis of the form (5.7), define 3"' for a to 

be the exact power of 3 that divides gcd(P, a) and define 3" to be the exact power of 
3 that divides a/P". Since a is always square free, we see that both to and t1 are 
either 0 or 1. 

LEMMA 5.6. Let a be an ideal of 8 [6] such that a has a basis of the form (5.7) and 
gcd(P, J) = 1. There exists k E 'Z such that if 

vI s' + akP'/P", v = s + kraP'/P", 

then a also has 

(5.10) {P, P'(r + 6), P"(v + v'8 + 82)/a} 

as a basis, 3" 1 v'2 + 2v, and gcd(v'2 + 2v, 3?L P) = 3 

Proof. Select k such that, for each distinct prime q which divides 3"P but does not 
divide aP'/P", we have 

(s' + r + kaP'/P")2 z 3r2 (mod q). 

Certainly, we can find such a k. By Lemma 5.1, it is clear that (5.10) is a basis of a. 
Hence, by Corollary 5.3.1, we must have 

v'3-D, v = vv2 (mod aP'/P"). 
Let p be any prime such that pI 3YOP. If p I aP'/P", then V'3 D (mod p). If 

p #- 3, we see that if p l V'2 + 2 v, thenp ID, which is impossible. If p = 3, then t = 1. 
Since 31aP'/PP", we have 31P' or 3Ia/P". If 31P', then 31P", and therefore 
3 1 a/P". Thus tI = 1 and 3 P". Hence 3" I (v'2 + 2v) and 91V'2 + 2v. Now 
suppose that plaP'/P". If p 3'o and to = 1, then 31 P",31P',3lP and 31P/P'. 
Since 

v'2 + 2v = (s' + r + kaP'/P")2 + 2(s - rs' + r2) - 3r2 

and s - rs' + r2 0 O (mod P/P'), we see that p t (V'2 + 2v) by construction of k. It 
follows that ((V'2 + 2v)/3", 31P) = 1. L1 

Since '# in Section 4 is similar to l, and 6A I corresponds to the ideal o, we know 
by Lemma 2.2 that 6, corresponds to some ideal a of 2[8]. We may assume with no 
loss of generality that a has a basis of the form (5.7). It follows (Lemma 5.1) that a 
canonical basis of the form (4.3) of 6A must have 

n" = 1, f= b = 4aP'/P", p =aP/P", flm, 

(5 .1 1) 
ml m/=-r (mod plf ) 
nn'-s (modf), 
n _ s + r(n'-s) (mod p). 
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Also, if q is any prime such that qIP", then qIP and qtP'; hence qIa and qtf. 

Further, if q I a and q If, then q I P". Thus, since P" I a and a is square-free, we have 

(5.12) pit = a/gcd(a, f ). 
If ()R = (R i for some i, then If I = I ei I , p = ai. Hence, P < ai, P' < I e I , P a and 

(5.13) P<3D, P'<3D, P"<a 

by (6.2) of [18]. Also, we note that since n '-=D (mod f ), we must have 

(5.14) gcd(f ,n') ID. 

Let 'R and (R k be any two reduced lattices such that %,j 
- % k I. We may 

assume that (R { and (R, k have canonical bases 

{e,Ie,I(m. + 6)/a1,(nj + n.6?+ 6)/a,), 

{l,IekI(mk + 6)/ak,(nk + n'k + 2 

respectively. If a jis the ideal corresponding to 4 and a k is the ideal corresponding 
to A'R k I then 

L(a.j ) = aj/gcd(a, e,j), L(Cak) = ak/gcd(a, ek) 

by (5.1 1) and (5.12). 
If gcd(L(c a), L( ak)) = 1, by Theorem (5.3) we have 

(5.15) k I6If k ,If (M + 6 )/p (N + N6 ) + /2p), 

wheref= eJek/a, p = ajak/a, 

{JM-m, (mod al/e,), {N n5 (mod gcd(a, ek)ej/a), 

M-mk (mod ak/ek) I N nk (mod gcd(a, ej)ek/a) 

f N--n + mj(NN -n ni) (mod gcd(a, ek)Oa/a), 

t N nk + mk(N - n'k) (mod gcd(a, ej)ak/a). 

In the next section we show how, given ARi, to find i. 

6. Determination of _k2 . Let 

6j = 1i, (m + m26 + m362)/aG, (ni + n26 + n362)/ai), 

where, as usual, Mi1, 9M2, nM3, n1, n2, n3, ai e z, a > 0, ei = m2n3 -M3n2, 

gcd(m,, M2, M3, n1, n2, n3, ai) = 1. Let 

q2 = (I, (M1 + M26 + M382)/p, (Ni + N26 + N2)/P), 

where M,, M2, M3, Nl, N2, N3, p E5,p>0O,f=M2N3-M3N2, 

gcd(M1, M2. M3, N,, N2, N3, p) = 1. 

In this section, we will describe how to find p, M1, M2, M3, Nl, N2, N3 from the 
values of mj, nj (j 1, 2, 3) and ai above. In order to do this, we must first show 
how to find a basis of a 2, given a basis of the type (5.7) of a. 

From (5.6), we can write a = a[a2, where all the ideals dividing a are from 

Group A and all the ideals dividing 2 are from Group B. By referring to the bases 
of the ideals of Group A and Theorem 5.3, we deduce that a2 = [pj'p1]b,, where 
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b I has basis {PI, (P /P1'S)(-D + 6), (S/P ")(D2 + DS + 62 )/a}. Here P= 
gcd(P, J), P' = gcd(P', J), P" = gcd(P", J), S = gcd(a, PI), and a, has basis 

(PI, P'(-D + 6), Pf'(D2 + DS + 62)/a} 
If P2 = P/P1, P= P'/P1', P= P/P2", we have a basis {P2, P2(r + 6), 

P2(s + s'6 + 62)/a} of a 2 
We must now determine a basis for a 2. We first calculate t0, t, for a2 and then 

calculate t2 and t3 as below 

whennto 1, and either 31P2" ors' + 2s 6 (mod9), 
{ 0 otherwise. 

{ when 0t = 1, 3iP72t, 3 I P2/P2 s'2 + 2s-=3 (mod9), 
t3 0 otherwise. 

By Lemmas 5.1 and 5.5, the bases of the ideals of case (iv) in Group B and Theorem 
5.3, it follows that we can have 6 possible cases. 

(1) D i ? 1 (mod 9). In this case t0 = tI = 1 2 = t 03= ?. In the remaining cases, we 
assume that D - -+ 1 (mod 9). 

(2) r I a2, I a2. Here 31 P2andto = t1 = t2 = t3 = 0. 

(3) rIta2. Wehave3IP2, 31P2, 31P2" andt0 = 1, tl = 0, t2 = 1, t3 = 0. 

(4) 0Ia2, r a2. We have 31P2, 31P2, 31P2", s'2+ 2s 6 (mod9) and t0o 1, 
tI = I ,2 = I t3 = ? 

(5) r2'1a2, r2'+l1a2,j>O 1a2. We have 31P2, 3IP2", 31P2/P2, S/2 + 2s 3 
(mod 9) and to 1, It I I I t2 = ? t3 = ?. 

(6) r2j+II a2 r2j+2Ca2, jO, 1a2. We have 31P2, 31P2, 91P2/P2, 31P2/P2, 
s /2 + 2s-=3 (mod 9)and t I 1,z 1t2 = 0, t = 1. 

Note that in all of these cases, we have 

(6.1) 3"3 (P2/P2P2i), gcd(31-I2, P2/33p2) =1 

By Theorem 5.3 and the bases of the ideals in Group B, we have a2 = [P2]b2, 
where b2 is an ideal with basis 

(6.2) {P3, P3'(U+ 8),(V+ V'6 + 62)/} 

and P3 = P22/3t3P2j, P3' = 3 3p2,2 We need now to find the values of U, V' and V in 
(6.2). We require the following lemma. 

LEMMA 6.1. Let D 1 (mod 9). If a is any ideal of 22[6] with basis of the form 
(5.7) such that t a, then 

r3 -D (mod 3P/P'). 

If B I a and r I a, then 

s'3 D (mod 3aP'/P"). 

Proof. Certainly, r3 =-D (mod P/P') and since I a, we must have 3 1 P'. Also, if 
3kllp, then k > 1. Let dj be a root of (5.3) with p = 3; then d 3 D mod(a23J) and 

I 
since 3 P', by Lemma 5.1, we have r = dj (mod 3k), wherej = k or k - 1. Thus, 
r--dj3 (mod 3k ) and r3 D (mod 3P/P'). The second result follows by similar 
reasoning. O 
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Since P2P?(r + 6) C a2 we have 

r-U (mod P3P2j/P2P2). 

Now P3 P2'/P2 P2 = P2/33P2' and P3/P3' 1 (P2/3L P2B)2; hence, 

U= r + kPJ3t3P2' 

and 

U3 -r3 + 3kr2P2/3L3P2' (mod 3Y2P3/P3). 

Also, by Lemma 6.1 and the definition of t2, we have 

U3--D (mod 3l2P/P33); 

thus, 

-D -r --3kr 2P/3lP2' (mod 3L2P3/lP3). 

Since 

-D-r3--O (mod P2/P2), 

we have 

- (D + r3)3L3P _ 31 L2k 2 (mod p/3Lap p) 

312=p12'k mo 21"P2~" 

If x is a solution of the congruence (possible by (6.1)) 

(6.3) 312 -7xr2 1 mod(P2/3 t3PPj) 

then 

(6.4) U-r - x(D + r3)/312 (mod P3/P3). 

We must also have 

(P2'(S + S'6 + 62)/a)2 C c2; 

hence, there must exist z1, Z2, Z3 E !Z such that 

P25'(s'2 + 2s)= aZ3, 

P2"(D + 2ss') az3V' + a2z2P3' 

p2,,(s2 + 2Ds') az3V + a2z2P3'U + a2ZIP3. 

It follows that 

(6.5) V'(s'2 + 2s) -D + 2ss' (mod a2P3,/P2) 

and 

(6.6) V(S'2 + 2s) ) s2 + 2Ds' - U(D + 2ss') + UV'(s'2 + 2s) (mod a2P3/P2). 

By Lemma 5.6, we may assume that s and s' have been selected such that 
(s'2 + 2s, 3'o0+lP2) = 3L; hence, we can solve 

(6.7) y(S'2 + 2s)/3t =-1 (mod 3L0P2) 

fory. Since D + 2ss' - 
S'(S'2 + 2s) + D - s'3 we have from (6.5) 

( V - S_)(S12 + 2s)/3" =_ (D - S13 )/3tL (mod 3LP3). 
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Now 

D - s" 0 (mod aP2JP2'); 

thus, 

(VI -I) (S'2+ 2s) D -s"' 
3t 3tl/ (md3`P) 

Since 3tP2 I P2, it follows that 

(6.8) V' s' + y(D - s")/3t' (mod 3YoP3'). 

From (6.6), we get 

(S'2 + 2s)V-(UV' + s-s'U)(s'2 + 2s) 

(S2 - 2s'D + SS'2 + U(D - s")) (mod a2P3/P2). 

Since D - s" 0 (mod 3tIaP2JP2j), r U (mod P2/3t3P2) and 3t, Ia/PP', we see 
that 

U(D-s'3) r(D - s") (mod Y'P2). 

By Corollary 5.4.2, we have 

s 5 2s'D + rs'2 U(D -s") 0 (mod 3YP2) 
hence, 

( /2 + 2s)( V-s + s'U - UV' ) - (52-2s'D + ss'2 + U(D -S3)) 

\ 3t, /\ P2 31'P2 

(mod 
3Y- 3P2/P"). Therefore 

(6.9) V s - s'U + UV' - y(S 2- 2s'D + SS'2 + U(D - S 3 ))/31 (mod 3l(p3). 

Since we now have a basis for b1 and one for b2, we must next find a basis 
of b1b2. Let b1b2 have a basis {Q, Q'(M + 6), Q"(N + N'6 + 62)/a}. Since 
gcd(P3, P,) = 1, we have Q = P3P1, Q' = P3'PI/P'S, Q" S/P 

M -D (mod Pj'S), N' D (mod aP1/Q"P'S), 

M U (mod P3/P3), N'-V' (mod aP3/Q"), 

N _D-D f D(N' - D) (mod aPf'P1/S), 

N V + U(N' - V') (mod aPj"P3/S), 

by Theorem 5.3. Since 31( j a/Q", we have 

N' D (mod aP1/ (310Q"PfS)). 

Further 

N-D 2- D(N' - D) (mod aPiiP1/310S) 

and 

N= V+ U(N'-V') 

s - s'U + UN' - y(s2 - 2s'D + 2s'2 + U(D - /3))/311 

- s'M+ MN' -y(S2 - 2s'D + 2s'2 + M(D -_ S3))/3t, (mod 3OP3) 
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by (6.9) and (6.8). Since (3tP3, aPj"PI/31'(S) = 1, we can solve for N' (mod aQ'/Q") 
and N (mod aQ/Q") by using the Chinese Remainder Theorem. 

Now since 6A, - 6, we know that a canonical basis of 'nI, must have the form 

(6.10) {I I | ~~m + 8 n + n'8 + 8 
2} (6.10) {,Ie1I m+, n+n'6+ 

Also %R corresponds to an ideal a with basis {P. P'(m + 5), P"(n + n'3 + 62)/a}. 

Further, 

P (ja/d, P' P" I e, /a, P = P"o,/o , 
where d = gcd(a, e,). Put P1 = gcd(a,/d, J), P{ = gcd(e/ld, J), P2" ' gcd(3, P"), 
P2 P/P1, P2 = P'/P1, Pj" P"/P2', S = gcd(a, P1), 

f 1, t = I and 3 1 P2, 
o 0 otherwise; 

I , 3 1 a/P2', 
0 otherwise; 

{1, t = , and either P2" = 3 or n' + 2n-6 (mod 9), 
2 

0 otherwise; 

l 
i3 

= 1, P25 3, 3 I P2/P2, n + 2n 3 (mod 9), 
0 otherwise. 

If gcd(3tP2,(n'2 + 2n)/3'1) #t 1, replace n' by n' + akP2'/P2" and n by n + 

kmaP2'/P2", where k is selected such that this gcd is 1. 

THEOREM 6.2. If '6A has a canonical basis (6.10) such that 

gcd(3Lo(P2, ( n12 + 2n)/3 ) 1, 

then 

6 _2 (1, If I (M + 8)/a, (N + N'S + 82)/C ) 

wheref = aQ'/Q", p aQ/Q", Q" S/P1", Q' = 3 'P3p2 /PjpS, Q P22P,1/3 3P2". 

Also, M, N' and N can be determined from the congruences. 

M _ -D (mod P1S), 

M m - x(D + m3)/3L2 (mod p22/32t3p52p5') 

N'--D (mod uP1/ (3YoQ "P'S)), 

N_ n' + y(D - n3 )/3L (mod 3tO+t3p52), 

N--2D2 - DN' (mod aP,'P,/3LoS), 

N n - n'M + MN' - y(n2 - 2n'D + 2n'2 + M(D -n3))/3t 

(mod 3to-t3 P2/P"), 

where 

3l-t2xm2 =I (mod P/3L3P2"P2') 

2nd 

y(nt2 + 2n)/3Y' 1 (mod 3toP2). 



REGULATOR AND CLASS NUMBER OF A PURE CUBIC FIELD 263 

COROLLARY. We have '?, = (67/wy6iRi, where w = 3L3P1/P Pji 

Proof. Follows from the above results and Lemma 2.1. 0 
We also point out here that 

a 2 = (313aP1S/P11Pj'2)p 

and 

(a 2/Ie )2 = (P 3 t3/P'Pt/ )3p2/a IfI 

Hence 

(6.11) p < a2 < 9D2, p2/f I<.9D2 

by (6.1) and (6.2) of [13]. Also, if SI = %3 in Section 4 and yr. ,. where F,. 
(- Yr) E C1 then N(yr) < 1 and 

(6.12) P r/If I< P2/jf I< 9D 2, 

from (4.5). 

7. Reduction. Let 6. be a lattice with basis a basis of t'- [6]. In this section and the 
two following sections, we will show how to find a reduced lattice S such that 
S - 6L. In the process of doing this, we will also show how to find y E 2' (6) such 
that yS = 6A. In order to do this, we will make use of much of the reasoning 
employed in [18] and several of the results provided in that work. We begin with 
several simple lemmas; but we must first describe what is meant by the puncture of a 
point Q (w ) E 6R. We define the puncture of Q as in [6] and [18]; that is, we say 
that it is that point wp = (,, -q,,) in the x - y plane such that 

(w = (2o - '- o")/2, 1 = (c'- ")12i. 

If we put , = (o' + o")/2, we have o = + , If 

63D and c= (q? +q26+q362)/P (ql,q2,q3pePE') 

then 

(7.1) (,= 36(q2+q36)/2p, m= F3(q2-q36)/2p, 

tw = (2q, - Sq2 - 62q3)/2p. 

We note that there exists an infinitude of points of 6R which have the same puncture 

cp as Q does. Let Q* (w *) be that one of this infinitude of points such that Q* E C 
and Iw* I is minimal. Now Q* does not necessarily exist, but, it certainly exists if 

I ,,, I< V/2. In the following lemmas we will assume that Q ( o) is a point of 6R 

such that o a 2. 

LEMMA 7.1. Suppose S E C and X < 1. If 2 has puncture (,, q,) with > 0, then 
aEe C1. 

Proof. If X > -1, then clearly 2 E C,. If X < -1, then, since o = , + , and 
> 0, we must have t,, < -1; by (2.2), this contradicts the fact that Q E e. D 

LEMMA 7.2. If Q E Ce and Q has puncture (,, r), then (,, < 1 + 1 - . 
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Proof. Follows easily from the inequalities co , + , < 1 and 1O ' 12 = U2 + q2 
<1.0 

LEMMA 7.3. If Q* exists, Q* q C, (e, ij,,) is the puncture of Q* and (, > 0, then 

Proof. Since Q* C e and Q* a C,, we must have w* > 1 by Lemma 7.1. Also, 

I I< 1. If I V1- 1- q2j, then (G7,-1)2+ ?1q2 <I and Q*-(1,0,1)eC 
Since 0 <O* - 1 < *, this contradicts the definition of W*. The lemma follows. 

LEMMA 7.4. If Q has puncture (Q, 7,), Q* exists and 1J< 1 - /-2, then 
C*l. 

Proof. Since (-Q)* = -Q*, we see that if (, < 0, we can replace Q by -Q and &, by 
-t( > 0. Thus, we may assume , > 0. If Q* 4 Cl, by Lemma 7.3, we have 
t< C 1- 1 - q2; hence, w* = + < l and Q* e Q21 by Lemma 7.1. Since 
this is a contradiction, the lemma follows. O 

LEMMA 7.5. Let Q have puncture (,, 71,,,) such that (,, > 0 and lq1,,,jI< V/2. Let 
T C n C, and let T( T) have puncture (,T 'qT)If Q* (4 (9I (T - Q)* C 

T> (@ and ijT@ > 0, then T > 0*. 

Proof. Follows by using Lemma 7.3 and the reasoning of Lemma 4.3 of [18]. D 

LEMMA 7.6. Let Q have puncture (,, 71,,) with (,, > 0. If T E Cl q n i has puncture 

(,T T) with (T = bJ, q, = b, b E Z, b > 0, then Q* E 1. 

Proof. The result is certainly true for b 1. Suppose it is true for b= k, and 

suppose (T = (k + 1)S, q, = (k + 1)i. If (T- Q)* e C1, then since the puncture 
of (T - Q)* is (k(, ki,,), the result is true by the induction hypothesis. If 
(T- Q)* (4Cl and Q* a C,, then since (T > (w > ? 7qTqS > ?i j CqT/(k + 1) 

< r /2, we must have T > w* by Lemma 7.5. Since T < 1, we have * < 1, which, 
in view of Lemma 7.1, contradicts the assumption that Q* Ce ,. The lemma is true 
by induction. O 

Let 

(7.2) PI C6} 

It is known (see [18, pp. 581-582]) that there exist 4p, p E e such that 

E = {aOp + bp I a, b C 52} 

and 

where = (, ,) and = (, ,). Further, if { 1, A, v} is a basis of 63, then 

p vP H 
AP H\ 
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wh re H E GL2(C). Thus, if we transform the basis {1, pA, v} by HT, we get a new 
basis { 1, A, k} of c1{ such that 4p and op are the punctures of ' (> 4) and 4 ( f), 
respectively. 

We now prove the following important theorem. 

THEOREM 7.7. If there exists 1 (; y) E 6t such that y j 2 and F e C1, there must 
exist e (0 6) EE G such that 6 X 2, E) EE CI and @ has as its puncture one of: 

01, 4P, fp - 4P, 4p + 4P, or 2 op + 4p . 

Proof. Since F E & , F has a puncture yp E E. Thus, yp = aop + b4,p for some 
a, b E C. If (Y < 0, we can replace F by -F; thus, we may assume, with no loss of 
generality, that (y > 0. 

If a < 0, then b > 0 and 

j,q_y I=a IIX,q +b 1qn,1> I 

for b > 2. If b = 1, then ( < 0, which is a contradiction; hence, we must have 
a ?0. If a = 0, we have b > 0 and yp = b4p. From Lemma 7.6 we see that Ap is the 
puncture of 4J*, where 4* E e, n6 (. 

Suppose a > 0 and b < 0. We have 

j,I7yj alIml +IbllIry> 1 

when I b I 2. If b = 0, we have yp = a.p, and once again we see from Lemma 7.6 
that fp is the puncture of 4D*, where * E Ce, In 6i. If b = -I and a ,> 3, then 
( > 24? and, since I-yI< I and jm,4j> V3/4, we get Jq, I< (1 - F3 /4)/3. Thus, 

- -q > .98 and, if V * C, I, we must have 2,, > 1.96 by Lemma 7.4. Now 

I 'YI>I n, I> F3 /4; hence, since F e CI, we must, by Lemma 7.2, have 

ty < + I1 _ 2y < I + 3/4 < 1. 96. 

Since this is a contradiction, we see that if b = -I and a > 3, then 1* , IQ if 
b = -I and a = 2, then -yp-p 

- 
p- AP. Also, qy and 7. have the same sign; thus, 

if neither V nor (1 - qJ)* is in Cl, then by Lemma 7.5, we must have y > p* > 1. 
This contradicts the fact that F E C,1; hence, if b -1 and a = 2, then one of PD* or 
(4-4)* is inC I. Also, if a =1 and b -1, then (41 - qJ)* E Cl. 

Now suppose that b ,> a > 0. If d- b - a > 0, we have 

Ln.1I alIi + "il +dlIpl . 

If d= 0, then (? + %I)* E C, by Lemma 7.6. Assume that d > 0. If I -q,, + q, I> 1/2, 
then ji,, I> 1/2 and a + d < 2. Since d > 0, this is impossible. If l + q, I< 1/2, 
then ? 

,+,, = <,+ , < xF//2 and (1 + J)* exists. If (4 + *)* E C1, we have 
finished the proof for this case. Suppose that (41 + k)* i Ce. Now , and ,+,, 
have the same sign and (, > (? +,; hence, from Lemma 7.5 it follows that if no point 
of R n C,1 with puncture (a - l)(op + 4p) + d ,p is in C1, then -y > (f + ,)* > 1, a 
contradiction. Thus, we must assume that there exists a point of 6R with puncture 
(a - l)(4p + 4p) + d4p. By continuing this argument we must conclude that, since 
a is a finite integer, there must be a point of 6, in C1 with puncture d4,p. By Lemma 
7.6, we see that 4I* E C1. 
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It remains to consider the case of a > b - 1. If a ? 3, we have (y > 340. If 
D* C,, then (, > I1 2 > .8. Also, (y < 1 + 1- < 2. Since (y > 3(.8), 

we have a contradiction; thus, if a > b - 1, we can only have a = 2, b = 1. D 
Let C be a set of points (a, b) E .2 such that if %5 is not reduced, then one of 

(aD + bP)* E C,. By Theorem 7.6, we see that we can have 6, C {(1,0),(1,0), 
(1, - 1), (1, 1), (2, 1)}. In certain cases 6f is actually a proper subset of this set. 

COROLLARY 7.7.1. If |J, I< V3/2, then C.= {(1,O),(O,1),(1,-1)}. 

Proof. When I j< 1' //2, we know that J* exists. Since V* also exists, < 0 
and ( > ,, p when yp = op + Ap or yp = 2op + {p, we see that y cannot be less 
than both * and A* unless one of ?*, 4J* is in C,. D 

COROLLARY 7.7.2. If ImA |< 1.19, then 6 = {(l,0),(0, 1),(1,-1),(1, 1)}. 

Proof. Suppose that F c e, and yp = 2op + 4p. If -y and iq, have the same sign, 
then since (, > (., we must have D* or ('D + *)* lying in C,, or y > 0* by Lemma 
7.5. If V* 4 C, then y > P* > I and F 7 C,. 

If and - do not have the same sign, then qy and ++, must have the same sign. 
If I -?o,+ j< V3 /2, then, again by Lemma 7.5, we must have D* or ('D + J)* e C, or 
y > (p + 4)*. If D*, ('D + *)* e C,, then y > (p + A)* > 1 and F e C,. Thus, we 
will assume that I 1m + 71x, Jq, 1- IW-1 I > 1' /2. We have lj,y I1= II -2 I ID 1> V3/2 

-qo If P V Ce , we get (, > q1- j2 from Lemma 7.4. Also, since 1 C C1 we 

have (y < 1 + 1-q from Lemma 7.2. Now since lq7, I> V3/2 + l Ip and lq71 I' 
1.19, we find that Im, j< 1/3. Further, 

f(x) 21 - x2 - 1 - (3/2 - x)2 

is a strictly decreasing function for 0 < x < 1 and f(1/3) > 1.039; hence, 

(.y > 24<0 > 2 jl - 71qp > I + I/ - (A3/2 - IqP)>1+ / 1y- 

Since this is a contradiction, we see that we can eliminate (2, 1) from the set given 
above. D 

With these results we are now in a position to develop an algorithm for finding a 
reduced lattice 5 and y C Yu such that 6, y= . Let yl = 1, 51 = 61. We first find 
the points 0p' and 'p of f, along with the corresponding points D and I of S 1, for 
which fp and 'p are the respective punctures. We can then find the points a1D + bJ 
of SI with (a, b) C (i and then determine (aD + b4I)*. If none of these points is in 
Cl, we know that 51 is already reduced andy yl. If one of them is in C1, let 170) 
(> y(l)) = (alD + b4I)* be that point such that F(1) E C1 and Iyg1)I is least. Put 
=(l) ap + b+, and yo) , when (a, b) 7# (0,1) or y(l) when (a, b) = (0,1). 

Then (1, y1) y(l)} is a basis of 51 and, if we define 52= 1/yOl)IS,, we have 
52 5 51 We then repeat the algorithm on S2 to find that either S2 is reduced or J(2) 

( 2)) C 52 n C. We repeat the above procedure to obtain 3 =1 1//g2)I 2and 
then continue the entire process until we ultimately find Sk = el/Ygk 15)1k- such 
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that (k is reduced. That this must eventually occur follows from the fact that 

=1/) where 

Y,= tIIY'~I; 
y , = , ) 

hence I YI'< and I Y'I< 1. Since there can only be a finite number of points in 
S n~ (C, the algorithm must terminate and y Yk- It can also be shown that the 
value of k here is O(log I A I). 

Thus, in order to find S and y, we must know how to find 4P, (p, i, D, 
(aD + bt)* for (a, b) E i, and be able to determine whether or not (aD + bP)* E 

(S We will show how to solve these problems when 83 = D in the next two sections. 

8. The Algorithm for Determining ( and 4 when 83 = D and D > iOs. The 
problem of this section and the next is really that of developing an algorithm which 
determines whether or not there exists a yg (> 0) such that rg ( yg) &E t n e l and, 
if such a yg does exist, to find it. Because of the precision problems mentioned in 
[18], we will produce an algorithm which will require that we perform our operations 
on integers only. 

Let 'R have a canonical basis 

{1,IfI(m + 8)/p,(n + n'8 + 82)/p}. 

We may certainly assume that I m 1< p/lf I, In 1< P I n' I< If . If*** If 1 [8], trans- 
form this basis by K = 0); if If l> [8] and n' = 0, transform this basis by 
K = (?o)-0 

If If I> [8] and n' 0 O, let 

nllf fI= ( qo, q I q2, *qk) 

be the continued fraction expansion of n'/lfI , and let A2 B , A B 1, 
Ar+1 qr+Ar+ Ar 1, Br+ 1 = qr+ 1Br + Br- 1. Then Am/Bm = qo, ql, q2,. - . qm) 
Let d gcd(n', f). Since dID; we see that DfI d2 is an integer. If D Ifl/d2 ? [82], 

putj k; then BJ =IfI/d < 11/8 . If D IfI/d2 > [82], findj such that 

DBJ2 < [82 ]If I and DB21 > [82] If I. 

Since Df/d 2 is an integer, we know that Bk = If Il/d > f1/8, and therefore such a j 
must exist. Further, 

B < I If 1/8 
Put 

A J AI)j 
\\-BJ -BJ_ - 

We have I K I - 1. Transform the canonical basis by K. If the new basis of 6 has 
the form 

(8.1) 
ml + m28 + m382 n1 

+ n28 + n382} 

***We use the notation [a] to denote that integer which satisfies a - I < [a] < a. 
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then m3 = -BL; n3 = -B-I 1 m2 =AJ IfI -B1n', n2 =AJ_ If l-B,_n'; thus 

In3 1<IM3 1< If1/8 . Also, if D i1l/d2 < [82], then m2 = 0. Now it is well known 
that 

lfl B, B B, +, 

hence, if D if l/d2 > [82], we find that 

Im21<lfl/B1?1 < 8 1f 8 /[82 ) < 1.0003 V811 forD> i05. 

Also, since n2 and m2 have different signs, m3n3 > 0, and 1m2n3 - m3n2=-IfI, we 
find that I n2 <lIf/M3 1. 

Thus, after transforming our normal basis by whichever of the matrices K we 
select, we obtain a new basis of the form (8.1), where 

(8.2) 0 < mI, n2 < p, ln2 lclfl IM21< 1.00038111, 

81n31< 8111, 8Im31< 8111. 

We call this step where we find this new basis (8.1) the pre-reduction step. 
Incidentally, if t = (rm + 8) If Il/p, we see that 38 Ifl/2p,qA = V8 If 1/2p, 

t2 + 712 =3f282/p2. Thus, if % is a reduced lattice, like 4J,, then, by Lemma 7.4, 
P/lf I< F/I8. This allows us to improve the result (6.3) of [18] to 

(8.3) c1,/Ie,l< 38. 

Let M > = (mI + m28 + m382)/p, v = (n1 + n28 + n382)/p, where (8.2) is 
true. We have Im2 1 +I m38 1< 3rS 11. Now, if p2/If I> 9.0003D, we have 3 8111 < 
p78 and I 1= Y8 M2- m38 l/2p < r/ /2; hence, M* exists. We also have 

3(mn2 + m38)2 + (i2-m38)2 =4(rn2 + r2r38 + m282) < 4p2/382. 

Hence 2 + (2 < 1. By Lemma 7.4, we see that M* E C1. 
We now know that if p2/lf I> 9.0003D, we can easily, by the pre-reduction process 

described above, find a basis { 1, A, v} of 6i such that M* (- ,*) E e, and Mt* > 0. 
We now show, given y and the fact that ImI I< p, how to find X such that 
9t,= (1, X, P), A(,-:A ) (E Cl and X> 0. 

Let X = (ml + m28 + Mr382)/p. We first note that if M* E C1, then IXI< 1, 
IX'I=IA "1< 1. Since 3m*/p = X + ' + A", we have I m* < p. If mlI < 0, replace m 
by m, + p. We now have 0 <im, <p. Since m*_ ml (mod p) and lmr* l p, we see 
that ml* is either ml or m- p. Put mr* equal to that one of mlI or m -p which has 

least absolute value. 
Put 

m-1 - ( -*2- DM2m3)/lfl, m-2 = (Dm3 - M*m2)/,If I 

m3 2 ( 2- M*M3)/|f| /f t 

pE mimi + D(m2h73 + M3"2). 

By using the reasoning of Section 9 of [18], we see that in order for A C C, we 
must have 

(8.4) 22 + 3T(iii1p - Mr2) < Q2. 
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Also, if I X 1< 1, we must have N(X - 1) < 0 and N(X + 1) > 0; hence, 

(8.5) - (Q+3mi) < + 3Tm< Q + 3m. 

Thus, if (8.4) and (8.5) hold, we have our value of X. If one of them does not hold, 
then we can put m equal to the other of the two mi, m -p, from which we made 
our first selection. Since we selected the value of ml such that I ml I is minimal, we 
usually find that the first selected value of ml works. If E < 0, replace ml, m2, i3, E 
by -mr, -nM2, -nM3, and -E. We now have X > 0. We call this process of finding X 
from y the find step. Note that it is possible to show that either X < .8 or I X' 1< .8. 

When we find X, we can put yg = X and Yh =v and then determine a new lattice 

(1 /Yg )4 by the invert step of Section 4. Notice that we can save some labour in the 
invert step if we retain some of the calculations performed in the find step. Note that 
it is possible to show that either X < .8 or I X' 1< .8. 

Thus, we have an algorithm for finding yg when p2/lf I> 9.0003D. When p2/If 1< 
9.0003D, we make use of the results of Section 7. We can find Ap and op by using 
algorithm A of [18]. However, we have the same problem of precision in using A as 
that mentioned in [18]; thus, we must modify this algorithm. We can not simply use 
the modification given in [18], because it was assumed throughout the discussion 
there that the only points of 6 in C2 were (0,0,0) and (? 1,0, ? 1). This need no 
longer be true here. We also point out that, since X I X' 1< .8, no more than O(log D) 
pre-reduction steps need to be executed before we find that p2/If 1< 9.0003D. 

Let {1, t, v} be a basis of the form (8.1) such that (8.2) is true. Since p2/lf I< 
9.0003D andf I p, we deduce that I f I p < 9.0003D, pll f< 9.0003D and therefore 

(8.6) 1 m21 , d I n3 1, I m3 1< /, I n21<9.0003D, 

where 3.0026 2. 
For any Q E4 , where Q - b = (q1 + q26 + q382)/p, ql, q2, q3 E Z, define 

X = q2il + [I6]q3, y0 = q21 - [I11]q3, 

x, = [36I2]q2 +[36212]q3, yi =[3612]q2 -[ 32]q3, 

where I1, I2E Z. We will specify values for I, and I2 later. 
We require 

LEMMA 8.1. Suppose 2 Ee 6 and I q2I +1 q3 1< 2k. Leti 2 > k/p(1/2 - F/4), and 
let (c,, 'q,,) be the puncture of S2. If I - 1) I2p, then Im,, I> V3/4; if I x,,, I2p, then 

I ,I> A/4. 

Proof. Since 

(8.7) i JZ-/2pI21 , 1 ,. - x-,,/2pI21 

<(Iq2I +q31)/2pI2<k/p12< 1/2- 3/4, 

the result follows easily. D 

LEMMA 8.2. If the conditions of Lemma 8.1 hold, except that both IYi,I and IX-,, I are 
now less than I2p, then Q* E C21. 

Proof. From (8.7) we see that I', Ij< 1 - F/Y/4 < v3/2 and I < 1- V3/4. 
Since *2 + n2 < 1, we must have S2* E C , by Lemma 7.4. D 
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Lemma 8.2 is an important result for the development of our algorithm for finding 
yg; for it allows us to assume that our current basis { 1, ,t, v} of 6j{ is such that one of 

I A or q I must exceed F/4. If neither one of them, as determined by an 
examination of yp and x- exceeds V3/4, then we can immediately send ,t to the find 
step for the determination of a value for yg. We will now present several lemmas. As 
the methods of proof of these lemmas are very similar or identical to the methods 
used in proving analogous lemmas in Sections 7 and 8 of [18], we will only state 
these lemmas, except in those cases where there may be some differences in the 
proofs. In these cases, we will sketch the proof. 

LEMMA 8.3. If I, > 3.1(2,8)3/S, ,t and v are given in (8.1) such that (8.6) holds, 
then sgn(x,) = sgn(Q,), sgn(y,) = sgn(7, ), sgn(x,) = sgn(t,), sgn(y,) = sgn(,q,), 
sgn((, - ) = sgn(x,, - x,), sgn('q,, - q,) = sgn(y, - y,). 

LEMMA 8.4. Let (,, r be the puncture of rl C % such that 0 <C <,, < ' 

< l71.. and let (,, ,) be the puncture of 52 C 'I. If I, > 3.1(4 )3)/8 and 

I [(w/4T] - [7qw/7qYT] I< 3, then [/,,I,] = [x,,/xr] and [ =q,/7] [y ,/y ]. 

Proof. Let rI : 7T = (PI + P28 + p382)/p, Q - w = (q1 + q28 + q382)/p, k1 = 

[(/wlj, k2 = [mnJ/7], ti = q2-kjP2, ui = q3- kjP3, ( = 38(ti + ui8)/2p, mi 
= V8 (ti - ui8)/2p (i = 1, 2). By using the reasoning of Lemma 7.8 of [18], we 
find that 

In2I, I I2 - 'q,7r<I'q I 1421 *142 - (Xl'< 414vff1 

It follows that I8uiI< 4/3, 8(ui -P3)I< 4#, / IP31< 4# (i 1,2); hence the lemma 
follows from Lemma 7.5 of [18]. D 

LEMMA 8.5. Let H and 2 be as defined in Lemma 8.4, and suppose that I, > 

3.182(2V38 + /3/8)3. We must have [x,/x,j [,/,] when (,, > V3/4 
and [y,,/y,,] = [n /r1,,] when 'q,jI> A3/4. 

LEMMA 8.6. Let rl and 2 be defined as in Lemma 8.4 and suppose that { 1, 7T, w} is a 
basis of 6J. If I, > 3.1(4/)3/8 and I [x,/x,] - [Yw/Y] I 1, then [,/t] = [xjx,] 
and [m /rw,] = [y/yr]. 

Proof. We note that the Eqs. (7.2), (7.3), and (7.4) of [18] hold with er replaced by 
f. By using the facts that 

lP21 +IP318 <2/3, IfI<9.0003D and 4/3(2/32/8 + 9.0003D) <3. 1(4I)3/8, 
we can show by the methods of Lemma 7.10 of [13] that 

IP2 + P381 ,IP2 - P38 1> 8 If1/3#; I X7 lIY,T I> 3 - 

Thus, we can find that IX I IP2 + P38 I, IY, I P - P38 I> 2 If I , and therefore 

I t./ - x.,/x,I , In w1nr-Ywl/Yr I< 1/2. 

Since I [x /x] - [Ywl/Yr] I< 1, it follows that 

I [emma8.4. ] IS 3, 
and we have the result from Lemma 8.4. O 
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LEMMA 8.7. Let rI and i be defined as in Lemma 8.4. and suppose that { 1, g, c} is a 
basis of and one of (, or 1q71X exceeds Vi /4. If I, > 3.1(4,83)/d andj ] [x,,jx,] - 

[y,,Jy,], then j and [ I/,] - [r /r] have the same sign. 

Proof. We use the result that 

)wnw-B = 33Df/2p2 

and the method of Lemma 7.1 1 of [ 18]. 0II 
Let K,(a, b), K2(a, b), K3(a, b) denote, respectively, the matrices 

{a I. I aA 0 a 
Nb 0/ NO b/ I b/ 

Let I, > 3.1(4,8)3/8, I2 > 2(3,B)3/ V3. We now give that part of the reduction 
algorithm that we call 

A lgorithm R I 

(i) Transform the basis {1, ,u, v} of (8.1) by (k' i?), where k, = sgn(x,), k2 = 

sgn(xV). 

(ii) If X,V > x, go to (iii); otherwise, transform the basis by K2(1, 1) and go to (iii) 
unless y,yp < 0 and Iyp I>Iy, I . If this latter case occurs, transform the basis by 
K1(0, 1) instead of K2(l, 1) and then go to (v). 

(iii) If ypyM < 0 go to (iv); otherwise 
(1) If [yp/y,,] = [xp/x] = k, transform the basis by Kl(-k, 1) until [yp/y,j # 

[xl/x,,]. When such a basis is found, execute one of the following steps. 
(2) If [xp/x,] + 1 1 [y^/yt] = k, transform the basis by K1(k, -1) and go to 

(iv). 

(3) If k = [x/x,] = [y>/y,] + 1, transform the basis by K1(-k, 1) and go to 
(iv). 

(4) If [x /x,, < [y/yply - 1, execute the find step and terminate RI when IY, I 
and J- < I2p. If IYT1, I29p, transform the basis by K2([y/y,, -1) and go to (v); if 
<Y I '2p and x-, > I2P transform the basis by K ([x /x, I + 1,-i) and go to (v). 

(5) If [xp/x, ] > [yj'yj + 1, execute the find step and terminate RI when 
i I, X < I2 p. If IhT I '2p, transform the basis by K2(-[YV/Y,]-1 1) and go to (v); 

if IY, j< I2p and x- > I2p, transform the basis by K1(-[x1/xtj, 1) and go to (v). 
(iv) If I y;, I>Iyp I, go to (v). If Iy,, ISIyp I and Ih I-, X-t < I2p, execute the find step 

and terminate R1. If IY I2 2, transform the basis by K2([-yV/y, 1) and go to (v); 
if I < I'2p and x- > I2p, transform the basis by K x(- x,/x, ], 1) and go to (v). 

(v) If IYV la I2p and IY, V'2 I2P, terminate algorithm R1. If x-t < I2p and IYJU IC I2p, 
execute the find step and terminate RI; otherwise, go to (vi). 

(vi)(1) If IY 1I I2P, transform the basis by K3(1, k), where k = [-yAl/yp] and go to 
(v). If LIY I I2'p, go to (2). 

(2) If I- Ih I2p, transform the basis by Kl(-k, 1), where k = [xp/x,,] and go 
to (v). 

THEOREM 8.8. Suppose that we execute algorithm RI up to the beginning of step (v), 
and suppose further that it was not necessary, during this process, to go to the find step. 
If ( 1, K, X} is the basis of 6R that the algorithm has produced up to the beginning of step 
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(v), then we must have 

(A (K , > 71K I lI I 71A I no <171 0, 

where ((A, 71A) and (K, qjK) are, respectively, the punctures of A (-) X) and K (~ K). 

Proof. Analogous to that of Theorem 7.12 of [18]. We use p instead of ar and /3 
instead of (1 + 3)682. D 

LEMMA 8.9. Let K, X be as described in Theorem 8.7. We must have 

(A/3, ,K/3 1 71 1/A3 I 71K 1/3 < 3/8/2P. 

Proof. Let {1, ,u, v} { ',(ml + m26 + m382)/p,(n, + n26 + n382)/p} be the 

new basis which results after step (i) of RI has been executed. Note that (8.6) is still 
true. If { 1, ft, v-} is the basis produced from { 1, ti, v) after step (ii) of RI has been 
executed, by Lemma 8.3 we have 3 possible cases: 

(1) { y ~ when >(; 

(2) - when ,< I, I > 
In'41 q1E4<0; 

(3) when (, < and either > O or I I< I I I 

In the third of these cases, we see that 

2 

If qt,7q, > 0, then mq > 0. If < 0, then l 1< l 7 and 

71y,q = nL Iy (171p4l - Iq1v) > ?- 

That is, in this case, one of the substeps of step (iii) of RI will be executed next. 
Thus, if we arrive at the beginning of step (v) by skipping over all the substeps of 
(iii) and step (iv), then we must have X= t, K =v or X =v, K = . 

Suppose that this is how we did arrive at the beginning of step (v), and suppose 
further that X = y and K= V. Then (K/3 < (X/3 = (y/3 < 6(2:)/2p and l mK I> 
lqI. If (K < 1/3, then In2 + n381< 2p/98. Since In381<#/ and 336 > p, we find 

that I n2- n381< 2p/96 + 2/P and I jKI/V Ilj,I/V C 3 83/2p. If K > 1/3, we 
use the result 

(8.8) 3 LA K x D3 3DIf /2p2, 

together with the facts q,1Kqx < 0 and (A > (K > 1/3, to show that 

I jK/3 < 3Df/2 p% < 9D If I/2p2 < 3#8/2p. 

If, instead, we have X v, K = at the beginning of step (v), we can show the truth 
of the lemma by using a similar argument. The only significant change in the proof 
is that we first assume 1% 1< 1/2V3 and then assume 1 I> 112> . 

If we arrive at the beginning of step (v) by executing one of the substeps of (iii) or 
step (iv), then we must execute one of substep 4 or substep 5 of (iii) or step (iv). Let 
{ 1, K, X} be the basis of RI which we have obtained from RI just before either of 
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(iii)-4, (iii)-5 or (iv) is executed. If ((-, q-) is the puncture of K (> K), we certainly 
have 

I 1l/3, l I3 3 < 6/PI. 
If in any of the above steps ((iii)-4, (iii)-5, or (iv)), we start with jY-K-I I2P, then a 

transformation of the type K2(a, b) is used and K K. It follows that IqK I> V3/4 
and from (8.8) 

(I/3 < 2 D If I/p2 < <6/p. 

Also, l|, I1 / V/ < I NK 1/ F < 8f1p. 
If we start with I XK- 1I2p, then a transformation of the type K (a, b) is used and 

we get X = K. Thus, (K> VT3/4 and IqK I/ v3 < 3/6/2p. The rest of the results 
follow from the facts X =K and (A > K. D 

LEMMA 8. 10. Let { 1, y, v} be any basis of 6A/ such that , > t > 0, Iq I1 1>1 7 I and 

mt,<O. If I m IV/4, jj 1I2P, ImI I/ V < 336/2p, then I I> I4/4, 1 n21 + 

1n316<3,8 and In21, I6n3< 862; if (,>V /4, x I2p, PI/3<336/2p, then 
> V;/4, 1m21 +1m316 < 3/3 and Im21, 16m3I< 862. 

Proof. We prove the last part only; the proof of the first part is similar. Since , 
> ,/X/4, we have 

4 3F3DIfI 12682 
< 

F3 2p2 and I3m2-M3 ' I< F 

Since I m2 + m36 1< (336/2p)(2p/8) 3/3 (> 1262/ F3 ), we see that I m *21 + 

Im31< 3,8/. Also, Im21, 16m31< 1/2(3/3+ 1282/s) < 882. By Lemma 8.1, we 
have (A > V/4. D 

We are now able to present the main result of this section. 

THEOREM 8.11. Algorithm RI either executes the find step before it terminates or it 
terminates with a basis t 1, 4,, k} of 6 such that 

187+1' 4 - > '/4, Iqp I /4, 17q. I> (I - Iq.0 1)/2O 

Proof. Let ( 1, ,u, v} be the basis of 6 which algorithm RI has produced up to the 
beginning of step (v), but before step (v) is ever executed. By Lemma 8.9, we have 
1m21+1m318<313, 1n2I+1n31I<3/3. Thus, if I-II2p and I2p, we know 
from Lemma 8.1 that I Ip 1 - A/4 and I t> 1V /4. Also, if x] < I2p and 
IY, I<I2p, then I EA I, t t 1< 1- /4 and the find step will obtain a value of yg. 
Suppose that we have It ht< I2p, x > I2p and I -l< I2p. We must go to substep 
(vi)-2. Since Im21 +1m331< 3,8, we have > > A> V3/4 by Lemma 8.1 and Theo- 
rem 8.8. Hence, tI2 + m33I> p/2VF3 and 

tft/1m2 + m331 +1m3I< 23 + 83 

by Lemma 8.10. Since II > 3.13 2(2JF3 + 88)3, we must have [xp/x,] = [v/(] by 
Corollary 7.5.1 of [18]. If we put -q0) = 71V, -1 (2)= -N, I(I ) = (,2' 1 (1) - V, 

,u) =p,u, k =[X(')/x + we see, by Lemma 8.10, that as long as x-(i) 2 I2p and (2) A IV ese,b . s a 
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IY"') I< I2p for i 1, 2, 3,. j, substep 2 of (vi) will generate two sequences 

X1(I) X(2) 1(3) 01J) 

((I) ((2) ((3)' (j), 

suh ha r'+l= -r(1) + n'q0- ), ((+ ) = --k,( + +(-) 1(+) = -k,' + '-. such that 1?1) k q 
IL i 1I 

Also 

I (l) I<l I (2) I<l I (3) I< . .. '1 Iq"' I 

~(I) > ((2) > ((3) > . .. > ((0) 

k, [t'/(+' and q(1)'qn(1'-) < 0, i = 2, 3,. J..j 
We also see that if m(') + m('8 = 2pt'0/38, then t m(i')I + 8 Im(l) I< 3/ for i 

1, 2, 3,..j (Lemma 8.10). Since there are only a finite number of possibilities for 
(mO), m(O'), there must be a finite value for j such that either X(J) < I2P or 

70(J) 1I2p. If X-(J) < I2p and tI-(J) I< I2 p, then since (J) > 0, we have 0 < < 1- 
V3 /4 by (8.7) and I t(J)t 1 - F3/4 and we send the basis {1, MJ 0 -1)} to the 
find step. If I -(J- I)< I2p and I -(J) I 2: I2p, then we have {1 ,A 1, /10), /I('- ')} 
By Lemma 8.1, we have Int> V/4, 1 tf 1< 1- F//4. Also, if 

-(tl + t2 + t382)/P, (S(1+ 28+ 3 8 )/ 

then 

I,qj=I -1/2pI2 + a, 

where a < (I t2 I +1 t3 1)/2pI2 < 3/3/2pI2. Also, I -1< 1/2 = F3 I 52 -S38 I/4P 
> v 81/4p(IS2 I +1 53 1 8)2 by Lemma 7.1 of [ 18]. Hence 

I1qO 1/2 > F38/4p(3#(3)2 > 3fl/2 pI2> 'aI 

and 

Ity'> (1 - In 1)/2. 

The proof of the theorem for the case in which we use substep 1 of (iv) instead of 
substep 2 follows by using similar reasoning. (See Theorem 8.3 of [18].) E 

9. Determination of yg. As we have seen in Section 8, we have an algorithm RI 
which either finds a value yg or obtains 4 and 4 such that (7.3) holds. We will now 
show how we can obtain a value for yg (if one exists) when we know 0 and A. 

We first put 

X- t2[ 38] + t3[I38 ], Yp = t2[38] -t3[I382], 

XO =s2[I38] + s3[I382], yi = S2[138] -3[I382] 

where I3 E S. Since 

-1 t2l-1-t3 I + 
2 

I3 h <IYpI< 23TA +It21+1t31, 
F3 F~~~~3 

we see that I I < F/ /2 when I YA I< pI3 - I t2? 1 t31 . Also, if 

(l t2 +1 t3 03 /2I3p < .03, 
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then I I< 1.19 when 51 Y4,I< 6pI3 and I -rqy 1 when 51 Y4,'> 6pI3. Thus, if I3 > 
100/3, we see by Theorem 7.7 and its corollaries that we have the possibilities shown 
in Table 2 for the set e of Section 7. 

TABLE 2 

Restrictions Y, 

I Y,'1< P'3 - It21 -1t31 {(1,0),(0, 1),(l,-1)} 

51 Y, I< 6pI3 {((, 0),(0, 1), (, -1),(1, 1)} 

5 I YE, 1> 6pI3 ((I, 0), (I , - 1), (0I 1), (2, 01) 

Let 1?=k, and put q, = a, s + b, t I X, = a, X. + bj,X, Y, = a, Y. + bjY,+, d,= 
lals2 + b1t21 +lals3 + b1t31< 9/3, , = al4 + bl4 for (a,, bl) E 6S, 1 < i < k. If yg 
exists, by Theorem 7.7, it must have the form I + w,, I EE and 1 < i < k. We first 
note that if 

(9.1) IY [2 pI3 + 1 + d, 

then I -q,,, I> 1 and yg # c, + 1. Thus, if (9.1) is true, we can eliminate (a,, bl) from CT 
and decrease k by 1. Also, if (9.1) is not true, then 

In q,, < 2 when I3 > F3/2(d, + l)/p > 9fl. 

We now require 

LEMMA 9.1. Let Q (0 c) EE 6R, where c = (q, + q28 + q382)/p, and let Q (0 @), 
where - = I + c and I EE Put I3> d =I q2 1 +I q31 I X = q2[I38] + q3 [I382]' j 
[X/I3], 1/ = [(j - 2q,)/2p], 12 = 1 + 1. If jI3- X> -d and 2p j - 2ql, put 13 = 
1- and u = 3; if jI3-X < d-I3 and 2p Ij + 1-2q,, put 13 = 11 + 2 and 

u 3; otherwise, put u = 2. If I j< 1, we must have / E {411 I 1 i < u}. Further, if 
IE {11 i u}, then I j< 2. 

Proof. If I I< 1, then 

-1 < I + (2q - q28- q382)/2p < 1. 

Now q26I3 + q38213 = X + a, where I a 1< d; hence, 

-1 + (X/I3- 2q,)/2p + a/2pI3 < I 

< 1 + (X/1I3- 2q,)/2p + a/2pI3. 

Let j - 2q1 = 2p1l + r, where 0 < r < 2p - 1. Since [(X/I3 - 2q,)/2] 
[(j - 2qi)/2p] = l,, we have 

0 < (X- 2qI3)/2pI3-11 = (X- I3j + rI3)/2pI3 < 1 
and 

-1 + a/2pI3 + (X- I3j + rI3)/2pI3 < I-11 

< 1 + a/2pI3 + (X- I3j + rI3)/2pI3. 

Hence -I < I -11 < 2. If I = 11 + 2, we must have 

a/2pI3 + (X- 1j + rI3)/2pI3 2 1. 
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Since 0 X (- I3j)/2 pI3 < 1/2, we see that this can happen only when r = 2p - 1. 
In this case we must also have X - I3 j + a ? I3 and therefore X -I3 j + d> 13. 
Similarly, we can show that if I = - 1, then r = 0 and I3 j-X > -d. 

On the other hand, if 5w+l1 ,1 +K +C(1 -iu), then 

K/2p + (2pl + 2q, - q28 - q362 )/2p 

K/2p- a2pI3-( X-I3j + rI3)/2pI3 

Since K/2 - a/2pI3- (X -I3j + r13)/2p13 1< 2, we see that I I< 2. 0 
We now let 'Ir (1 < r < u,) be the values of 'r specified by Lemma 9.1 for each W, 

defined above. Put qlr= q, + Plir, Qir 'ir = Itr + CI where 1 < i < k, 1 < r < u 
and let 

'2S={3qlr + X, I I < i < k, < r < u,} 

1' r I2r 1 < i < k, I < r < u,} 

We prove 

LEMMA 9.2. If I3 > 487/3 D and WKr is the least element of Kil such that Q, 2E C, 
then either Qir c C, or there does not exist a value for yg in lJl . 

Proof. Certainly, in view of the remark made earlier in this section and Lemma 
9.1, if there exists a value of Yg in '7R/, then one of the elements of ("P must lie in C,. 
Since (,, > 0, we see that if EECr E C and Wir < 1, then Qir C IS by Lemma 7.1. Let 
0 (> 6) e 'P such that 0 C (& and 0 # i2r. Let W, be the value in h'l correspond- 
ing to 0, and let W2 be the value in 0'1S corresponding to 0i,. If Q,2 4 C,1, then 
wir> 1 > 6. LetX = -wir < 0, whereX = (x, + x28 + x382)/p. We have Ix21 +1 
x361< 3(313) 913 since IS21 +1S3I6 and It21 +1t3I6 are both less than 313. If 

Xp = (QX '1) we have I Dx I I -81x I 3 since I -q1 I< 1, I -q,,, I' <1 and <G1 1, <, 1 2. 
If X X, then X F 6'4l/ and up IfI must divide N(pX) by Theorem 4.2; hence 

I N(X) I I X I (,2x + Dx2) 
I 
f It/P2. 

Since q2X + 2 < 18, we have 

IxI> auIf/18P2 

and 

13PI1X> I3aIfI/18p > 13/18F9.0003D 

>91>Ix21+1x3IS>II3px- WI + W21 

Thus, sgn(X) = sgn(W, - W2). Since x < 0 and W,- W2 > 0, we have a contradic- 
tion. D 

Our algorithm to find a value of yg, given 4 and 4, can now be given as Algorithm 
R2 below. 

Algorithm R2. Put 13 > 487/3 F. 

(i) Put T = p/lftI Q = Tp. Calculate X<,, Y<,, Xx,, Yx,, as above. 
(ii) If I Y,;I< pI3- I t2l -tt3 I, put k = 3 and (a,, bI) = (1,0), (a2, b2) = (0, 1), 

(a3, b3) =(1,-1). When 5 1 YII< 6pI3, increase k to 4 and put (a4, b4) =(1,1). 
When 51 Yt I> 6pI3, put k = 4 and (a,, bI) = (1,0), (a2, b2) = (1, -1), (a3, b3) 
(1, 1), (a4, b4) = (2, 1). 
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(iii) For each pair (a, b ) (i = 1, 2. k) calculate Y = a, Y + b YJ. If 

I Y, >3 pI3] +d3+ 1 

where di =a,s2 + blt, I +Ials3 + blt3 , eliminate the corresponding pair (a, bl) 
and decrease k by 1. For the remaining pairs (a, bl), calculate q= als1 + b1t1, 

Xi a X. + b X;, put 

I l =4[([jX113] -2q,)/2p], 

112 = Id + 1. 

If [X11I313 - X > -d, and 2pI[X11I3]- 2ql; put u, = 3 and 113 = - 1; if 
[X/113]13 < d -I3 and 2pI[X X13]- 2q, + 1, put ul 3 and 113 = 1 + 2; other- 
wise, put ul 2. Compute qlr q1 + pllr (1 ? i ? k; 1 r < u1). 

(iv) Put KI\ =I3qlr + Xi I 1 ? i < k, 1 < r ul}, and find the minimum I I3q, + 

XK I of IPut qn A, m2 a K S2 + bKt2, nm3 a K s3 + bK t3, and calculate the 
integers 

ml = I(m-DM2M3)/llf m2 =(D 3n- MIM2)/Ilfl 

m3 = (in-mjiD3)/l M l.' I =(i h?D(n2M3 +2rr33W2))/p. 

If E < 0, replace ml by -mn (i = 1, 2, 3) and E by -E. If 

(9.2) E + 3T(mWp - mlnE) > Q . 

we cannot have M - y = (mln + M26 + M362)/p in C (Theorem 9.4 of [18]). Thus, 
we eliminate 13qKX + XK from "L[ and return to the beginning of this step. If (9.2) is 
not true, check that 

(9.3) E + 3TMI < Q + 3m1. 

If this is not so, then / > 1 and M Ce,. Thus, g{ must be a reduced lattice by 
Lemma 9.2. If (9.3) holds, then M E C, and we put n1 = t , n2 = t2, n3 = t3 when 
K 1; otherwise, put nl = s, n2 = S2, n3 = s3. We have a new basis of {1, , v} of 
(J), where v = (n1 + n26 + n382)/p and M (_ y) E e,. Thus, we find that yg = t 
and Yh = P. 

With this algorithm, we are now able to conclude this section by presenting our 
complete reduction algorithm. This algorithm finds, from a given basis of a 1-lattice 
(R, a reduced lattice S such that 6{ - S. It also calculates G = -log y, where 6R= -y 
and y 'X. This algorithm terminates in O((log D)2) operations. 

Reduction Algorithm 

(i) Initialization. Putj = 1, 5- =6{, G = -log y = O. 
(ii) Find a canonical basis of S (see Section 4). 

(iii) Execute the pre-reduction step of Section 8 on this canonical basis of S . If 
possible, use the find step to determine a basis { 1, y(J), y(J)} of S and go to (v). If 
this is not possible, go to (iv). 

(iv) Execute the algorithm RI and, if necessary, R2. 
(1) If is not reduced, then we will find a basis {1, y(J), y(J)} of S . After 

doing this, go to (v). 
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(2) If S, is reduced, terminate the reduction algorithm. We have S =5, and 
G = -log -y. 

(v) Perform the invert step of Section 4 on the basis (1 y1', ( ,) } of 5, to find a 
basis of the lattice + (J) Replace G by G + log(l /y(j) l). increasej by 1 
and return to (ii). 

10. Implementation and Computational Results. We call the process by which we 
obtain a basis {l,G0(r+ 1),6(r+I) } of I'r? from a basis {lt , 6r) j(r)} of 6R r (see 
Section 3) a simple step. One means of doing this has been fully described in [18]. 
When this algorithm was implemented for values of D > 106 it was found that the 
amount of precision needed by Algorithm II of [18] was large enough to slow the 
program's running time significantly. To overcome this difficulty we modified 
Algorithm II along the lines of Algorithm R2 of Section 9. 

We replaced step (ii) of Algorithm II by the step 
(ii') If I Y,pI< UrI3- It2 I1 t3 I, put k = 3 and (a,, b1) = (1,0), (a2, b2) (0, 1), 

(a3,b3) (l,-1). When IYx,I>aI3-It2I-It3I and 4IX|I>arI3, put k=4 and 

(a,, b1) (1,0), (a2, b2) = (0, 1) (a3, b3) = (1,-1), (a4, b4) -(1, 1). When I Y,, 
a13-It2j-jt3j and 4IXv,I< rI3, put k = 4 and (a,, b1) = (1,0), (a2, b2) = 
(1,-i), (a3, b3) =(1, 1), (a4, b4)= (2, 1). Let d( {(a,, b,) I1 < i < k}. 

We also replaced step (iii) by the step 
(iii') For each pair (a,, b,) (E C. calculate Y, a,Y,1, + b,Y,,, d, -Ia,s2+ b,t21 + 

Ia,s3 + b,t3 1 If 

I Y,) 1> 19J3 + di + 1, 

eliminate the corresponding pair (a,, b,) from C and decrease k by 1. For the 
remaining pairs in 6l calculate q, = a,s, + b,t1, X, = aX, X+ b,Y,,. Put 

li1 = [([ X,/I3] - 2qi )/2a12,r] 1,2 /li + 1. 

If [X1/I3]I3-X, > -di and 2crr I[X /I3]-2qi put ul - 3 andl,3 1,1- 1; if 

[ Xl/I3] I3-XI < d,-I3 and 2 ar I [ X/I3 ]-2q, + 1, 

put u, = 3 and l,3 = ill + 2; otherwise, put ui = 2. Compute q,1 = qi + Urllj (1 i 
' k, 1 < j u,) andQ= {I3q,j + Xj 1 < i sk, 1 < j < u,}. 

This new version of Algorithm II is valid for I3> 182h83 , a much smaller value 
for I3 than that needed in the old version. This follows from the methods used in 
Section 9 here, especially Lemma 9.1. We must also make use of the methods of 
Lemma 9.2 of this work, Lemma 9.3 of [18] and (8.3). 

Let 6Yr have {l,(m1 + m28 + m382)/car, (n1 + n28 + n382)/ar} as a basis, and 
suppose Rr -:r- I log 9 i). The complete algorithm for a doubling step when 83 = D 
is given below. 

Doubling Algorithm 

(i) Find a canonical basis of 1Pr as described in Section 4. 
(ii) Find a basis of %R23 by using the method of Theorem 6.2. Also, calculate w by 

the corollary of Theorem 6.2. 
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(iii) Apply the reduction algorithm of Section 9 to 62 to find a basis { 1, 4, v } of a 
reduced lattice S (_ 6A2), together with G -logy, where y5 - 62. Compute 
Rr = 2R- G- logw. 

After we have performed this algorithm, we have a new reduced lattice S = 6PLm 
(1, ,i, v) such that m ! 2r. Further Rn =1 Rr. 

We will also require an algorithm which, given some lattice 6P1r and another lattice 
6R finds a lattice A* S 6 6 with R* R where n Rk - r. We call this the large ~~A'kl ~n n,Wee r ecalti 

step algorithm. We first put Pi = ai/gcd(a, ei); this is L(a1) for the ideal a 
corresponding to 6Ai. 

Large Step Algorithm 

(i) Find 6j such that gcd(Pr, Pj) = 1 and Rj < Rk. 

(ii) Find canonical bases for 6 r and 6jI 
(iii) Use formulas (5.15) to find a basis of W =3t 6]r. 
(iv) Apply the reduction algorithm of Section 9 to 6 to find a basis of a 

reduced lattice 't* (- 6i) together with G = -log y, where y6Ai -@ 6. Since 
gcd(L(cit), L(aj)) = 1, we have t =1 in (3.5) and R* Rr + Rj- G. (Note that 
R*F Rr + Rj.) 

Remark. In order to accomplish step (i), it is often convenient to have a 
pre-computed list of lattices 6Yk-i (i 1 2, 3,... ,m). Since the probability that two 
randomly selected integers be relatively prime is 6/v 2, m need not be very large. Of 
course, one could dispense entirely with this search step by using the formulas in 
Section 5 to obtain a general composition algorithm for finding 6Y k'Ar. Such an 
algorithm would execute in O(log D) operations. However, in practice, the search for 
6YR here is usually very brief. In fact, we found that most oftenj = k or k -1. 

We will also need the following simple lemma. 

LEMMA 10. 1. Suppose we are given t lattices 

(10.1) 6'b' ('2b' 6'3b' * * tbi 

together with the values of Rb, R 2b, R 3b, ..., R tb. Suppose further that R tb < R andy, 
I# _ 

is a lattice such that R = mR, where m E Z and m > 1. If Rr <R < R where 
Rn-Rr R bX(,- 1)' then one of the lattices 

6JLn 96An+0 6An+2,) *, *A @nJb-I 

must be one of the lattices in (10.1). 

Proof. Let 0n = Or Cg2Oi, where 1 0 A", u < Eo. Then if = '3= 

and R , RV < R. Since Rn -Rr < R, we get 

? < Rr -(M -I)R <R -,-Rn -(M -I)R < 2R. 

Thus, 

RVRr-(m-1)R, RU =Rn-mR and RU+R-Rv < Rb(t(l). 

Since R - Rv > 0, we have Ru < Rt(b ). It follows that one of the b lattices 
6'n' 6'n?6' _'n+2 **' -4-l must be one of the lattices in (10.1). D 
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By using this lemma we can develop the search algorithm. We assume that the 
sequence of lattices (10.1) has been pre-computed and that J{k = 6i t_1),, Given a 
lattice 4{r and an upper bound B, this algorithm finds (if it exists) the value of R for 
a lattice R, such that 

Rr < R B and R = mR (m E , m ). 

It does this by searching the range between Rr and B in large steps of size Rk. 

The Search Algorithm 

(i) Use 'iFlr and 9k, with the large step algorithm above to find 64 * and R*. 
(ii) Assuming ( = 't, perform simple steps on 'Al to find 

(10.2) 6p% I II+ 'A 'A n+2. * , R n+b- 

(iii) Compare each of the lattices of (10.2) with the t lattices of (10.1). This is most 
rapidly accomplished if the abi values for the lattices in (10.1) have been pre-sorted. 
If any abi = ll+, compare IebiI and Ie,,+,I . If they are not equal, we do not have a 
match; if they are equal, then compare Pthi and 'A,+ j by finding a canonical basis 
for both and comparing coefficients. (If the search routine is to be used frequently, it 
is a good idea to pre-compute canonical bases for the lattices in (10.1).) If we get a 
match 6 hi =nPL>n+j then RbR -Rhi, and we terminate the algorithm. If we do 
not find a match, go to (iv). 

(iv) If B - R*, the algorithm terminates, and we know that 'A does not exist. If 
B > R*, put 6Pyr = 6R*, Rr -R* and return to (i). 

If we know in advance that there are two elements Oi (> 6i), Oj (> 6,) in the chain 
(3.1) such that 6i < Oj < -O and N(6i)IJ2, N(6j)IJ2 (see [15],[16] for some simple 
criteria), put p = 1; otherwise, put p = 0. When p = 1, we have e) = i3/N( i) and 
R = 3R -log N(6i). 

We are now ready to give the algorithm for finding R and h. We assume that E 

V'ic2JF(Q)/2r has been pre-computed and that we have values for input 
parameters, D, E, L, b, t, x, k. 

The Main Algorithm 

(i) By using simple steps starting from 6 I calculate and store in memory a table 
of lattices each of which is represented by the set of integers 

{m(i), mVM, mS M,) (i), n() Coil,, 

where the corresponding lattice 6Ai has basis 

{ 1(m(i) + m(')s + m (i)2V)/ai, (n(i) + n(j')3 + n(i)82 )/a1} . 

We also store the corresponding value of Ri. The lattices we store are 
.jb 

(j = 1, 2, 3,. . ., t). It is also convenient when performing large steps to have a table 
of lattices (Itb-j (j = 0, 1 2, 3,... ,2b). If in the process of creating these tables, we 
find R, that is, R < 3Rbt - log J2 when p = 1 or R ?Rb when p = 0, then we can 
usually calculate h from E without much trouble (see [1]), and we are done. We may 
assume that Rbt < R for the rest of this algorithm. 

(ii) Put LI = Rbt, and find that value of K such that E/2K < L I and E/2K- I > LI. 
Put U = E/2", and find in the table produced in step (i) that lattice 6A,,, such that 
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Ri < U and Ri(U+ 1) > U. Perform simple steps starting with 6Aiu to find that lattice 
's1 I such that R,, < U and R,,+1 > U. Put X = 1. 

(iii) Perform the Doubling step on 6k to produce YItm and Rm1. Perform simple 
steps, starting with (.'m to obtain 6Yb and Rb, where Rb < 2xU and Rb+1 > 2\U. 
Increment X by 1, and replace 6J{n and R,1 by (Pb and Rb, respectively, If A < K, 
return to the beginning of step (iii); otherwise go to (iv). 

(iv) We now have a lattice 6A,? where Rn- E. Use the search algorithm to find R 
starting at R, and going up to B ? E + L. If this is unsuccessful, replace E by 
E - L and go to (ii). If this fails to find R, we say that the algorithm fails and we 
either increase L or terminate the algorithm; otherwise, we now have R = hR. Put 
E =R. 

(v) We now determine h. We first put i = h* 1, H = E. 
(vi) Find v and all primes qa (a -1,2,3,...,v) such that q1 2, qa > qa and 

qa < `/klkE (a = 1, 2, 3, . . .,) v). 
(vii) If i < v go to (1); otherwise, go to (2). 

(1) By using the methods of (ii) and (iii), find 6(in and Rn such that 
R,I < E/q, - x and Rn +1 > E/qi - x. That is, we use E/qi - x for E in (ii) and (iii) 
in order to find (in Perform simple steps starting with 6Yn until we find some 6Ak 

such that ak = 1 or Rk > E/qi + x. If the former case occurs, we know that qi Ih. 
We replace the value of h* by that of qih*, the value of E by that of E/q, and return 
to (vi). If the latter case occurs, we know that qi I h. We increment i by 1, and we 
return to the beginning of step (vii). 

(2) Starting with 6r = 6Tb,, use the search algorithm to find R with B 
= kLIE + x. 

(viii) If, in executing (2) we find R, then R = R and h h*(E/R). If we do not 
find R, then R > ,kL1 E. Hence, h/h* < El jkL lE = ,|E/kL1 . Thus, if q I (h/h*), 
then q < jE/kL, and, since all such q's have been examined, it follows that h h* 
and R = H/h. 

Remarks. (1) We could have stored all of the lattices computed in step (i) instead 
of 1/b of them; but, if we wish L1 to be large, this may require more storage than 
the computer is capable of handling. 

(2) We make use of x in substeps (vii)- 1, and (vii)-2 in order to ensure that we do 
not skip over any lattices that should be examined. This could happen because of 
round off or truncation errors in the evaluation of Rn or R. For example, the 
computer's estimate of Rn might be less than E or E/qi, but the actual value of Rn 
might not be. The value of x need not be very large but must be large enough to 
overcome this possibility. 

(3) It is difficult to find what value to use for L here. We give below a theoretic 
estimate which requires the truth of a certain Generalized Riemann Hypothesis 
(GRH). However, a glance at the results in Table 3 will show that this estimate for L 
will often be much larger than that needed in practice. In the range of values of D 
used here we found that L between 50000 and 300000 would usually work. 

(4) Because we cannot be sure of how good our approximation F(Q) is to 1(l), we 
cannot prove with full mathematical rigour that the value we get here for h is correct. 
From the results given below we would expect that F(Q) should give a reasonable 
approximation to 4D(l) when Q is fairly large. Hence, when h is small, our method is 



282 H. C. WILLIAMS, G. W. DUECK AND B. K. SCHMID 

very likely to find it correctly. In spite of our slight lack of confidence in h, however, 
the value that we obtain for R is correct. This is simply because we get a value of hR 
in step (iv), and then we find h in step (viii). Nowhere in the process of finding h did 
we really have to assume that it was actually h. 

As indicated in Remark (3) above, a problem in running this algorithm is knowing 
what value to give L. We now discuss a theoretic estimate of a value for L which 
ensures that R will be found. This requires an analysis of how good an approxima- 
tion E is to hR. Of course we will find R when 

L >1E - hR. 

Let II, (E) represent the product (sum) over all primes q such that q > x, q-1 
(mod 3) and qtJ. Let Q > 3, and put T(Q) r'Q f(q). Then 

(D) = C2F(Q)T(Q) 

and 

I E-hR j< c2 JF(Q) I - T(Q) 1/2. 

In order to estimate T(Q), we will use a method very similar to that employed by 
Cornell and Washington [5]. 

We have 

T(Q) = 11'q2/ (q2 + c(q)q + 1), 
Q 

where 

-2 when (D/q)3 1, 
c(q)~ { 1 when (D/q)3 1. 

Hence, 

log T(Q) = - 'c(q)/q + y, 
Q 

where I'yI< 3/Q. Put B(Q) = 2'Qc(q)/q and A(t) =q<,,(q). We now require the 
effective version of the Chebotarev Density Theorem of Lagarias and Odlyzko [7] 
with constants given by Oesterle [10]. This requires further that we assume the truth 

of the GRH for the zeta function ~t-, where & = f2(4D, p) and p2 + p + 1 = 0. 
We note that n; = [&: 2] = 6 and dg,, the discriminant of 6, is 27J4. Further, if G 

is the Galois group of 6, then I G I= 6. Now A(t) = -2 7Tc(t) + 7Tc2(t), where the 

symbols C and 7Tc are defined in [10]; also, I C, 1= 1, I C2 2. Thus, by [10] 

A(t) = -27Tc,(t) + 2 C1 
C 

Li(t) + 7TC2(t)- 
I N21 Li(t) 

and 

IA(t)Ij< + t g )log 27J+ 6(7 +2) 3 =T log t )2( 

=t l(log t)C( t)9 
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where C(t) is a monotone decreasing function of t. By using the reasoning of [5] we 
find that 

I B(Q) l< 
4 

_ 3lg Q )CQ 

When Q5 > max(1030,27J4),J > 106, then 

I 1 -T(Q) I< 6 log(27J4Q) 
~Q 

and 

IE - hR I< -iJ log(27J4Q )F(Q). 
7TVQ 

Since evaluating E requires O(Q) operations and, by Mertens' Theorem, 

F(Q) <qJ( fl 
q 

)2 [J(I - llq)] (e" log Q)2, 
q< Q q q ) [< Q 

we see that if L, D2/5, then in order to evaluate E and R we require (putting 
Q = D2/5) O(D2/5+E) operations. Further, since jkEL, /L, = O(D3/10-E), we see 
that we require O(D2/5+ ) operations to find R and h by the above algorithm under 
the GRH for ,. 

Let r be the number of steps required by Voronoi's algorithm to find R. Since 
R = Er log G') and 1 < 0') < I + 0, where (ta, %) is the puncture of (W), we have 
R < rlog(l + (3F3 + 3)D) by formula 6.8 of [18]. In fact, it seems by empirical 
results that R 1.12 r. From the results developed above, we see that we have 
Rh = O(D - ). Thus, we expect Voronoi's algorithm to take about O(D/h) steps to 
find R. Even if we do not assume the GRH, we can use the well-known result that 
I(1) = O((log I ' I), +E). With this we can show that our ideas will provide a method 

which executes in O(D1/2+e) operations. Thus, if h is small our new method is faster 
than that which uses a straight application of Voronoi's algorithm. 

The algorithm described above was implemented in FORTRAN-H (extended) for 
an AMDAHL 470-V7 computer. The extended precision feature allowed us to 
operate on numbers of up to 33 decimal digits. For values of D < 231, this amount of 
precision is sufficient except for the find step and the invert step. For these steps we 
obtained more precision by using special purpose multi-precision assembler language 
subroutines. This program was usually run with L = 50000, b = 15, k = 10, t = 1500. 
On running the program, we found that the amount of time taken to perform a 
simple step was about 4.3 milliseconds. The time required to perform a doubling 
step or a large step was usually between 100 and 400 milliseconds, the average time 
being 250 milliseconds. Most of this time was consumed by the multi-precision find 
and invert sections of the reduction algorithm. In Table 3 below, we give some 
results of running our program for large values of D. These values were selected with 
an eye to obtaining large values of R; hence, the values of D are primes congruent to 
2 or 5 (mod 9) such that (D(1) is large. 
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TABLE 3 

D E hR R h 

1079021 2734906.136341 2733739.063036 341717.382879 8 

2609069 7400272.677097 7399896.890644 3699948.445321 2 

2961713 7665950.516997 7663248.163765 7663248.163765 1 

3650249 9782563.073006 9781303.600000 4890651.800000 2 

4248551 11409669.209399 11408545.752473 2852136.438118 4 

7191911 19018244.808396 19012522.349931 9506261.174966 2 

8688161 23904403.372750 23896176.735251 5974044.183831 4 

9488513 26068028.870131 26068015.858615 2606801.585862 10 

14613773 39788531.398671 39783254.555210 4972906.819401 8 

16477553 43721343.379590 43716350.599929 63541.207267 688 

17353643 44095839.633036 44116470.280843 8823294.056169 5 

18209801 52783288.770296 52790989.627523 13197747.406881 4 

19196813 52633382.613328 52632827.706395 26316413.853197 2 

19446881 51387164.594867 51375468.466817 51375468.446817 1 

19914539 54729047.586607 54736734.178735 5473673.417873 10 

20281169 53486260.159788 53488442.838074 53488442.838074 1 

21745121 57252172.105084 57258743.313504 57258743.313504 1 

23301797 61614171.225781 61611468.798065 12322293.759613 5 

23444777 61469132.178084 61462434.613230 61462434.613230 1 

20006741 46521260.090157 46524073.006668 46524073.006668 1 

20007749 49446137.483399 49428982.133678 24714491.066839 2 

20015087 47763949.503176 47766835.229026 23883417.614513 2 

20022059 44039595.529345 44048511.873016 3146322.276644 14 

20025923 50081813.840435 50049413.717038 25024706.858519 2 

20040509 47040758.406428 47029680.710366 47029680.710366 1 

20045297 46484105.511038 46493930.428174 46493930.428174 1 

20046053 45782490.090580 45787613.586821 22893806.793410 2 

20054273 44847449.611742 44843516.182618 44843516.182618 1 

20058611 47780427.920252 47760659.269566 47760569.269566 1 

20060321 49219975.499996 49221641.419518 12305410.354880 4 

20092379 46866613.196961 46861161.134179 5857645.141772 8 

20096231 44069991.510614 44055464.985446 22027732.492723 2 

20103329 45663222.588792 45666190.521819 22833095.260910 2 

20131229 44263821.181251 44265315.438814 44265315.438814 1 

20141939 47544122.638427 47526507.556002 4752650.755600 10 

20150411 49432033.465649 49407063.942000 24703531.971000 2 

20155169 45910007.981908 45925409.600054 22962704.800027 2 

20156681 49108786.477367 49115714.187083 49115714.187083 1 

200003987 488445524.404758 488441550.471778 122110387.617945 4 

200014823 506589820.204984 506559571.011469 253279785.505735 2 

200021333 431868738.397306 431848126.981261 431848126.981261 1 

200050859 459913063.601063 459866668.037712 459866668.037712 1 

200085059 480458216.172594 480409066.144472 240204533.072236 2 

200087861 537372949.701100 537332554.388950 134333138.597237 4 

200089163 437965734.284523 437975996.332267 437975996.3322671 
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TABLE 3 (continued) 
D E hR R h 

200099381 497603952.415591 497590195.640789 124397548.910197 4 

200100389 424196870.367996 424203442.573298 424203442.573298 1 

200100503 451182094.347744 451197215.352740 451197215.352740 1 

200107571 480433899.513446 480444645.440266 480444645.440266 1 

200112401 472253194.115455 472167872.629630 118041968.157408 4 

200114699 404492099.980046 404488912.856795 202244456.428397 2 

200122889 464342463.344755 464299134.881723 58037391.860215 8 

200164271 441701163.856313 441705327.026624 220852663.513312 2 

200171999 518597740.739617 518594546.969083 518594546.969083 1 

200182403 440166276.950028 440210372.576431 220105186.288216 2 

200182529 447398884.585019 447390972.406384 22369548.620319 20 

200237591 458593160.418426 458631734.208582 229315867.104291 2 

1000002821 2224268272.85790 2224244048.137217 2224244048.137217 1 

1000021079 2415725386.65008 2415802816.494235 603950704.123559 4 

1000022213 2176263035.09785 2176209325.109052 272026165.638631 8 

1000027001 2378191472.685L3 2378124348.205241 1189062174.102620 2 

1000050017 2131249352.94466 2131259056.681105 2131259056.681105 1 

1000069643 2178195190.70341 2178254057.347236 544563514.336809 4 

1000091399 2235417592.91327 2235363727.828276 1117681863.914138 2 

1000115579 2340780764.18363 2340733780.230313 37753770.648876 62 

2000001359 5097379160.99403 5097475496.226634 1274368874.056659 4 

2000009129 4675237416.61298 4675293317.830901 4675293317.830901 1 

2000012477 4148134404.14319 4148034373.232793 4148034373.232793 1 

2000029403 4826616791.70067 4826399013.912892 2413199506.956446 2 

2000052137 4983495105.51258 4983602513.601523 4983602513.601523 1 

2000108111 4605978642.80285 4606048408.531975 1151512102.132994 4 

2000131223 4840963289.88280 4840696491.272803 121017412.281820 40 

2000145629 4937983529.32301 4937740516.447692 4937740516.447692 1 

For D = 2000145629, we found the value of hR in 3.6 minutes of CPU time. To 
test the primes up to 151 as possible divisors of h required 1.8 minutes, and a further 
8.6 minutes was needed for the search routine in step (vii)-2 to execute. The total 
time required to find R and h was 14 minutes. Probably these times could be reduced 
by careful tuning of the values of the input parameters b, t, k. To find R using 
Voronoi's algorithm alone would probably require about (1/3)(4.3 X 10-3)R/1.12 
seconds or 73 CPU days. 
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