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Abstract. We prove quasioptimal and optimal order estimates in various Sobolev norms for 
the approximation of linear strongly elliptic pseudodifferential equations in one independent 
variable by the method of nodal collocation by odd degree polynomial splines. The analysis 
pertains in particular to many of the boundary element methods used for numerical computa- 
tion in engineering applications. Equations to which the analysis is applied include Fredholm 
integral equations of the second kind, certain first kind Fredholm equations, singular integral 
equations involving Cauchy kernels, a variety of integro-differential equations, and two-point 
boundary value problems for ordinary differential equations. The error analysis is based on an 
equivalence which we establish between the collocation methods and certain nonstandard 
Galerkin methods. We compare the collocation method with a standard Galerkin method 
using splines of the same degree, showing that the Galerkin method is quasioptimal in a 
Sobolev space of lower index and furnishes optimal order approximation for a range of 
Sobolev indices containing and extending below that for the collocation method, and so the 
standard Galerkin method achieves higher rates of convergence. 

1. Introduction. In this paper we apply the method of nodal collocation by odd 
degree polynomial splines to systems of strongly elliptic pseudodifferential equations 
on closed curves and to two-point boundary value problems for ordinary differential 
equations. (By splines we always mean smoothest splines.) The former class of 
problems encompasses many of the boundary integral equations discretized by 
boundary element methods including some first kind and second kind Fredholm 
integral equations, singular integral equations with Cauchy kernels, and certain 
integro-differential equations such as the normal derivative of the double layer 
potential and the operator of Prandtl's wing theory. 

For spline approximation of such strongly elliptic equations via standard Galerkin 
procedures or via the corresponding numerically integrated Galerkin-collocation 
methods the asymptotic error analysis is already rather completely developed; see 
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[54], [55], [73], [79], [92], [102] and [50], [51], [100]. However, in practice most 
numerical computations based on boundary integral methods employ collocation 
procedures as in [7], [8], [20], [27], [56], [60], [68], [79], [99] and the proceedings [18], 
[24], [25], [26], [911. Notwithstanding, few convergence results have yet been proved 
for spline collocation methods except in certain special cases. In the case of 
Fredholm integral equations of the second kind with smoothing integral operators, 
there is a large literature of which we refer only to the extensive bibliography of B. 
Noble [75], the surveys of K. Atkinson [12] and C. Baker [17], and the results on 
superconvergence in [30], [42], [55], [82], [88]. Spline collocation of boundary value 
problems for ordinary differential equations has been studied by many authors and 
error estimates of various sorts have been proved in [9], [10], [21], [35], [66], [89]. 
There is also a sizeable literature on collocation of ordinary differential equations by 
less than smoothest splines [22], [36], [49], [66], [76], [87]. For the other types of 
equations considered here there are at present only preliminary results available for 
the special case of Fredholm integral equations of the first kind with logarithmic 
kernel [1], [2], [5], [98], and the recent work of S. Prossdorf and G. Schmidt on 
piecewise linear collocation for singular integral equations with Cauchy kernel [80], 
[81]. 

In this paper we introduce a new technique of proof and obtain convergence 
results in various spaces for splines of arbitrary odd degree and for a wide class of 
equations. To our knowledge, for the rather general class of strongly elliptic 
pseudodifferential equations considered, we present here the first rigorous conver- 
gence results for the collocation method. (The estimates announced in [101, (3.6), 
(3.7), (3.11)] are not correct and must be modified whereas those in [103, Chapter 
9.7] are correct.) 

It should be pointed out that the consistency of the methods, i.e., the convergence 
of the approximating operators on sufficiently smooth functions and the complete- 
ness of the trial functions as in [105, pp. 64-65], in general does not imply the 
convergence of the approximate solutions to the actual solution. L. Collatz has given 
a famous example of this phenomenon in [33, pp. 260-262]. Also the a posteriori 
error estimates in [7], [8] do not insure the convergence of the collocation method. 
Thus the question of convergence requires a more careful and thorough theoretical 
investigation. 

The present convergence analysis is based on an equivalence between the colloca- 
tion method and a nonstandard Galerkin method for an operator closely related to 
the given operator. The Galerkin method is nonstandard in that the pairing of test 
and trial functions is made in the inner product of the Sobolev space of order 
(d + 1)/2 where d denotes the degree of the splines, rather than in the L2 inner 
product like the standard Galerkin method. Once the equivalence is shown, the 
procedure is analyzed by well-established techniques. We show that quasioptimal 
approximation is achieved in a Sobolev space with index depending on the order of 
the equation and the degree of the splines. We also establish optimal order estimates 
in a range of Sobolev spaces. This range is strictly limited, as we show that there is a 
maximal order of convergence which cannot be exceeded in any Sobolev space. A 
similar situation obtains for the standard Galerkin method, and a comparison of the 
two methods shows that to obtain the same maximal order of convergence as the 
mesh size decreases, one must choose the degree of the splines for the collocation 
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method one greater than twice the degree used in the Galerkin method. From this 
point of view, collocation appears to be less efficient. On the other hand the 
collocation method requires only that one integration be performed for each element 
of the stiffness matrix, whereas the standard Galerkin method requires double 
integration, and hence an economic implementation of the Galerkin method requires 
an efficient scheme for evaluation of the matrix (as, e.g., in the Galerkin-collocation 
methods [50], [51], [100]). 

The paper is divided into two major parts. In Section 2 we consider the periodic 
case encompassing the boundary element methods. There we proved quasioptimal 
and optimal order error estimates for the case of single equations, and the estimates 
are shown to be sharp. Then we compare the results with the standard Galerkin 
method. We also estimate the conditioning of the discrete equations. Next we 
generalize the estimates to the case of certain systems of equations of a form which 
arises frequently in applications, e.g., in Fichera's method with Fredholm integral 
equations of the first kind [37], [50], [51], [52], [53]. We then verify that strongly 
elliptic pseudodifferential operators satisfy all the assumptions made in the analysis. 
As applications we present elliptic integro-differential equations and consider the 
special cases of singular integral equations, Fredholm integral equations of the 
second kind, the normal derivative of the double layer potential, and Prandtl's wing 
operator. Another type of equation, the Fredholm integral equation of the first kind 
with logarithmic kernel, is also discussed in detail. Applications of such equations to 
a wide variety of physical problems are reviewed. 

In Section 3 we indicate the application of our methods to nonperiodic problems 
by considering one example, that of cubic spline collocation of a second order 
two-point Dirichlet problem. Error estimates similar to those of Section 2 are 
established. This section is presented in an elementary fashion and may be read 
independently of Section 2. 

In an Appendix we present a construction from [81] which furnishes the matrix 
transforming a strongly elliptic problem into a coercive one, and then we formulate 
the singular integral equations of the direct method for plane elasticity. 

Although this analysis provides error estimates for a large class of collocation 
methods which occur in applications, there remain a number of important colloca- 
tion methods to which our results do not apply. In particular we cannot yet handle 
the case of splines of even degree, nor methods violating the conformity assumption 
that the degree of the splines exceeds the order of the operator. Our work does not 
pertain to systems of equations of differing orders, and further considerations are 
needed to apply our method to integral equations arising from boundary value 
problems on corner domains or mixed boundary value problems. Also we do not 
consider collocating functions other than smoothest splines, nor collocation at points 
other than the nodes. 

2. Collocation of Pseudodifferential Equations on Closed Curves. Let F be a plane 
Jordan curve given by a regular parametric representation 

r: z = (Zl(t), z2(t)) - z1(t) + iz2(t), 

where z is a 1-periodic function of a real variable and I dz/dt I = 0. Via the 
parametrization we have a one-to-one correspondence between functions on r and 
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1-periodic functions. More generally, for a system of mutually disjoint Jordan curves 
r = UL r we may parametrize each and identify functions on r with L-vector 
valued 1 -periodic functions. We thus limit ourselves without loss of generality to 
systems of equations of the form 

(2.1) Au+B=f, Au/3, 

where the 1-periodic vector valued function u = (ul(t),.. ., up(t)) and the vector 
w E Rq denote the desired unknowns, f = (fl(t),...,fp(t)) and / E Rq a given 
function and vector, A a given linear operator, B a given matrix of functions and A a 
given vector valued functional. 

For simplicity we consider first the special case of (2.1) of just one equation 
(p = 1) and for which B, A, and / vanish. 

2.1. Collocation of a Single Equation. Let A be a given bounded linear mapping 
Hi + -- HJ-a with]j R to be specified later. The quantity 2a is called the order of 
A. Here Hs denotes the periodic Sobolev space of arbitrary real order s, i.e., the 
closure of all smooth real-valued 1-periodic functions with respect to the norm 

(2.1.1) |fll := | |f|s= {1IffoH + f fk 121 27Tk 1/2, 

0#kECZ 

where 

fk f'e 2lktf(t) dt, k E Z 

are the Fourier coefficients. We denote the inner product in this space by 

(2.1.2) (f, g)s= A go + 2 fk * gk Ik2T . 
0O#kEZ 

Note that this inner product extends to a duality pairing between HS?a and HS' 
for arbitrary real a, and moreover 

WE V-a W | s 
Hs+a. 

sup Ky ) 1-IVIIs?a, vC 
WCH" 1iWlis-a 

Clearly Hs is continuously imbedded in Ht for s > t. 

The aim of this section is to investigate the approximation of the equation 

(2.1.3) Au =f 

by the method of collocation. To this end we select an increasing sequence of mesh 
points A = {xi}? satisfying ' = xi + 1, for fixed n E N and all i E Z, and 
denote by Sd(s) the space of all 1-periodic, d - 1 times continuously differentiable 
splines of degree d subordinate to the partition A. Note that, since o(d) (the 
superscript denotes differentiation) is a step function for 4 E Sd(A), Sd(A) C Hs if 

and only if s < d + 4. We require that the degree of the splines be odd and henceforth 
denote by d a fixed positive odd integer and byj the integer (d + 1)/2. 

Let h. = max(xi - xi l). We recall the approximation proeprties of Sd(s). 

If -oo < t s s s d + 1 and t < d + ', then there exists a constant C depending 
only on t, s, and d such that 

(2.1 .4) inf Illu-llt 
- 

Chs^-tilluls, u E Hs. 
O ESd(A) 
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(Throughout, C denotes a generic constant independent of A, not the same at each 
occurrence.) This result is proven in many places under the additional assumption 
that 0 < t < d, e.g., [89, Chapter 6], [14], [104]. In [15, Theorem 4.1.2] and [46] the 
restriction that t (and therefore s) be nonnegative is removed. Helfrich showed in 
[46] even the following stronger approximation property for t < d and t < s: 

To any u E Hs and Sd(1) there exists 4 E Sd(A) such that 

(2.1.4a) IIu - 4Ijt < Chs-tIlull, 

where 4 is independent of t. However, the case d < t < d + ' does not appear to be in 
the literature. In the case of a uniform mesh the result can be proved quite easily 
using the Fourier series definition of the Sobolev norms (2.1.1) and using a B-spline 
basis for Sd(A). (Since every basis element can be realized as the translate of the 
iterated convolution of the characteristic function of an interval, the Fourier 
coefficients of the splines are easily found.) In the manuscript "The regularity of 
piecewise defined functions with resepct to scales of Sobolev spaces" (Corollary to 
Theorem 3), J. A. Nitsche has proved a result of this sort for approximation by 
piecewise constant functions subordinate to a general regular triangulation of a 
plane domain. For the analogous result in one dimension one can derive the result 
by using the d th derivative operator to map Sd(A) into S0(A). 

The collocation method for (2.1.3) reads as: Find uA C Sd(A) such that the 
collocation equations 

(2.1.5) (AuA)(x,) = f(x,), i = 1,...,n, 

are satisfied. 
Since AuA C H-2, only for s < d + 2, and since AuA must be continuous at the 

nodes in order that we may collocate, we are led to the assumption that for some 
s < d + - the space H-2, is embedded in the space of continuous functions. In 
view of the Sobolev imbedding theorem we thus assume the relation 

(A.1) d=2j-1 >2a or,equivalently, j-a>2 

between the order of the operator A and the degree of the splines. This assumption 
impies in particular the inclusion 

Sd(A) C H+. 

We require in addition the following properies of A. 

(A.2) A: Hj?+' HI-at is an isomorphism, 

i.e., A is bijective and so Eq. (2.1.3) is uniquely solvable. 

(A.3) A isj-coercive, i.e., A satisfies the Garding inequality 

(2.1.6) (Au, u)j 
_ 
yIIuIj2+a - (Ku, u)_1 u C Hj+, 

where -y > 0 and K is a compact linear operator HJ+? HI-a. 

Note that (A.3) holds if there exist constants y, E > 0, -y' c R such that 

(Au, u) _ -YIIuII2?a - yIIu-Y ?112+E 

For any bounded linear operator B: Hs - Ht we define its formal j-adjoint B*: 
H2J-t' H2-s by 

Ku B*v) = (Bu, v)j for all u CEHs, v E H2 . 
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Obviously A* also satisfies the coercivity inequality (2.1.6). This together with 
assumption (A.2) implies that A and A* are both Fredholm mappings of index zero 
and that A* is also an isomorphism from HJa+ onto HJ- [93]. Therefore both 
mappings satisfy a priori estimates of the form 

IIUIIJ+,? ? CIIAuIIj-,a and llullj+,? ? CIIA*ullja,, 

i.e., ellipticity. 
We now reduce the collocation equations (2.1.5) to equivalent Galerkin equations. 

To this end we define mappings J and JA by the integral and its numerical 
counterpart, the trapezoidal rule, namely 

Ju Ju(x) dx and JAu:= 8,u(x,), where 8,:= (xI+}I-xi )/2. 

THEOREM 2.1.1. Let w E HI-C. Then the equations 

(2.1.7) w(x,) = 0, i = 1,...,n 

hold if and only if 

(2.1.8) (w-Jw+JAw, =)=0 forallvCESd(A). 

Note that by assumption (A.1) the point values referenced in (2.1.7) and (2.1.8) 
are well defined. Moreover the inclusion Sd(A) C H'+ insures that the inner 
product in (2.1.8) is defined. 

Proof. Observe that 

(f, g)X = 'f(')(x)g(')(x)dx + 'f(x) dx 'g(x) dx 

for f, g c H'. Integrating by parts we find that 

( w-Jw + J,w, v), = (_l)j' f W'(X)V(2I-I)(X) dx + J,w * Jv. 

Now the operator (d/dx)2'-' maps {v C Sd(A) I Jv = 0} isomorphically onto {v E 

So(A) Jv = 0}, the space of piecewise constant functions with integral zero. Define 

y, in this space by 

[-h,1 for x e [x,_, x,), 

yj(x)= h;+1 forxE[xi, xi+), 

0t forx E [xi+,, x,_, + 1), 

where hi= x,-xi-I ' and determine v, C Sd(A) by V(2j- i) = yi, Jvi = 0. Then 

(w - Jw + J,w, v,) = (-)j '[hy-4(w(xi+?) - w(xi)) - h'(w(xi) -w(x,-,))]. 

Hence if (2.1.8) holds then there exists a constant K such that 

(2.1.9) hy-'(w(x) - w(x_1)) = K, i E Z. 

Applying (2.1.9) repeatedly with i = n, n - ... ., 1, we find that 

w(xn) = w(x0) + K(hn + hn-I + . +hl) = w(xo) + K. 

Since w is periodic, necessarily K = 0. Thus (2.1.8) implies 
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In fact, since Sd(A) is spanned by the vi and the constant function 1, we see that 
(2.1.8) holds if and only if (2.1.10) holds and, in addition, 

(2.1.11) JAw = (w-Jw + JAw, l)j = O. 

But clearly (2.1.10) and (2.1. 1 1) are together equivalent to (2.1.7), and so the proof is 
complete. O 

We are now in a position to reformulate the collocation equations (2.1.5) as 
Galerkin equations. For this purpose we define the operator 

(2.1.12) AA := (I-J + JA)A: Hj+a Hi-a 

(I denotes the identity) which is continuous sincej -a > 2 

THEOREM 2.1.2. A function uA E Sd(A) satisfies the collocation equations (2.1.5) if 
and only if it satisfies the Galerkin equations 

(2.1.13) (AAuA, v) j = (AAu, v) j, v E Sd(A), 

where u is the solution of (2.1.3). 

We proceed now to the proof that the Galerkin procedure (2.1.13) is uniformly 
bounded and stable, establishing first the uniform bijectivity of the operator A,. 

LEMMA 2.1.3. The operator AA is invertible with inverse 

(2.1.14) A-' = A-'(I + J-JJA). 

Moreover there exists a constant C such that 

IIAAlIj+a,j-a + IIAlljia,j?a ?< C 

for all partitions A. 

Proof. Since j-a > ', J,: Hi-a Hi-a is uniformly bounded, and so the 
uniform boundedness of AA follows from the continuity of A. Equation (2.1.14) 
follows immediately from the identities 

JJ = J,J = J and J,J, = JJ , = J, 

and then the uniform boundedness of A;' follows from the continuity of A-l. O 
The following theorem asserts the stability of the Galerkin procedure (2.1.13). 

THEOREM 2.1.4. There exist positive constants C and h0 such that if A is a partition 
for which h. max(xi - xi,) < ho, then 

(2.1.15) inf sup KAAv, z) j C. 
VESd(A) ESd((A) 

IIVIlj+a i IIZII?a 

Proof. From the assumption (A. 1)-(A.3) we obtain with integration by parts the 
coerciveness inequality 

d 21 

(2.1.16) ( I(-1)( d-) Au + JAu,u = (Au, u)j > _yiIuII2+a-kj[u, u], \\ds / 0 

where 

kju, v] = (Ku, v)j 
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is a compact bilinear form on H + X Hi+'. Thus the results in [6], [28], [47], [55], 
[92] imply that the solution wA E Sd(A) of 

(2.1.17) (AwA,vA)j= (Aw,vA )j forallvA CSd(A) 

satisfies the estimate 

(2.1.18) IIWAIIj+,?a s cIIwIIj+?, 

for all 0 < hA ho with an appropriate ho > 0. Then we reformulate the equation 
(2.1.13) for uA, 

( AAuA, vA ) j AAu, vA ) j for all vA E Sd(A), 

in the form 

(2.1.19) (AuA, vA ) j = (A(u -A-l J,,- J)AuA - (JA - J)Au}), v. ) j, 

which yields with (2.1.18) the estimate 

IUAIlj+a s c(1ujjj+? + IIA-'(JA - J)AuAllj+?a + IIA-'(JA - J)Aullj+a) 

S c(IuIIj+,? + ci(l (JA - J)AuA I +1 (JA -J)Aul)) 

S c(Iuhuj?,A + c2h(IAAIIj_,j + IIAullja)) 

S CIIUIIj+?, + C3huIIuAIIj+? + C3h IIUIIj?a. 

Here = min(2, j-a) > 0. Hence, for 0 < hA s ho and c3hA 2 we obtain the 
stability estimate 

(2.1.20) I I ?u,,1 3cIIuIIj+?a 

uniformly for all such hA. This in turn yields (2.1.15). D 

Remark. The authors are grateful to Dr. G. Schmidt and Professor Dr. S. 
Prbssdorf for pointing out that Theorem 2.1.4 holds without an additional regularity 
assumption which appeared in an earlier draft. 

In view of Theorem 2.1.2, Lemma 2.1.3, and Theorem 2.1?4 we may apply the 
standard theory of Galerkin methods [15], [16], [29] to show that the collocation 
procedure furnishes quasioptimal approximation in its natural energy space Hi+. 
Using the approximation property (2.1.4),we obtain further asymptotic error bounds. 

THEOREM 2.1.5. There exist positive constants C and h0 such that for any partition A 
with hA s ho there is a unique solution uA E Sd(A) of the collocation equations (2.1.5). 
Moreover we have quasioptimality in the form of Cea's lemma: 

IIu - uAIIj+,a C inf IIu - vii+,. 
v ESd(LA) 

If in addition the solution u E Hs for some s E [ j + a, 2 j], then 

IIu - uAIIj+a ? Chs-i-Illull5. 

Theorem 2.1.5 gives estimates for the collocation method in the space HI+a. We 

now extend these estimates to spaces of lower order by applying the Aubin-Nitsche 

duality argument. For s >j + a we say that an isomorphism B: Hi+" - H-'Hi is 

s-regular if B-1 maps Hs-2 boundedly into Hs. 
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THEOREM 2.1.6. Let t C [2a, j + a], and assume that A* is (2(j + a) - t)-regular. 
In case t ? 2a + 4 and i > a + 2, assume in addition that A maps H2+2' boundedly 
into H2. Then 

(2.1.21) Ilu - ull, < Chj+at-tllu - uAllj+,I. 

If in addition u C Hsfor some s G [j + a, 2j], then 

(2.1.22) Ilu - ullt < Chs-tllulls. 

Proof. In light of Theorem 2.1.5, it suffices to demonstrate (2.1.2 1). 
We first consider the case t C (2a + 2, j + a]. (This interval is nonempty by 

(A. 1).) We then have 2(j + a) - t < 2] - 2, so the j-adjoint operators 

JA* : H2(j+a)-t -* H2(j+a)-t 

are uniformly bounded. From the regularity assumption on A* it then follows that 

A*-' = (I + J - JA*)A*-I: H2j-t H2(I+a)-t 

is uniformly bounded. 
Now there exists v C H2j-t such that 

(2.1.23) =uu\ IIU 
- 

lU-A11,2 = IIVI12j_ 

by duality. Set y = A* -'v. Then the uniform boundedness of A*' and (2.1.23) imply 

(2.1.24) IIYII2(j+?)-t < CClvI2j-t = CIIu - UAll, 

and using (2.1.13) and (2.1.23) we find that 

(2.1.25) IIU - UAII2 = ((u - uA), A*y)j = (A(u - uA), y)j 
= inf (Aj(u-uA),y-pq)j 

T~ CSd(?1) 

< CIIAj,u - uA)IIj-, * inf IIy - 1 11j+0? C~ Sd(?1) 

< Cllu - UAllj+a h+' tIIYII2(j+a)-t- 

Now the estimate (2.1.21) follows from (2.1.24) and (2.1.25). 
We turn now to the remaining case of t E [2a, 2a + 4]. Again we define v by 

(2.1.23). However, since in this case A* is not (2(j + a) - t)-regular, we set 
y = A*-iv. Applying (2.1.23), we get 

(2.1.26) IIU - UA112 = (( -u), A*y)1 

= (A,(u - uA), y)j + ((A - AA)(u - uA), y) j. 

The first term on the right-hand side of (2.1.26) may be estimated as in (2.1.25). For 
the second term we have 

(2.1.27) I ((A - AA)(u - uA), y) j (J - JA)A(u - uA) jJy 

< Cj (J - JA)A( u -U ) I 11Y112(j+a)-t 

? C (J-JJA)A(u - uA)Ilu -uAlIt- 
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If j- a 2 we use (A. 1) and simple error estimates for the trapezoidal rule to see 
that 

I (J - JA)A(u - uA) IS Chh-IIA(u - uA)IjI., < Ch?-`Jju - uAIIj+I? 
4- 

- 
t AI? ChJ+- ' lIu -uAllj+, 

and substitute these estimates in (2.1.26) to get (2.1.21). If j - a > 2, we invoke the 
additional boundedness assumptions to get 

I (J - JA)A(u - uA) I< ch2IIA(u - UA)12 ? ch2Iu-2 UAII2a+2. 

Since 2a + 2 E (2a + j, j + a), we may apply (2.1.21) with t replaced by 2a + 2 
by the previous case, yielding 

(2.1.28) I (J - JA)A(u - uA) 1< Chi-IIlu - uAllj+,a ? Ch??a`u - uAllj+,a. 

Finally, combining (2.1.27) and (2.1.28) and substituting into (2.1.26), we get 

(2.1.21). D 
Remark. For t C (2a, 2a + 2 ] the last inequality in (2.1.28) is clearly not sharp 

and a careful analysis shows that the additional boundedness assumption can be 
slightly weakened in this case. 

Remark. The highest order estimate which can be inferred from Theorems 2.1.5 
and 2.1.6 is 

IIu - UAII2 = O(h2(j-a)), 

which holds for sufficiently smooth u. Note that this estimate is of precisely twice 
the order of the best approximation in the energy space Hi+". In fact no higher 
order estimate is possible, as is shown by the following argument which is based on 
an argument of Bramble and Scott [23] and applies quite generally to Galerkin 
methods. 

For simplicity we assume that A is strictly coercive (i.e., K = 0 in (2.1.6)) and 
maps smooth functions onto smooth functions, and moreover that the true solution 
u is smooth and has integral zero. Using (2.1.6), (2.1.12) and (2.1.13) we find that 

(2.1.29) yIIu - UAjj2+a S (A(u - UA), u - uA)j 

=KAA(u-uA), u -u,A ) j + ((J-J,A)A(u-uA), u -u,A); 

= KAu-(U -U), u)j + (J - J,)A(U - U,) J(u - U,). 

Now, since we assume that Ju = 0, we have for any t E R that 

I (Aju - U,A) U) jl = I (A(u - U,), u) jl <- Cllu - u,&jtjjA*u112j-. 

Moreover I J( u - u) I? u - uII., and, since j-a > 2, 

I (J - J,)A(U - U,) IS IA(u - U,A)Ij- S ClU - U,AIj+a CIIUIIj+a. 

Substituting these bounds in (2.1.29), we see that 

IIu - UAII12+a s MIIU - UA11., 

where the constant M depends on u, but not on A. Thus we see that the order of 
approximation of u by uA in an arbitrary Sobolev space H' cannot exceed twice its 
order in the space Hi+a. For generic u, therefore, the best possible order is 
0(h,21X, 

;_ 
. 

\ 
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Having proved optimal order error bounds in H' for t = j + a and, when 
possible, for t <j + a, we turn now to the case t > j + a. For this case we shall 
require the inverse properties of spline spaces and hence must restrict ourselves to a 
quasiuniform family of meshes. A mesh A is said to be p-quasiuniform (p > 0) if 
hA s p infi(xi- i- l). 

The inverse properties state that for any real numbers p, a, and T satisfying p > 0 
and T < a < d + 2, there exists a constant C such that 

(2.1.30) IIvIL0 < ChT-170IIvI, for v E Sd(lA), 

for all p-quasiuniform meshes A. We will comment briefly on how (2.1.30) is 
established assuming henceforth that all meshes appearing are p-quasiuniform for 
some fixed p. 

First, (2.1.30) is easily established in the case a - T + 1 = d, using the equiva- 
lence of norms on the space of polynomials of degree d and a scaling argument [14], 
[74]. Now, letting Pr denote the orthogonal projection of Hr onto Sd(A), we have 
from this case that 

IIPdI1VIId?< Ch|'IIvIId-,, v E Hd 

Again using this inverse inequality, comparing Pd-lv to PdV, and using the easily 
established error estimate IIPdv- VIldI I< ChIIVIId, we also get 

IIPd1VIId <- ClIVild, for v E Hd. 

Using duality with respect to the Hd-I inner product (2.1.2) it follows that 

(2.1.31) |lPd_ lVIId-1 < ChA lltV]ld-2 

and 

(2.1.32) IIPd-IVIId-2 < ClVjIld-2 

for v C Hd-2. Now, for Tc [d - 1, d], 

(2.1.33) IIPdVIId = sup (Pd-V'W)d-1 
W$#O IIWIId-2 

(V Pd-lIW)d-I 

w0 ld_JWIId- _IIP-WIIT- 

I |Pd-1W||d-1 I |Pd_1WIId-2 

\ lWlWd-2 I |W||d-2 

Now the interpolation inequality 

(2.1.34) IIyII8 
<' 1lyl8- 8)1(8 ylyll 

8 
y E H8, 

holds for any real numbers y s /B s 8 as follows directly from (2.1.1). Applying this 
to (2.1.33) with 8 d- 1, y=d-2, 132d- -2 and using (2.1.31) and 
(2.1.32), we deduce that 

IIPd-1vII d < 
ChTdsup (=, .d ChTd V Ev Hd2 

IIP-1IId< 
AY=#O IIYI12d-T-2 

A 
dIIT9II 
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which gives (2.1.30) in the case a = d, T E [d - 1, d ]. If T - d - 1, then, by (2.1.34) 
and the already completed case a = T + 1 = d, 

llld- I lltV?ld |IIVIIT < C , ||d-_ I ||T E S () 

so 

lVild ? Ch,,'IvIId-1 ? ChTgdjjj v E Sd(A). 

This establishes the inverse property (2.1.30) for T a= d. Now if T s a ? d, we 
then have, by (2.1.34), 

||V1, || J lVtl(I-T)/(d-T)|IVII(d-a)l(d-T) S ChT, IIVII v E Sd(A), 

and so the proof of (2.1.30) is complete except for a E (d, d + O). This case, like the 
corresponding case for the approximation properties, does not appear to be in the 
literature (see the discussion following (2.1.4)). It is easily established for uniform 
meshes, but a more involved computation appears necessary for general quasiuni- 
form meshes (see also [106]). We also note that we do not require this case if the 
order 2a is an integer, as it is in most applications. 

THEOREM 2.1.7. Let s and t be real numbers with j + a ? t ? s ? 2], t < 2j - 

and suppose that the solution u E Hs. Assume that the inverse property (2.1.30) holds 
for all meshes under consideration with T = j + a, a = t. Then 

Ilu - uAll, S Chs-'Ilulls. 

Proof. Let P,: Hs - Sd(A) be an operator providing optimal order approximation 

in H' and Hi` [23], [46]: 

htIlu - PAull, + hj+a[Iu - PullI+,? < ChsIIlulls. 

Then 

IIu - uAll <- Ilu - PAull + IluA - PAullt 

IIu - PAull, + Ch+a`(IIu - uAllj+? + Ilu - PAullj+a) 

Chs-tllulls. El 

Having completed the asymptotic analysis of the collocation method, we now 
compare it to a standard Galerkin procedure. We have shown that the collocation 
procedure is essentially equivalent to a Galerkin procedure based on the Hi inner 
product. It followed that this process is stable in Hi?a and so the collocation 
solution provides quasioptimal approximation in that space (Theorem 2.1.5). More- 
over we have derived optimal estimates (i.e., estimates of optimal order with minimal 
smoothness assumptions on the solution) in H' for t E [2a, j + a] (Theorem 2.1.6), 
and, assuming quasiuniformity, for t E [j + a, 2j - 4) (Theorem 2.1.7). 

The standard Galerkin method defines u,, E Sd(A) by the equations 

(2.1.35) AAu&,V)v (f,v)o forallv ESd(A). 

The usual analysis is based on 0-coercivity of the operator A (see (2.1.6)). Under this 
assumption the method is easily shown to be stable in Ha, whence u,A provides 
quasioptimal approximation in that space [15], [92]. Using duality, optimal estimates 
can also be derived in Ht for t E [2a - 2j, a], and, assuming quasiuniformity, for 
t E [a, 2j - 2) as well [15], [54]. Note that if the mesh is quasiuniform the range of 
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spaces in which optimal estimates hold for the Galerkin method strictly contains the 
corresponding range for the collocation method. Assuming a smooth solution, the 
highest rate of convergence achieved by the collocation method is O(h2 -2a) in H2 c, 

while the Galerkin solution converges with rate O(hJ-2a) in H2a21. This situation 
is summarized in Figure 1. 

In boundary integral methods for problems in potential theory and continuum 
mechanics, the curve 1 is the boundary of a two-dimensional domain, and the 
physical fields are defined by integrals of u over 1. For points not on 1 the kernel 
will generally be smooth, and so the approximate value of the field will converge at a 
rate equal to the highest rate of convergence achieved by the approximate solution to 
u. Moreover numerical experiments also show superconvergence at the same rates at 
nodal points [48], [51], [64], [65]. Hence, to obtain the same order of superconver- 
gence as the standard Galerkin method, the collocation method requires splines 
whose degree exceed by one twice the degree of the splines employed for the 
Galerkin method. On the other hand the construction of the stiffness matrix for the 
Galerkin method for integral equations requires the evaluation of double integrals 
while the collocation method ony requires single integrals. 

stable 

S 

COLLOCATION t- 

2a-2j 2a as 0 j+a 2j- pi Sobolev 

_ indices 
t 

GALERKIN e 

stable 

The case a 0 (j+a>O pictured, j+a<O also possible) 

stable 

COLLOCATION 

2a-2j O (a 2a j+t 2j-- 1 2j Sobolev 

indices 

GALERKINl s_l 

stable 

The case a ? 0 

FIGURE 1 

The indices t < sfor which Ilu - uAI,t < Ch7-Illulls. 
Dashed lines indicate estimates requiring a quasiuniform mesh family. 

We conclude this section with a determination of the condition number of the 
matrix arising in the collocation method. Let Id denote the interpolation operator 
onto Sd(A). Then the collocation equations (2.1.5) may be written as 

(2.1.36) 'dAuA = df I 
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and the linear operator which must be inverted to determine ua is sdA: Sd( A) 
Sd(A). In the following theorem we show that for quasiuniform meshes the H?-con- 
dition number of this operator is bounded by O(hjl'). 

THEOREM 2.1.8. Assume that A is an isomorphism of H r+, onto Hr-a for all real r, 
and assume that the inverse properties (2.1.30) hold for all meshes under consideration. 
Then there exists a constant C such that for any splines v, w E Sd(A) satisfying 

idAv =w, there holds 

livlo ChXalWll vllwllo < Cllvllo if a <, 0, 

and 

llvilo < Cllwllo, llwllo Ch -2aliviio if a > 0. 

Thus the Ho-condition number of gdA: Sd(A) -- Sd(A) is bounded by Ch -21al 

Proof. The equation (2.1.36) is equivalent to 

(2.1.37) JdAv(x,) =w(x,) = Jd-w(x,), i=1,. ... In, 

where we choose d satisfying d> max(-2a - 4, j - a - -) and d > d. 
(i) Suppose a < 0. Then we may apply (2.1.22) with t = 0, s =j + a if j + a 2 0, 

and Theorem 2.17 with t = s = 0 if j + a < 0 to get 

llv - A-'Jdwllo ? ChsJA-'Jd-wjis 

and, with the boundedness of A-', 

IIVIIO < Ci1I4dIWii 2a + C2hs11jdiW11s-2a. 

For Jdw E Si( A) we apply inverse properties and boundedness of Jd- on Sd( A), 

IIVIIo <_ Ch2Xajjjd-Wjj0 C'h 2allW110. 

Next we have 

llwllo < IAvllo + il(Jd - I)Aviio ? 1 ? c2hsiJAvjj., 

where now s = j - a for j + a > 0 and s = 1 for j + a < 0. Then continuity of A 

and the inverse property for Sd( A) imply 

IwlIO < CIIIV112a + c2hsiiv1s+2a < ClIV112, < C11V110 

(ii) Now if a > 0, we apply the triangle inequality, the boundedness of A-', 
(2.1.22), and an inverse property to get 

llvllo < iiA-1wjj0 + llv - A-lwllo < CW11-2a + lIv - A-'W12a 

C(ijwjj0 +? haJIA-1wllj+?,) ? C(ijwjjo + hiAaijwijj_i) ? Cllwllo. 

For continuity we have 

llwllo = IlidAvllO ? IlAvilo + ll(Jd - I)Avjj0 

? cIvI12a + C2hAj aiAvi__ <_ cIIvI212? + C2hjaiivia 

and, with inverse properties, IIwI I0 Ch-2alivio. D] 
Remark. The bounds on the condition number given above are the same as those 

for Galerkin's method [100]. As for the Galerkin-collocation method in [50], [100] 
they provide the basic estimates for the analysis for the fully discretized collocation 
with numerical quadrature [103] based on the Strang lemma [39]. 
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2.2. Collocation of Systems of Equations of the Same Order. In this section we 
extend the analysis of the last section to systems of equations of the form (2.1). For 
s E Rand integersp > 0, q 0, set Xs= (Hs)P X Rq. Let 

( = A B ) Xjy+ a 
<;X^ j 

- a 

where A is a p X p matrix of bounded linear operators HJ + HJ-, B is a p X q 
matrix of functions in HJ-a, and A is a q X p matrix of bounded real-valued linear 
functionals on HJ?a. We again assume the relation (A.1) between the order 2a of 
the operator and the degree d = 2j - 1 of the collocating splines. In place of (A.2) 
and (A.3) we assume 

(6.2) C : XJ+a - J- is an isomorphism 
and 

(6Pi .3) ef satisfies the Gacrding inequality 

(Ku,u),j 
- 
YIIU112c'+ - KICu,u)x, u 

ECJ?v 

where y > 0 and }: XC"+ X 7CJ' is a compact operator. 
Here the spaces X(s are equipped with the natural product norms and inner 

products. 
Remark. Since 

( O 0 A O 

and the second matrix on the right-hand side of this equation represents an operator 
of finite rank, to verify (A.3) it suffices to show that 

(Au, u) j Y>.YIUI12+a - (Ku, u)j, u E (Hi+a)P, 

for some y > 0 and K: (Hj+a)P - (HJ-a)P compact. (Here (-, -)j and 11 - .ll denote 
the inner product and norm in (HJ )P.) 

Given f = ( f, ,B) E 'SC 3- we wish to approximate the solution u = (u, X ) E + 
of (2.1) or, equivalently, of the equation 

'iu = f. 

Setting Sd(A) = (Sd(A))p X Rq C 'j+", the collocation solution uA = (uA, wA) E 

Sd( A) is defined by the equations 

(2.2.1) AuA(xi) + Bwj(xj) =f(xi), i = 1,...,n 

Au, = A. 

Now let J,: JCj-a -- 'JC'j- be defined by ? ,+(u, ) (u + JAu + Ju, ), the opera- 
tors J and J, being applied componentwise. Set d, = 6i. The following analogue 
of Theorem 2.1.2 follows easily from Theorem 2.1.1. 

THEOREM 2.2.1. A function u,, E- d(A) satisfies the collocation equations (2.2.1) if 
and only if it satisfies the Galerkin equations 

izUi,V)%, = (i^U,V) ,, V E Sd(^)d 

Lemma 2.2.2 and Theorems 2.2.3 and 2.2.4 which assert the uniform boundedness, 
stability, and quasioptimality of the collocation procedure may now be proved in a 
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manner entirely analogous to the case of a single equation, and so their proofs are 

omitted. 

LEMMA 2.2.2. The operator (6, is invertible with inverse e\} = 6,-i;. Moreover 
there exists a constant C such that 

II6aILjcJ+ac ?I-a + I1IK' x-a ? c 

for all partitions A. 

THEOREM 2.2.3. There exist positive constants C and h0 such that if A is a partition 
for which ha < h 0, then 

inf sup ((, z ), 'x> C. 
VeSd(A) ZESd(A) 

IiV|ILxj+?=: 1 IzIikJ+a = 

THEOREM 2.2.4. There exist positive constants C and h0 such that for any partition A 
with ha ? ho there is a unique solution (ua,, W) E S3d(A) of the collocation equation 
(2.2.1). Moreover 

IIu - uAIIj+?a + I w - WAI C inf IIu - v11j+a. 
VC(Sd(A))P 

If in addition u E (Hs)Pforsomes E [j + a,2j], then 

Iu - UAllj+?a + 1 - wA)I ChsJ-aIllulls. 

To state the analogue of Theorem 2.1.6 we introduce thej-adjoint of an operator 
S5: cJC% s 

Ct as the operator 6*: 92j-t _(2J-s defined by 

(v, 6j3*w)>K K= v, W)>C, v ECs, w C C2j2t. 

Also, for s >j + a we say that an isomorphism 63: cCJ+(a -- 9j-' is s-regular if 6-1 

maps cjs-2a boundedly into (Cs. The proof of the following theorem is completely 

analogous to that of Theorem 2.1.6. 

THEOREM 2.2.5. Let t E [2a, j + a] and assume that d* is (2(j + a) - t)-regular. 
In case t < 2a + 2 and j > a + 2, assume in addition that (B maps Sc2+2' boundedly 
into ?(C2. Then 

u- uAllt + II ? ) - Aa1< Chj+a-tIlu - uAllj+a 

If in addition u E (Hs)Pforsomes E [j + a,,2j] then 

(2.2.2) Ilu - uall, + I w - wAI < ChstIIuII5. 

Finally, the inverse inequality (2.1.30) clearly implies the analogous result for 
I v E sd(A), namely that for T< ?a <d + 2, 

(2.2.3) IlViL ? Ch JGIvIlT, V E- 

It is therefore straightforward to derive the following analogue of Theorem 2.1.7. 

THEOREM 2.2.6. Let s and t be real numbers with j + a s t s s s 2j, t < 2j -2 

and suppose that the solution u E 9Cs. Assume that the inverse property (2.2.3) holds for 
all meshes under consideration with T = j + a, a = s. Then 

Ilu - uAllt ? Chhs'llulls. 
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We conclude this section by noting that, as in the case of a single equation the 
highest rate of convergence of the collocation method in any Sobolev space is 
O(h2j-2a). The usual analysis for standard Galerkin methods [54], [92] can be 
simply adapted to systems of the form (2.1) (under a suitable coercivity hypothesis) 
to produce optimal error estimates (2.2.2), with t E [2a - 2j, a] and s E [a, 2j] for 
a standard Galerkin procedure. These include estimates in Sobolev spaces of lower 
index and therefore of higher order than for the collocation method. The situation is 
altogether analogous to that summarized in Figure 1 for the scalar case. Note that 

(2.2.4) 1 w - wA;I Ch"7tIIu I 
with t = 2a, s E [j + a, 2j] for collocation and t = 2a - 2j, s E [a, 2j] for stan- 
dard Galerkin. 

2.3. Applications and Examples. Since all the problems from applications consid- 
ered here may be formulated in the framework of pseudodifferential operators, we 
begin by determining a class of such operators which satisfy assumptions (A.2, 3) or 
(6i.2, 3) of Sections 2.1 and 2.2, respectively. To this end let A be a p X p matrix of 
real pseudodifferential operators on the closed curve 1 of order 2a, a E R. So A 
maps real-valued functions to real-valued functions. (See [97], [90] for the general 
theory of pseudodifferential operators.) For simplicity we assume that 1 is a 
CO-curve, although for specific results this can be weakened significantly. Then A 
has a principal symbol ao(z, () subject to any fixed local parametrization z = z(t) of 
F [97, p. 54 ff.]. Here ao: image(z) X R -, CPxP is homogeneous of degree 2a with 
respect to ( for I j> 1. The significance of the principal symbol is this: if u is a 
function on F supported in the image of a single coordinate chart, then 

Au(z(s)) = 2| aof(z(s), )eis(f e-"'u(z(t)) dtdS ? Ku(z(s)), 

where K maps (Hr?a)P boundedly into (H'-'?e)P for some fixed positive e and 
every r E R, i.e., K is an operator of order less than 2 a. 

In order to assure the Garding inequality in (i.3) we will assume that A is 
strongly elliptic [92], [100], i.e., that there exists a smooth function 0: F -* CPXP and 
y > 0 such that, for each chart z(t) in some covering of F and corresponding 
principal symbol ao, we have 

(2.3.1) Re t@( y)ao(y, ()f 2 y I d 12, D C CP, y E- image(z ), 1 =1. 

Note that since A is a real operator, we have a0(y, -t) = a0(y, (). Consequently 
(2.3.1) remains valid with 0 replaced by its real part. Hence, without loss of 
generality, we assume that 0 is in fact real-valued. 

THEOREM 2.3.1. Let A be a strongly elliptic matrix of pseudodifferential operators on 
F and set 

A = AO, 
where 0 is as in (2.3.1). Then for any r E R, A maps (Hr+a)P boundedly into (Hr-a)P 
and is a Fredholm mapping of index zero. Moreover, for any nonnegative integerj there 
exist real constants y > 0 and C such that 

(Av, v > j 2YIIv112+a - CIIVI12 v E (Hj+a )P. 
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Proof. From homogeneity of the principal symbol it follows that A maps (Hr?a)P 

boundedly into (Hr-a)P. Now letj be a positive integer and define 

Du(z(t)) = (-1)J Au(z(t)). 
dt2j 

Then D is a matrix of pseudodifferential operators of order 2( j + a) with principal 
symbol 

dj(z, )= 2jo( z)a,,(z, ) 

and so is strongly elliptic. Integrating by parts in the HJ inner product and applying 
the results of [58] to D, we have for v E (Hj+a)P 

(Avy v ) (Dv, v)O + J(Av) Jv 

YIItV1II+a - CIlV|I1Ja2 - IJAv I lJv I 
Yl lja C|lj+a-e |A|;a-1Ul+- 

~>.YIIt112+?a - CV12 - CjIAvIjjj IVIja 

YIIV112+c? - CIIVI12 

for some y > 0. That A is a Fredholm map of index zero (HJ+a)P -> (HJ-a)P 

follows from this G'arding inequality [93]. This still holds true if j is replaced by any 
real number r, since the Fredholm property and the index of an elliptic pseudodif- 
ferential operator is independent of r [97, Chapter II, Theorem 2.5], [77], [90]. 

Now consider the system (2.1) with A a strongly elliptic matrix of real pseudodif- 
ferential operators of order 2a and B and A as in the first paragraph of Section 2.2. 
Assume that for the data f = 0, B = 0 the only solution is the trivial one. Set 

LT OA O ) 

Clearly LT is an invertible (since ef is invertible and 0 is nonsingular by (2.3.1)), i.e. 
(6i.2) holds with ef replaced by it. Moreover condition (6i.3) with e replaced by LT 
follows from Theorem 2.3.1. In view of Theorem 2.2.5 we now also establish the 
regularity of d*, the j-adjoint of L?. 

LEMMA 2.2.3. Let C be as above and assume in addition that the components of A 
extend continuously to H2a. Then V* is (2(j + a) - t)-regular for any t E [2a, j + a]. 

Proof. From the definition of V and (2(j + a) -t)-regularity it clearly suffices 
to show that C maps JCt isomorphically onto JCI-2'. The hypotheses imply that LT is 
a continuous Fredholm operator of index 0, and, since it is invertible, the lemma 
follows. 

We have now established the hypotheses of Theorems 2.2.4-2.2.6 for the operator 
d, and thus the collocation method is stable in C'Xi", and the full range of optimal 
error estimates hold, as discussed in the previous sections, for the transformed 
system 

(2.3.2) O(Au + Bw) Of, Au = 3. 
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Since 0 is invertible for all z, the transformed system is equivalent to the original 
one. Moreover, for the same reason, the collocation solution ua e Sd( A) may be 
determined directly from the equations 

(2.3.3) Au,(x,) + BwA(x,1) = f(x,), i 1,... 

Aua = /B. 

Thus we have established the convergence estimates for collocation to the given 
system (2. 1). 

Remark. The boundedness and coercivity hypotheses needed to apply the stan- 
dard theory of Galerkin methods follow from the assumptions above and Theorem 
2.3.1. Thus the standard Galerkin method for the transformed system (2.3.2) is 
stable in '(a, and optimal order error estimates hold as indicated in Figure 1. Note 
however, for the Galerkin method-unlike for the collocation method-it is neces- 
sary to determine the operator 9 to implement the procedure. This may be rather 
involved (see Section 2.3.1 and the appendix). 

Remark. If the operator A in (2.1) is a matrix of complex pseudodifferential 
operators, A a matrix of complex functionals and the matrix of functions B complex 
valued, then this system is equivalent to the larger real system 

A1 -A2 B1 -B2 u1 
11 

A2 A I B2 B1 U2 - f2 

A1 -A2 ? (8 - 

A 2 A 1 8 

where uJ, wj, f3, 8J represceiu real and imaginary parts for j = 1 and 2, respectively, 
and for A, B and A, AJ, BJ and AJ represent the real operators gotten by restricting 
to real functions and taking real and imaginary parts. The principal symbols of Al 
and A2 are given by 

2j{ao(Y 0) + ao(y-I) } and j{aj(y,) -ao(y,-I) } 

It follows easily that if the strong ellipticity condition (2.3.1) holds for the complex 
matrix of operators A with principal symbol ao and some complex matrix 9 = ?1 + 
iO2, then the real matrix of operators 

( A1 -A2 
A2 A1! 

is strongly elliptic with the matrix 

( 1 -02 

02 01J 

in place of 9 in (2.3.1). 
It is easily verified that collocation of the complex system (2.3.3) by using 

complex-valued splines is equivalent to collocation of the real system (2.3.4) using 
real-valued splines. Having verified the strong ellipticity, we see that our conver- 
gence theory applies fully to collocation of the complex system. 
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2.3.1. Integro-Differential Equations With Cauchy Kernel. Many equations arising 
in applications involve compositions of differential operators and singular integral 
operators with Cauchy kernel. These systems are of the form (2.1) with 

(2.3.4) A0(s) dmu + Ed AUm j(s) d 
ds m m-j ds'i 

I F, dmu, rn-I d'.u 1 d~ 
+ {O(s, a)d m(a) + 2 Cm v(S a) d (a)} ?.Ji 

O( 
da)m(a?j~=O da' J 

-z(s) 

q 

+?L(s, a)u(a) du + 2 WkBk(S) =f(s), 
F kk=1 

Au O(s)u(s) ds , m No 

where = z,(a) + iz2(a) and where s, respectively, a denotes the arclength on r. 
Here A1, C,, L, and XO are sufficiently smooth complex matrix-valued functions. (See 
[3], [69, VII, Section 1], [71, Section 117].) The principal symbol of this operator 
subject to a local parametrization by arc length s is given by the matrix-valued 
function 

ao(s, () = imtm(Ao(s) + Co(s, s) 

with order 2a = m. Hence, in order that assumption (A.1) for the collocation be 
satisfied, we must have d = 2j - 1 > m. We consider the cases of even and odd 
order operators separately. 

The case of even m. In the case m is even, a is a nonnegative integer and the strong 
ellipticity condition (2.3.1) now reads as 

(2.3.5) (-1) Re T9(s)(Ao(s) ? CO(s, s)) IyIDI2, 

which must hold for both signs. In [80, Lemma 4.4] and [81, Lemma 2.9], Prossdorf 
and Schmidt proved that the strong ellipticity condition (2.3.5) holds if and only if 

(2.3.6) det(AO(s) + XCO(s, s)) #f 0 for all X E [-1, 1]. 

Note that (2.3.6) precludes the possibility that Ao- 0. 
Remark. In [81] Prossdorf and Schmidt also construct the matrix 0(s) occurring in 

(2.3.5) assuming that (2.3.6) holds. Their construction (which is summarized in the 
appendix below) is rather involved. Hence, if 9 is not given explicitly with the 
problem, the Galerkin method for (2.3.2) may be impractical, whereas the colloca- 
tion method (2.3.3) does not require knowledge of 9. 

In the special case C _ 0, the operator (2.3.4) reduces to a system of ordinary 
differential operators of even order 2a. The ellipticity condition is definiteness of the 
leading coefficient matrix AO, and our results provide new error estimates for the 
nodal collocation of ordinary differential equations with periodic side conditions by 
odd degree splines. 

Singular integral equations. In the case a = m = 0, (2.3.4) reduces to a system of 
singular integral equations with Cauchy kernel. For collocation by piecewise linear 
functions, i.e., j = d = 1, we strengthen the convergence result from [80, Theorem 1] 
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and [81]. In these papers an L2-stability result is proved for strictly uniform meshes 
and is applied to give an O(h I log h l) convergence rate in an appropriate Holder 
space. We proved instead estimates in Sobolev spaces without restrictions on the 
mesh, including an O(h2) rate in L2. Moreover, forj > 1, our results are completely 
new. On the other hand, Prossdorf and Schmidt show in [80], [811 that the strong 
ellipticity condition (2.3.5), (2.3.6) is also necessary for the convergence of piecewise 
linear collocation for singular integral equations. 

Singular integral equations of this type have applications, e.g., to plane elasticity. 
For example for the second fundamental problem in which the stress is given on the 
boundary, the system of equations for the desired boundary displacement u 
(u,, u2) may be written in the form (2.1) with 

(2.3.7) f given, 8 = 0, 

I ? Z2) 

Au (u, ds, u2ds, u dz, + u2 dZ) 

Au(z) = eu(z) - S(z, T)u(T) da, 

Sjk(Z' ) T( + (M6,k + 2(X M) + Z k - 
Zk) - loglz - t 

7T(X ? 2Mi) \Jj- Z12 Jav~ 

+ 7 (-8jk)+ 2 d loglz - 1 j, k=1, 2, 

where E +1 corresponds to the interior, respectively, exterior problem and B(z) 
gives rigid motions. i > 0 and A _> - 3- are the Lame constants, vD is the exterior 
normal to F at D =(a) E F. The right-hand side f is given from the boundary 
tractions (see (A.2.5)). This system is just the Somigliana identity on F and can be 
obtained from [4], [34], [62], [69, XIV, Section 6], [70], [84] by specializing to the case 
of plane strain. (For plane stress replace X by 2XM/(X + 2M) = X*.) The principal 
symbol of the operator A in (2.3.7) is 

ao0(s, ) 

where v = [/(X + 2M). It is easily seen that 0 < v < 3 for plane strain (and 
0 < v < 1 for plane stress), hence, for I 1, -a0(s, () is positive definite. Therefore 
this system is strongly elliptic with 6 = -I in (2.3.1). 

This system was used in [20, the case r, = 0]. Similar systems can be found in 
[7], [8], [34], [44], [56], [60]-[63], [69, XIV, Section 6], [70], [99] and in each case the 
basic problems yield strongly elliptic systems of singular integral equations. Our 
results apply to all of these (as long as the boundary r is smooth). 

In [7], [8] Antes considers piecewise linear nodal collocation (our case d = 1) and 
gives a posteriori error estimates. He does not prove convergence of the method. 
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Moreover, a more detailed investigation of his estimates [7, (8.22) ff.], in light of our 
results, shows that they are weaker than optimal by at least one power of h.. A 
numerical comparison of Galerkin's method and point collocation can be found in 
[72], but our results do not apply since piecewise quadratic trial functions are used. 
Nevertheless, if our results were to hold for this case, they would be in good 
agreement with the experiments. 

Fredholm integral equations of the second kind. A further specialization of (2.3.4) to 
the case m = a = 0, Ao(x) I, C0 0, yields Fredholm integral equations of the 
second kind 

u(s) + JL(s, )u(a) du + B(s)c = f(s), 

Au = fF )u(u) du = P. 

The principal symbol is the identity matrix, so the equations are trivially strongly 
elliptic and our results apply. However, they can easily be obtained in this case from 
well-known results in [6], [28] in combination with approximation estimates (2.1.4). 
Further results, including superapproximation and nodal superconvergence results, 
can be found in [11], [12], [13], [30], [54], [78]. Such Fredholm equations arise in 
classical potential theory for the Laplacian and Helmholtz equation and so are 
applied to the computation of incompressible flows, acoustics, and classical electro- 
magnetic scattering [83, Section 81], [56], [61]. In particular our convergence results 
apply to the method used in [67] to compute ideal two-dimensional flows. 

The case of odd m. 
We now turn to systems involving operators of the form (2.3.4) with odd order m. 

Then a-1/2 is a nonnegative integer, and instead of (2.3.5) the strong ellipticity 
condition is 

(2.3.8) (1) a1/2 Re itTO9(s)((+Ao(s) + C0(s s,)) I YI 2, 

which again must hold for both signs. 
From [81, Lemma 2.9], it follows that (2.3.8) holds if and only if 

det(XAO(s) + CO(s, s)) # 0, A E [-1,1]. 

Hence, in the odd order case, C0 cannot vanish. 
An example is given by the normal derivatives of the double layer potential, that 

is the operator defined by 

(2.3.9) Cou(s) = u(a) a (logIz -i) da, 

z = z(s) and D= D(a) on F, which plays an important role in classical potential 
theory. Equations of the form 

(2.3.10) Ao(s)u(s) + Cou(s) + i IC(s a)u(a) 
d 

7Ti ~'1 - z(s) 

+ J(S a)u(a) du + B= f, 

Au = P, 
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D T(a) on F, have been used more recently in numerical computations. Employing 
the Cauchy-Riemann equations and integration by parts, (2.3.9) can be rewritten as 

(2.3.11) Cou(s) - .I du(o (s() dz (o))1 (s) 

The principal part of Co is given by 

I du idt 
u H-4 

iq7rd.U -z(s) 

which is the famous Prandtl integro-differential operator of wing theory [71, Section 
117], [69, VII, Section 1]. From (2.3.11) we see that (2.3.10) is a specialization of 
(2.3.4) to the case Ao 0 0, Q7(s, s) = -i, m = 1, and the principal symbol is simply 
ao(s, {) =1 II. Hence (2.3.10) is strongly elliptic, and 6 in (2.3.8) can be taken to be 
the identity. 

Applications of (2.3.10) to acoustics and electrostatics can be found in [41], [73]. 
In [59] an equation of the form (2.3.10) arises in elasticity problems, and piecewise 
linear collocation is used. Since j = 1, a = I, assumption (A.1) is violated, so our 
results do not apply. In [99] cubic spline collocation is applied to first order 
integro-differential equations of the form (2.3.4). Thus, our analysis applies as long 
as the boundary is smooth and mixed boundary conditions are excluded. 

2.3.2. Fredholm Integral Equations of the First Kind With Logarithmic Principal 
Part. A large class of interior and exterior boundary value problems in two 
dimensions can be reduced to systems of the form 

(2.3.12) | log(Ijz(s) - z(a) I +L(s, a))u(a) da + B(z(s))w f(z(s)), 

O(f)u(a) da = Au - /3, 

where the kernel L is smoother than the logarithmic principal part. For this operator 
the order is 2 a = -1, and the principal symbol is aO(s, I) = I I I , so the operator 
is strongly elliptic (and 6 = I). 

Systems of this form arise in many applications and the method goes back to 
Fichera [37]. The scalar case with p = q = 1, B = 1, Xo = 1, L = 0 is Symm's 
integral equation of conformal mapping [40], [45], [48], [51], [95], [100]. In [31] it is 
shown that the numerical conditioning is superior with B = 1, Xo 1 rather than 
B = 0, X = 0 and scaling of F. As a system, (2.3.12) is used in viscous flow 
problems, particularly in connection with Stokes flows [50]-[53], electrostatics [73], 
[85], [86], acoustics [38], plane elasticity [20], [32], [51], [56], [73], plate bending [51], 
[52], and torsion problems [56], [68], [96, p. 246 ff.]. 

In particular, for the plane first fundamental problem of elasticity with the 
displacements given on F, (2.3.12) specializes to 

p = 2, q = 3, B(z) A (o 1 1 ' (Z Z 

and 

(2.3.13) L = (A + 3) (((Z, i )(zk -k)/Jl jZ 1 + 7Sik) ) 
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(see Appendix and [20], [34], [51], [72]). Then the unknowns in (2.3.12) are the 
tractions on F. f is given from the displacements, see (A.2.6). 

Asymptotic error analysis of Galerkin methods and their numerical implementa- 
tions for (2.3.12) have appeared in many places [50], [51], [53], [54], [55], [73], [85], 
[86], [100]. However, only preliminary convergence results have appeared for the 
collocation method [1], [2], [5, p. 271 ff.], [98], and these do not provide quasioptimal 
estimates. Our results with j = 1 apply in particular to numerical methods in [20], 

[31], [32], [68], [99]. 
In [48] H.-P. Hoidn reports on numerical experiments for piecewise linear and 

cubic collocation of Symm's integral equation. His results confirm the rates of 
convergence predicted by our work with great precision. 

3. The Collocation of Boundary Problems in Ordinary Differential Equations. Thus 
far we have considered only problems with periodic side conditions. The methods of 
analysis employed can also be applied to the solution by collocation of two-point 
boundary value problems, which has generally been analyzed by quite different 
techniques in [9], [10], [21], [35], [66], [89]. Rather than striving for the generality of 
the previous chapter here we limit ourselves to the example of cubic spline colloca- 
tion of the problem 

(3.1) Au :au" + bu' + cu = f on (0,1), 

u(j) =uj, j =0,1. 

Here a, b, c, f E C([0, 1]) and u0, ul E R are given. We assume that a is strictly 
positive and that the problem (3.1) has a unique solution. The following analysis can 
be generalized to systems of equations, equations of higher order, splines of higher 
degree, and to more general boundary conditions. 

We require in addition the unisolvence assumption: 

if v is a cubic polynomial and Av ( j) = O for i, j = 0, 1, then v 0. 

Let l\ denote a mesh, 0 = x0 < xi < < xn = 1, of maximum subinterval length 

h.. Denote by M3(A) the space of all C2 cubic splines subordinate to A\ (but not 
necessarily periodic). The collocation procedure seeks u. E M3( zA) satisfying 

(3.2) Au/\(xj) = f(x,), j = O, I, ..., In, 

ua(y ) = ui, J = 0, 1. 

We remark that the unisolvence assumption states precisely that the collocation 
equations are uniquely solvable in the case of the trivial, one subinterval, mesh. 

We begin by reformulating the collocation method as a nonstandard Galerkin 
method. Our approach is related to that in [94], but we apply the error analysis for 
Galerkin methods directly. Let U be the unique cubic polynomial satisfying A1U(j) 
-A'u(j), i, j = 0, 1. Set 

H3 = {v e H3 I Av(j) = O, i, j = O1, A13(A) = M3(A) n flH3, 

where in this chapter Hk (k integral) denotes the nonperiodic Sobolev space of index 
k on [0, 1] with norm denoted by 11 * Ilk- Then ui:= u-U E H3 and, supposing 
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u, E M3(?\) satisfies (3.2), u, u= - U E M3(zA). Now, for any X E M3(,A), 
X"' I(x,_ l x) is equal to a constant Xj E R, so by (3.2) 

Xi ~~~~x 
nx Xj n Xj 

0 j=l xj1 j=l Xj , 

f '(Ai)'(x)X "(x) dx. 

Defining B: H3 X H3 - R by 

B(v, w) =|(AV) (X)W.. (X) dx, 

we conclude that if uA C M3(A\) satisfies the collocation equations (3.2), then 
u, = u, - U E M3( A ) satisfies the Galerkin equations 

(3.3) B(-aA,w) = O, w C A3(A). 

The converse also holds. Indeed, by the unisolvence assumption every piecewise 
constant function subordinate to A of mean value zero is the third derivative of some 
function in M3(L\). Hence, if u, satisfies (3.3), then the node values A(U --U,)(Xj) 
are linear in xj (cf. the proof of Theorem 2.1.1). Since A(i - CiA)( j) = 0 for j = 0, 1 

the collocation equations (3.2) hold. 

THEOREM 3.1. For hA sufficiently small the collocation equations (3.2) have a unique 
solution uA C M3(A\). Moreover there exists a constant C depending only on the 
coefficients a, b, and c such that 

IIu - uAII3 < C inf IIu - v113. 
vCM3(A) 

Proof. Let v E M3(A\) and let V be the unique cubic polynomial satisfying 
A'(V + v - u)(j) = 0, i, j = 0, 1. Then 11V113 s CIIu - v113. Setting v = v + V, we 
have 3 C vM3(A) and 

IIu - v113 < IIU - V113 + IIVII3 < CIIu - V113, 

so it suffices to prove the quasioptimal estimate of the theorem with the infimum 
restricted to v C M3(Az). By the standard theory for Galerkin methods [15], [16], the 
theorem then holds if it can be shown that 

(3.4) inf sup B(o,w 11VII311WI13 
0 #vCM3(A) 0#WCM3(3A) 

where CO is a positive constant depending only on a, b, and c. Let v E M3(A) be 
given. Then 

(3.5) B(v, v) > Ct1IvII2 - C21Iv1VI, 

where C1 = inf a > 0, and C2 depends only on a, b, and c. Define y to be the 
solution of the adjoint problem 

A*y (ay)" - (by)' + cy = v on (0,1), 

Y(U)0o, j=0,1. 
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Since the Dirichlet problem for A is well-posed, so is that for A*, so y is uniquely 
determined and 

IIYIIO S~ IIYIII S_ CIIVII-l S~ CIIV113. 
Next define z by the boundary value problem 

z(4) = y on (0, 1), A'z(j) = 0, i, j = 0 1. 

By the unisolvence assumption z is well-defined and 

(3.6) lIZ114 s IIYIIO S CIIVII3. 
By construction z C H3 and 

(3.7) B(v, z) = IIVIIO. 

Finally let t e M3(zA) be the H3 projection of z into M3(zA), so 

(3.8) 114t3 s lIZ113 s CIjvII3, 

and, using (3.6), 

(3.9) lt -Z113 s ChAlIzII4 s ChAlIvII3. 
Setting w = v + C2t and combining (3.5), (3.7) and (3.9), we get 

(3.10) B(v, w) = B(v, v) + C2B(v, z) + C2B(v, t - z) > C1IIvII -2ChAIIvII3. 

Also, from the definition of w and (3.8), 

(3.11) 11WI13 s ClIV113. 

For hA sufficiently small, (3.4) follows from (3.10) and (3.11). D 

COROLLARY 3.2. If u e H4, then for hA sufficiently small 

IIU - UAII3 S ChAlIuII4. 

We now deduce a higher order estimate for the error in H2. 

THEOREM 3.3. If h, is sufficiently small, then 

IIU - UA112 S ChAllu - UA113. 

If also u E H4, then 

IIU - UAII2 S ChAlIu114. 

Proof. Since the Dirichlet problem for A is well-posed, we have the a priori 
estimate 

IIU - UAII2 S CIIA(u - uA)IIO. 

Hence the theorem follows from the following lemma and Corollary 3.2. D 

LEMMA 3.4. If hA is sufficiently small, then 

IIA(u -uA)1IO S ChAllu - UA113. 

Proof. Define w e H3 by W(4) = A(u - uA). Then 11wI14 s CIIA(u - uA)IIO and 

IIA(u - UA)112 B(u - uA, w) inf B(u - uA, w - v) 
VCM3(A) 

s (71u - UAI3 inf IIw - V113 s ChAllu - UA11311WI14 
vCM3(A) 

S ChAllu - uA11311A(u - uA)II0. D 
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Remark. If k < 2, then it is not true that 

(3.12) IIU - UAIIk S ChA lIU114, 

as the following argument [23] shows for k = 1. Consider the simple case a -1, 
b -c 0, and let u be any Hs function that U(4)(0) = u(4)(1) = 0 and for which U(4) 

does not vanish identically. Then 

I u"' - ukfii= B(u - UA, u - uA) = B(u - uA, u) 

= ( (U -UK', u(4)) =(' U-U U(5)) 

Hence if (3.12) holds for k = 1, then there exists a constant C depending on u but 
independent of the mesh A such that 

(3.13) iiu "'/-u'f sfi :<ch312. 

But (3.13) is impossible since u ", is piecewise constant and u"' is not constant. 
By contrast, if a standard Galerkin method is used to define u, E M3(z), then 

(3.12) can easily be shown to hold for -2 s k s 1. If the mesh is restricted to a 
quasiuniform family an inverse property can be used to establish (3.11) for the 
Galerkin method with k = 2 and 3 as well. 

It has long been known [21] that nodal collocation of second order differential 
equations by cubic splines does not afford optimal order estimates for the solution 
values (at least in L?). Archer [9], [10] and Daniel and Swartz [35] have shown in the 
case of uniform mesh spacing how to perturb the collocation equations to correct 
this defect. 

Appendix. 
A.1. Construction of 0(s) in (2.3.5) [81]. Let (2.3.6) be satisfied and let 

U(s) = Ao1(s)C0(s, s). Then let 

V(s) :((I + U(S)) 1/2(, _ U(S)) 1/2) 
- 1 

where the square roots are defined by means of the Dunford-Taylor integral with 
eigenvalues having positive real parts [57, 1.5.6]. With V(s) define 

N+ (s) V(S)(I + U(s)). 

Then the matrix function 

H(s) f|exp(-N+ (s)T) exp(-N+(s)T) dT 

can be defined [19, 10.18], and 

0T(s) = (-i)'H(s)V(s)A-'(s) 

gives the desired matrix in (2.3.5). 
A.2. One of the Singular Integral Equations of the Direct Method in Plane 

Elasticity. The basic relation for the direct method in plane isotropic homogeneous 
elasticity is given by Betti's formula 

(A.2. 1) eu(z) - S(z, ~)u(D)-G(z, )t(()) ds; 2 ( ) 3 
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with -- 1 for interior problems and E = -1 for exterior problems. u = (ul, u2) 
denotes the vector of displacement, and 

(aui?A)aul dy _ __ Y al a2d 
t(z) 

_u_ ___ dY aU2 au,d 
+ ((A + 21i) ax+ )ds + + x ) s 

!IL ay +ax ds a dds- 

denotes the traction on the boundary curve r. S denotes the traction of point loads 
in (2.3.7), and G is the fundamental solution of the elasticity equations 

p2,u + (X + u)graddivu 0, 

namely 

___ ~ ~ ~~ X+ L a2 
_(Z-~20l I Gj 

21lg 
D1sj 

8,rA(21 + A ) aZjaZk( 

414(2p+XA ) { 7rlogIZ Dik + L}, 

with L given by (2.3.13) (z z1 + iz2 X + iy). From (A.2. 1) one finds Somigliana's 
identity on the boundary, Le., for interior problems with e = I and w - and for 
exterior problems e - I and w describing the rigid motion, 

(A.2.2) eu(z) = 2f{ 2 S(z, D)u() - G(z, )t( ) dsr 

- W2 ) W3( -X ) 
z E 

r 

(For this formulation see also [41, [62].) 
The first fundamental problem. Here the displacement on the boundary is given, 

UIr = (T1 2)T_ 

Inserting u IF into (A.2.2) gives the integral equation 

(A.2.3) | - log I z-t I +L( z, ) }t( ) ds; 

-2Mt(X + 21t) f~~- S " d 1 0 
A + 3zA {( z) 

- 
S( z, )p( ds} +(l? Y) X + 3fL 06~Z Jf k 1 -xl 

for the unknown boundary traction t, where for the interior problem 4 = 0. For the 
equilibrium state one further has 

(A.2.4) t ds = o and f(tly-t2x)ds _. 

(A.2.3) and (A.2.4) is just the form (2.3.12), (2.3.13) providing the unique solution t 
and o-. -(2,u(X + 2,)/(X + 31i))w [51]. 

The second fundamental problem. For the second problem on F the tractions are 
given, 

tlr (AP. I#2) 
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satisfying the equilibrium conditions 

f1 ds = 0 and f(+2x- Y) ds = O. 

Inserting t Ir into (A.2.2) gives the singular integral equation 

(A.2.5) Iu(z) + fS(z, )u(D) ds? + (I l Y w= 2fG(z, )ds~ 

for the yet unknown displacement. For = 1 the rigid motions 

uo(z) = (a, a2) + y(y,x), a,, a2, y R 

however, define eigensolutions of (A.2.5). Therefore we modify (A.2.5) in the form 
(2.3.7) which determines u uniquely in both cases - = ? 1. 

Note Added in Proof. In response to the prepublication appearance of this paper J. 
Elschner and G. Schmidt have furnished in [106] a proof of the approximation 
property (2.1.4) and the inverse property (2.1.30) in the general case stated above 
(see the discussion following these two equations). In the same work they question 
the generality of the estimate IJu - JAu Ia Chsf, s E (1/2, 2 ], used in the proofs of 
Theorems 2.1.4 and 2.1.6. This estimate is indeed valid (with the constant C 
depending on s but independent of A). It follows from the stronger result Ilu - IAullo 
< Chs lull where IAu is the piecewise linear interpolant of u. To establish this latter 
estimate we note that for s E { 1,2) it is clear, and hence also for s E [1,2] by 
interpolation, so it suffices to consider s E (1/2, 1). Now for a < b, f E C'([a, b]), 
let If be the linear function interpolatingf on (a, b}. Then 

fbIf(X) - If(X) j2 dx < C( a)2sfbfb 1f(x) - 
1?2 dxd 

a ~~~~~Cb-a a dxXdy 

as follows easily from the Sobolev embedding theorem, the vanishing of the 
left-hand side for f constant, and a trivial scaling argument. Applying this inequality 
with a = x_ J1, b = xi, f = u, and adding over i, we get 

Ilu - lAull( < Ch f'f | () 
i+2s 

dxdy < ChAsllull2, u E H n ([o,1]). 

(The last inequality is well-known. A proof is written out in, e.g., [106].) Finally by 
density the equation holds for all u E Hs. 
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