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A Spline-Trigonometric Galerkin Method and an 
Exponentially Convergent Boundary Integral Method 

By Douglas N. Arnold* 

Abstract. We consider a Galerkin method for functional equations in one space variable which 
uses periodic cardinal splines as trial functions and trigonometric polynomials as test 
functions. 

We analyze the method applied to the integral equation of the first kind arising from a 
single layer potential formulation of the Dirichlet problem in the interior or exterior of an 
analytic plane curve. In constrast to ordinary spline Galerkin methods, we show that the 
method is stable, and so provides quasioptimal approximation, in a large family of Hilbert 
spaces including all the Sobolev spaces of negative order. As a consequence we prove that the 
approximate solution to the Dirichlet problem and all its derivatives converge pointwise with 
exponential rate. 

1. Introduction. In this paper we formulate and analyze a new method for the 
numerical solution of functional equations such as integral and differential equa- 
tions. Our method is particularly appropriate for the solution of integral equations 
arising from boundary integral formulations of boundary value problems in partial 
differential equations. The desired solution to the boundary value problem is 
typically obained at an interior point of the domain by integrating the solution of 
the boundary integral equation times a smooth weighting function. In conjunction 
with this procedure our method of solution of the integral equation will lead to 
exponentially fast convergence of the solution and its derivatives away from the 
boundary, in contrast to the polynomial rates of convergence achieved by the 
majority of other practical discretization methods, such as finite element, finite 
difference, and collocation methods. 

The method we propose for solving the integral equation is a Galerkin method 
with spline trial functions and trigonometric test functions, which we shall refer to as 
the spline-trig method. Spline Galerkin methods, or finite element methods, in which 
both the test and trial spaces consist of splines, have been widely studied. It is 
however the novel aspect of the spline-trig method, the use of trigonometric 
polynomials as test functions, which leads to the exponential convergence rates 
referred to above. 

Because of the novelty of the method and its analysis we shall not strive for 
generality in this paper, but instead shall study the method in the context of one 
relatively simple model problem. The problem we consider is the (interior and 
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exterior) Dirichlet problem for Laplace's equation in two dimensions, to be solved 
using a single layer potential formulation. Let F be a smooth simple closed curve in 
the plane and let g be a given function on F. We seek a bounded continuous 
function u on R2 such that 

Au = O on R2 \ F, 

u = g on F. 

We shall represent the solution of (1.1) as a single layer potential. In order to avoid 
difficulties of nonuniqueness when the interior domain has conformal radius one, we 
follow [6], [11], [14] in seeking to express u as a normalized single layer potential plus 
a constant. That is, we seek a function 4 on F of mean value zero and a real number 
X such that 

(1.2) u(z) 9f logI z-Y y(y) ds + W, z E R2. 

Restricting z to F, we get the integral equation 

(1.3) -j2 |flogIz-Y zY) dsy + X g(Z), e 

This equation has a unique solution. (In Section 4 we show, more precisely, that the 
operator (4, ) < g defined by (1.3) is an isomorphism Hr(F) X R - Hr l(F) for 
any real number r. The space Hr(r) is the Sobolev space of order r on F, which is 
precisely defined in Section 3. The circumflex denotes the subspace of codimension 
one consisting of elements of mean value zero.) The unique solution u of (1.1) is 
given by (1.2). For a proof of these facts see [9], [11], [14]. We remark that with the 
single layer approach the solution to the single integral equation (1.3) enables the 
determination of the solution to both the interior and exterior problems. 

In Section 2 of this paper we define and discuss the spline-trig method for our 
problem. In Section 3 we define a special doubly indexed family of Hilbert spaces 
and establish some properties we will require in the analysis of the method, which is 
accomplished in the rest of the paper. In Section 4 it is shown that the method 
provides stable, quasioptimal approximation of the solution of the integral equation 
in a wide range of spaces including all the Sobolev spaces of negative order. The 
rates of convergence in these spaces is determined in Section 5, and it is shown that 
the corresponding approximation to the solution of the Dirichlet problem converges 
along with all its derivatives with an exponential rate away from the boundary. 
Polynomial convergence rates valid up to the boundary are also proved. In the final 
section it is shown that the matrices arising from the discretization are well-condi- 
tioned. 

2. The Spline-Trig Galerkin Method. Rather than approximate the solution of 
(1.3) directly, it is more convenient to parametrize F and change variables. We 
assume that F admits an analytic parametrization, i.e., that we can find a real 
analytic, 1-periodic function x: R -* R2 such that x' does not vanish and x [0,I] 
parametrizes F. (For a discussion of the effect of weakening the analyticity condi- 
tion, see Remarks 4.11 and 5.6.) Set g(t) = g(x(t)) and 

(2.1) ( = 2+(x(t)) I x'(t) I +C. 
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We use the notation p(0) for fo' (p(t) dt. Note that X may be recovered from (p as 
p(0), and then 4 may be uniquely determined from (p and satisfies fr 4 0. Thus 

(2.1) establishes an isomorphism (A, w) < p (between the spaces Hr(F) X R and H', 
r E R, defined in Section 3). 

In terms of the new unknown, (p, (1.2) and (1.3) become 

(2.2) u(z) -^ logIz-x(t1) - ( ()] dt + ( (), z 0 R) 2 

(2.3) A ((T) ST g I OgX(T) -x(t) 1[(P(t) 9(0)] dt + 
- 

(0) = g(T), 

T E R. 

We shall study the spline-trig method for the integral equation (2.3). This is a 
Galerkin method employing different test and trial spaces. It is novel in that spline 
trial functions are used-as in finite element methods-but trigonometric test 
functions are used-as in spectral methods. 

Let n and d henceforth denote nonnegative integers, with n odd. Let 

An= {pEZIipI<n/2}, 

a set of representatives for Z modulo n, and let Xn denote n times the characteristic 
function of U {[m - 1/2n, m + 1/2n11 m E Z}. For d > 0 define Xd+I as the 
convolution 

xd () dXn - Y)XI (y) dy. 
0 

As trial space we will use the space Sd spanned by all translates of Xd+ ' by integral 
multiples of l/n. This space has dimension n and consists of all 1-periodic 
smoothest splines of degree d subordinate to the uniform mesh {j/n I j E Z} if d is 
odd, {(j + 1/2)/nl j E Z} if d is even [15], [16]. The B-splines Xd+1( -j/n), 
j E A, form a basis for S d. It is a local basis as each B-spline is supported in d + 1 
consecutive mesh subintervals and their 1-periodic translates. 

As test space we shall use the span, gn of the trigonometric monomials 1, sin 27Tx, 
cos 27Tx, sin 47Tx, . . , cos(n - 1)7x. 

The spline-trig method for the equation (2.3) defines (pn E Snd by the conditions 

(2.4) fA J1nu gu, a C'5g. 

(Since we are concerned with the asymptotic behavior of (Pn as n -x o with d fixed, 
we shall not indicate the dependence of (pn on d in the notation.) The coefficients of 
(Pn with respect to the B-splines or other basis of Sd may be determined as the 
solution to an n X n system of linear equations determined by (2.4). 

The fact that the space /5n does not admit a local basis is possibly a disadvantage 
of the present method in comparison with ordinary finite element methods. As a 
consequence, the matrix elements entering into the linear system corresponding to 
(2.4) must be calculated as double integrals in which one integral is over all of [0, 1] 
rather than just a small number of mesh subintervals. On the other hand the use of 
trigonometric trial functions in the method suggests that the matrix columns can be 
calculated quickly with aid of the fast Fourier transform. Note that the matrix is not 
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sparse, but this would be so even if a test space with a local basis were used, due to 
the nonlocal nature of the operator A. A full analysis of the implementation costs of 
the spline-trig method and a comparison with other methods must await further 
research on suitable techniques of quadrature of the singular integrands (ideas from 
[10] may be useful here) and the effects of quadrature errors on the accuracy of the 
method, as well as numerical experimentation. 

Finite element methods are usually analyzed in the Sobolev spaces. Typically a 
method is stable (i.e., the Galerkin projection is bounded independent of the 
meshsize) in a Sobolev space of only one particular order or a certain range of 
orders. (E.g., standard finite element methods for second order elliptic problems are 
stable in the Sobolev space of order one.) This stability implies (in fact is equivalent 
to) the quasioptimality of the method, i.e., that the norm of the error in the space or 
spaces for which stability holds is bounded by a constant times the distance of the 
solution from the trial space measured in the same norm. For a bounded range of 
lower order Sobolev spaces it is also generally possible to prove that the asymptotic 
rate of convergence is optimal. Now in many situations it can be seen that the least 
Sobolev order for which such optimal order convergence holds is tied to the degree 
of the splines which are used as test functions [1], [2], [17, Section 2.3]. The greater 
the degree of the test functions, the farther down extends the range of spaces in 
which optimal order approximation holds. Now in a certain sense the space 6)n of 
trigonometric polynomials may be viewed as the limit of the spline spaces (, as 
d x o. In fact using the Fourier characterization of splines (4.6) it is not difficult to 
prove that 

n {= IfEL13Sd E ,dEN, such thatsd f as d x o} 

= f EL2 13dk E N and Sk En 5 such that dk - 0 I Sk - f as k - oo. 

These observations motivate the use of trigonometric test functions and suggest that 
our method might achieve optimal order approximation in an unbounded range of 
Sobolev spaces. In fact we shall show that the spline-trig method even achieves stable 

(so quasioptimal) approximation in all Sobolev spaces of negative order. Once such 

approximation is demonstrated, it will follow easily that for any z E R2 \ F the 

approximation to u(z) determined by substituting (Pn for (p in (2.2) will converge 
faster than any power of 1/n. We will prove an even stronger result, exponential 
convergence to u(z) and its derivatives, by introducing a family of spaces which are 
weaker than the Sobolev spaces and establishing stability in these spaces. 

3. A Family of Hilbert Spaces. Let C= U {'5nI n E N) denote the space of 

trigonometric polynomials. We write an arbitrary element of 3 as 

(3.1) f(t) = j(k)e27ikt 
keZ 

where the f(k) are arbitrary complex numbers, all but finitely many zero, satisfying 

f(k) = f(-k). We henceforth shall use the notation k = max(2,7 I k I, 1) for k E Z. 
Now for each ?, s E R, ? > 0, and f E 5 given by (3.1) define 

(1/2 
(3.2) I f 1.e ,I(k) 12,621 klk2 

s 
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(In this paper summation indices are assumed to vary over all integers unless 
otherwise indicated.) The Hilbert space X, is defined as the completion of Y in this 
norm. Clearly we have continuous dense injections (which we may take to be 
inclusions), 

(3.3) ~~~~~~~XS1 el C XS2,E29 

if either -, > 82 or EL = 82 and s1 > S2 The spaces Hs= Xs,1 are the periodic 
Sobolev spaces [1], their elements being 1-periodic distributions. We will use the 
usual notation 11 - Ils in place of 11 - Ils 1 for the HS norm. (The space Hr(F) referred to 
in Sections 1 and 2 may now be defined as the set of functions on F whose 
composition with the parametrization x lies in H', with norm being the Hr norm of 
this composition.) The space H? is identical with L2, the space of 1-periodic 
measurable functions which are square integrable over a period. If 8> 1, the 
elements of Xs, are infinitely differentiable functions. However, for 8 < 1, the 
elements of Xs, need not be distributions. We remark that the Xs, norm may also be 
defined by 

lif IfsIe = T logr)f 

where T is the semigroup generated by the positive definite square root of the 
operator -d 2/dx2. Norms of this form are used very effectively in [7] which inspired 
their use in this analysis. 

By density there exists for k E Z a unique extension of the linear functional on 9 

f ~-f(k) = ff(t)e 2 dikt,d k E Z 

to a continuous linear functional on Xs, s c- R, 8 > 0. Moreover, these extensions 
are compatible for different s and 8, i.e., they are each the restriction of a single 
linear function on the vectorspace 

X:= U {Xs e| Es R9,E>0}. 

Define 

lifils,e +X 009 X\XS e 

With these understandings the equation (3.2) is valid for all / E X, s E R, e > 0. 
The L2 innerproduct, 

(f, g) f='tlfg = f(k) g(k) 

extends to a real-valued bilinear map on X, e X Xs,3- for all s E R, E >0 . These 
extensions are all compatible and provide a canonical isomorphism of Xse with the 
dual space of X sAe'1. 

It is easily checked that a subset S of Xs, is precompact if and only if it is 
bounded in Xs,e and 

lim sup f I!(k) 12E21kIk2s = O. 
m-oo fe sVm 

It follows that the inclusions indicated in (3.3) are compact. 



388 DOUGLAS N. ARNOLD 

4. Stability Analysis. For the remainder of this paper d denotes a nonnegative 
integer, n a positive odd integer. 

Since the test and trial spaces in the spline-trig method are not simply related, it is 
not clear that the Galerkin projection p + pn defined by (2.4) is stable in any 
reasonable space. (If the test and trial spaces are equal, by way of contrast, stability 
in H-7/2 follows immediately from the ellipticity of the pseudodifferential operator 
A [2], [9], [12], [13], [14].) To establish stability we shall rely on Fourier analysis. We 
begin by decomposing the operator A as a sum of an operator which acts very 
simply on Fourier coefficients and a compact operator. 

Define 

(4.1) Vcp(T) [log 2 sin7(-t) -7]T(t)dt, (p E L2. 

Note that since I e 27iT- e2 It 2 sinT(T -t) Iand 

(4.2) f'log 1 2 sin7T(T-t) I dt = O, TE R, 
0 

V coincides with A in case F is the unit circle and x(T)= e2X'T. We now analyze the 
mapping properties of V. Let G denote the convolution kernel in (4.1), 

G(O) = -log 2 sinq 0 +1 -1loglI-e I +1, E 

Now, letting Log: C\{t ? O} -1 C denote the holomorphic extension of log: {t > O} 
R, we have for r E (0, 1) 

(4.3) -~ Akle 27rkO rk cos(2,TikO) (4.3) - 2 = _ = 
keCZ* 2 1k1 k=1 k 

oo r ke2OikO 
-Re 2 k ReLog(l - re2,'9) logI 1 - re2X9I. 

k=1I 

(The asterisk appended to a set of integers indicates the complement of {O} in that 
set.) This equality exhibits the Fourier series of 6 @- log I 1 - re2,9. Letting r 
increase to 1, we see that G(k) = k- , k E Z. Consequently the convolution formula 
for Fourier series yields the well-known representation 

(4.4) Vp(k) = p(k)k-', k E Z, p E L2. 

It follows immediately that V has a unique extension to a linear map X - X which 
maps X, e isometrically onto X,+ 1,e for every s E R, E > 0. Accordingly 

(4.5) | (Vp, a) I| IIPIIs,IIaII--1,-1, p, a E X, s E R, E > 0. 

The next theorem establishes the stability of the spline-trig projection for the 
operator V. 

THEOREM 4.1. Let do be a nonnegative integer, so E (-oo, do + 1/2). Then there 
exists a positive constant C, such that 

inf sup (VP, a) 

for all d > do, s E (-oo, so ] EE (0,1], and n. 
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The proof relies on the following bound for the X, norm of a spline in terms of 
its first n Fourier coefficients. 

LEMMA 4.2. For each nonnegative integer do and each so E (- oo, do + 1/2) there 
exists a positive constant C2 such that 

IpIPIIS < C2 E IP(p) 12E2plp2s, p d 
pCeA,, 

for all d > do, s E (-,s0], s E (0, 1], and n. 

Proof of Lemma 4.2. We begin by recalling the Fourier series characterization of 
the spline spaces, 

(4.6) n'= {p E L2 p(m)md p(m +n)(-m-n),meZ} 

In fact, in case p(x) - Xd+ I(x -/n), j E Z, (where Xdl I is the B-spline defined in 
Section 2), then 

- 
mM)md+ ? -2 7lmln-d+ I 

(M m d+ I 

e-27rlnm/j1[5 AI(m)m] d+ ? = e-27TniJ/n[sin(7rm/n)n 7V1] d+ I 

The inclusion of n in the space asserted in (4.6) follows easily. Equality holds since 
this space has dimension n: the values p(m), m e A determine p in the space 
uniquely. We remark as an immediate consequence of (4.6), 

(4.7) pt n)=o p E 5d j EE V* 

(Recall that the asterisk denotes the complement of {0} in a set of integers.) 
Now let p E 05d be arbitrary. It follows from (4.6), (4.7), and the fact that every 

integer can be written in a unique way asp + mn with p E AnI m e Z, that 

(4.8) IIPIIU = 2 j (p + mnn) I2e2>?n1?1I( p + mn )2S 
p&A,, mnZ 

I 
A 

(0) 12 + (2 )2s i I (p)j2p2d+2 : E_2p+mnjp + mn 12s-2d-2 
pCA*, mncZ 

=1 

A 

(0) 12 + Ip(p ) )1221pp2s 2pn 2d+2-2s 
p cEA*i 

X : e2L+mnI-21P1j2pn-1 + 2m i12s-2d-2. 

Now forp E A,n m C Z, - G (0,1] we have 12pn-1 1< 1 and IP + mnl -IpI 0. By 
hypothesis r: 2s - 2d - 2 < 2so - 2do - 2 < -1. Thus 

(4.9) : c2L+mnI 2L0p 12pn-1 + 2m Ir 
mE5Z 

00 00 

<12pn-' r 
+ 

m: 
(2m + 

2pn-1) 
+ z (2m -2pn-1)r 

00 00 

<I 2pn I1r+ :: (2m )r + 2 (2m - )r =I2pn -'Ir + (-r), 
m-I m=l 

where '(-r) = I mr is Riemann's zeta function. Note that 

?(-r) <: (2do + 2 - 2so) < xc. 
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By substituting (4.9) in (4.8), we complete the proof of the lemma with C2 = 1 + 

D(2do + 2 - 2so). D 
Proof of Theorem 4.1. Given nonzero p E dset 

(4.10) a(x) = p(k) c21k1k2s le2vikx 
kEAn 

Then a E in and, in light of Lemma 4.2, p # 0 implies a # 0. By the lemma, 
Parseval's identity, and (4.4), 

(4.11) IIpI2I < C2 I p(k) 12E2IkIk2s = C2(Vp, a). 

Moreover, from (4.10) and (3.2), 

(4.12) IIa-110112sl = 2 I p(k) I2c2jkIk2s = (Vp, a). 
k c-An 

Combining (4.1 1) and (4.12), we get the theorem. D 
Remark. There is no question of extending Theorem 4.1 to E> 1 or I = 1 and 

s > d + 1/2, since for such s and E n_ Xs,,. Restricting to the case E 1, we have 
shown that the spline-trig Galerkin method is stable in every Sobolev space containing 
the spline trial space, in the case F = unit circle, x(T) = e21'i. In fact we shall see 

that this holds true in general (as long as x is a C' parametrization). 
We now examine the difference between the operators A and V. We begin with 

some preliminary lemmas. 

LEMMA 4.3. The function K: R2 -* R defined 

o1 X(T) - X(t) | t 4 Z 

K(T, t) { 2-snlog 
t 

LI lo X( Tg)| T - t E Z, 
[T 27 

is real analytic and is 1-periodic in each variable. Moreover K extends analytically to 
Sa X S for some >0, where Sa = {z E CIIImzI<8}. 

Proof. It is clear that the function F: R2 -* R2 defined by 

x(T) - x(t) T - t T4 Z9 

F(T t) 
2 
2sin 7(T- t) 

X'(T) T - t E Z 

is analytic. Since x [o, 1) is univalent and x' is nonvanishing on R, F does not vanish. 
Since log I I: R2\{0} -* R is analytic, K is also analytic. Clearly K is 1-periodic in 

each variable. Finally the last sentence of the lemma follows from the previous. D 

The following lemma, which is proved in [8, Section 2.1], will be used to bound the 
Fourier coefficients of K. 

LEMMA 4.4. Iff is analytic on S= {z E C Im z 8) and 1-periodic, then 

If(m) I I e If II La(S8), m E Z. 
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We are now prepared to bound the Fourier coefficients of K, defined by 

K( p, q) = |K(T, t)e 2iPTq) 
dTdt, p q Z. 

The following lemma follows from Lemmas 4.3 and 4.4. 

LEMMA 4.5. There exist constants C3 > 0, E1 E (0, 1) such that 

Ik(p, q)I< C3c1 , P,qEZ 

Now from (2.3), (4.1), and (4.2), 

(4.14) Bcp(T) := Ap(T) - Vp(T) f'K(T, t)[p(t) - (O)] dt. 

We shall now use the decay estimates of the preceding lemma to prove that B is a 
compact operator Xse - Xs+ I,e 

THEOREM 4.6. For - E (E1, 1] (E1 as in Lemma 4.5) and t E R, the operator B 
extends boundedly to a map X0o Ht = Xt . 

Proof. For Tp E 3 we have by Parseval's identity that 

Bcp(T) = I q(q) 'K(T, t)e217iqtdt, 
qEZ* 0 

so 

(4.15) B@(p) = pZ (q) K ( p, q) , p E- Z. 
qEZ* 

Applying Lemma 4.5 and the Schwarz inequality, we have 

Bm( P) C3 [ _/)2ge,lE ( q)le , 
q q 

so 

IIB1I12 = 
" 

i (P) I p2t C 

where 

C4 =C3 2 ( EI/ E)2 12 _2>1p p2t <0 . F2 
9 ~ ~~ P q p 

COROLLARY 4.7. For E E (E 1], s E R, B maps Xs, compactly into Xs+,,,,. 

Proof. Choose E' E (c1, E). Then Xs, is compactly included in XO, ? B maps XO, ? 

boundedly into Xs+l , andXs+?1is contained in Xs+,41. ? 

COROLLARY 4.8. For - E (,1, 1], s E R, A maps X, ? isomorphically onto Xs+ ?1. 

Proof. Since V is an isomorphism between the spaces in question and, by 
Corollary 4.7, A is a compact perturbation of V, A is a Fredholm mapping of index 
0. Thus it suffices to show that if Ap = 0 for some p E X, ? then p = 0. Now for- 
such p Theorem 4.6 implies Vp = -Bp E H' for all t, whence p is a smooth function. 
Set w = p(O) and define a function 4 on F of mean value zero by 4(x(t)) = 

2[p(t) - wi/I x'(t) . Since Ap = 0, the integral equation (1.3) is satisfied with 
g = 0. By [9], [11], [14], however, this equation is uniquely solvable, so 0 = 0 and 

=O, whence p = O. O 
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We have shown that A is a compact perturbation of V and that the projection 
associated with V is stable in the sense of Theorem 4.1. For the convenience of the 
reader we recall the theorem [3, Lemma 4.2] that allows us to conclude stability of 
the projection associated with A. 

THEOREM 4.9. Let Y and Z be Banach spaces, (d: Y -- Z a linear isomorphism, SC: 
Y -* Z a compact linear operator. For each m in some directed set let 'DThm and 6im be 
given finite-dimensional subspaces of Y and Z' (the dual space to Z), respectively. 
Suppose 

(1) there exists y > 0 such that for all m and u E OYCm there exists nonzero v E RM 

satisfying 

(du, v) > YIIuIIyIIvIIz - (9cu, v); 

(2) for all z E Z', limm dist(z, m) = 0. 
Then there exists /3 > 0 such that for all sufficiently large n 

inf su 6du, v) 
0 # U C 6X 0V l_ 6Xn ull Y 2II I ,I . 

From this theorem together with Corollary 4.7, Corollary 4.8, and Theorem 4.1, 
we may infer the stability of the spline-trig method. Invoking the standard theory of 
variational projections [4], [5, Chapter 5] we have the main theorem of this section. 

THEOREM 4.10. There exists an integer N depending only on d such that for n 2 N 
and g E X the discrete equations (2.4) of the spline-trig method have a unique solution 

=E ,. For s E (-x, d + 1/2) and - E (Et, 1] there exists a constant C5 depending 
on s, E, and d such that, forg E X,+1 e andn n N, 

(4.16) 1lP - znIIS? C5 infdI1 - plI ?- 

P 

Remark 4.11. We used the analyticity of the parametrization x to obtain the 
compactness result of Corollary 4.7. If x were merely CX, we could still establish the 
result in case - = 1 by a similar argument, using the fact that the Fourier coefficients 
of a C' function decay faster than any polynomial. The stability result thus would 
still hold for the Sobolev spaces (E = 1). If x had only a finite number of derivatives, 
this result would hold only for an appropriately restricted range of the index s. 

5. Convergence Analysis. For p E X let Pnsp E Sd be defined by 

(VPnp a) = (V1p, a), a E (53n 

or, equivalently, 

(5.1) p(k) =,(k), k E A. 

From (4.5) and Theorem 4.1 we see that Pn is well defined for each n and that PnTp 
provides quasioptimal approximation to rp in all the spaces Xs,? s < d + 1/2, 
e E (0, 1]. We now determine the asymptotic rates of convergence, which by Theo- 
rem 4.10 will also give bounds on the error p - pn in the spline-trig method. 

THEOREM 5.1. Lets E (-oo, d + 1/2), E E (0, 1], and t E [s, d + 1]. Then 

1-P Pn(PIIlse V 29;(2d + 2 - 2s) En/2( Q7Tn )SI- p - (O)IH 
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(Here g again denotes the Riemann zeta function. Note that if s - so < d + 1/2, 
then D(2d + 2 - 2s) < ?(2d + 2 - 2so) < ox, and in particular ?(2d + 2 - 2s) < 

sr2/6 for s < d. However limsTd+ 1/2 D(2d + 2 - 2s) = +oo.) 

Proof. From (5.1) and (3.2) 

(5.2) II(-P 1F,lIIe < 2 2 [jq(k) 12 + IA<(k) 12] e2ikIk2s. 
k V A,, 

Now for k E Z\An, 2 1 k 1> n, so 

(5.3) I - (k)12c21klk2s < en(vn)2s-2t (k12k2t. 
kVA, k6A, 

Applying (4.6), we also get 

(5 *4) 1 | P p( k ) 12e2lk Ik 25 
k (tA,, 

- | j(p)j2p2d?2 2 IP + mn l2d-2e2Lp+mnj(p + mn) 

pE A*n nZ* 

( n )2s-2t 2 ( p) 12p2t1 2pn-l 12d+2-2t 

X 1 2pn' + 2m 1-2d-2+2se2Lp7mnl 
rIC Z* 

< En(vn )2s-2 t(2d + 2 - 2s) 2 I (p) 12p2t. 
pcA*n 

The theorem follows directly from (5.2), (5.3), and (5.4). O 
From Theorems 4.10 and 5.1 we infer immediately the following optimal conver- 

gence estimates for the spline-trig method. 

THEOREM 5.2. Let s E (-xo, d + 1/2), E E (E, 1], t C [s, d + 1]. Then there exists 
a constant C6 such that if the solution qp to (2.3) is in Ht (i.e., if g E Ht+ I) and qpn E Sn 
is the spline-trig approximation defined by (2.4) for n ? N, then 

lm - (p,ls,e < C6en/2ns' jljp T (0)11t. 

We now analyze the approximation to the solution u of (1.1) which may be 
derived from q,. Define 

(5.5) Un(Z) = T lo I Z l l- X(t) 1[ Th(t) - qn(?]d qRn(? 2 

We may also compute an approximation to aau(z), the partial derivative of u with 
respect to z for any nonzero multi-index a e N2, by a quadrature: 

a un( z) = -|a 
a log I z- X(t ) I[T<n( t) )- n(0) ] dt, z E- W2\Fr. 

THEOREM 5.3. Let Sl be a compact subset of R2\r, a E N2, t E (ox, d + 1]. Then 
there exist constants C7 E (0, oo) and e2 E (0, 1) such that if T e H', then for n 
sufficiently large 

laa(u - un)IIL-(U) < C7ep 2 ()ii,. 
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Proof. It suffices to prove the theorem in the case 2 is a closed disc in R2\ F. By 
(2.2) and (5.5) we have 

(5.6) u(z) - u(z) = -X log - z-x(t)I[p(t) - (t) - (O) + - (O)] dt 

+ q-P (?) - Pn(0) z E R2. 

Since z - x(t) does not vanish for (t, z) E R X 2, L(t, z) = loglz - x(t)I is an 
analytic function of three real variables on R X 2. Since L is periodic with respect to 
t, it extends to a holomorphic function S, X Q2 -- C for some 8 > 0, where S, 
{w E C Im w IS 8}. By compactness, sup{I L(t, z)I I t E S6, z E 2} < x. Setting 

L,(t) = L(t, z), we may apply Lemma 4.4 to get 

L.(m) IM C8el' , m E Z, z E 2, 

for constants C8 > 0, E3 E (0, 1). 
Take , E (max(c-, E3), 1), and set c2 = r,q . We then have 

sup jjLzj11 , <- ooX, 
zca 

whence, by Theorem 5.2, 

log z - x(t) I[T)(t) - pn(t)] dt 

JI|Lzll_ 7-XIlqP - (pnllt 7 S< C9E2ll - (?)11,, 

where C9 depends only on Q and t. Since also 

I (?) - ()n(0) o)< IIT (Pn-lt ,r 

the theorem is proved in the case a = 0. Since 

(5.7) aau(z) - aaun(z) 

=- j|aalog I z-x(t) 1[p(t) - Tn(t) - 
- 

() + 
- 
(P)] dt, 

z E 

an altogether similar argument suffices to prove the theorem for nonzero a. O 
We have thus shown exponential convergence to the solution of the Dirichlet 

problem and all its derivatives away from the boundary. We conclude our conver- 
gence analysis by giving polynomial convergence rates which are valid up to the 
boundary for u,, and its derivatives of order up to d + 1 measured in L' and L2. 

THEOREM 5.4. Let a E N2 be a multi-index of degree k = a, + a2 < d + 1, and let 
t E (k - 1/2, d + 1]. Then there exists a constant C1O such that if qp E H' and n > N, 

(5.8) Clna(uk-un)Lo(R2\r) < C0nkt-l/2 Iogn11 - (0))1. 

Proof. From (2.2) and (5.5) we see that both u and un are harmonic functions on 
R2\F and that both are harmonic (i.e., bounded) at infinity (the integral terms in 
(2.2) and (5.5) both tend to zero as I z I tends to infinity). It follows, as can easily be 
verified with help of the Kelvin transform, that for all a, aau and aaun are also 
harmonic on (R2 \r) U {x o}. Thus we may apply the maximum principle in both 
the interior and exterior domains. Letting e' and ea denote the traces on F of 
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aa(u - un) from the interior and exterior domains, respectively (for la I> 0 these 
will not coincide), we see that it suffices to bound these two functions in L??(r) by 
the quantity on the right-hand side of (5.8). Let B+ denote the interior domain and 
B_ the intersection of the exterior domain with an open ball containing r, and 
denote by ? either the symbol + or -. Using a standard trace inequality, we have 
for s > 0 that 

Ilea o xl= Ilea IIHs(r) S C -II(U Ul)HS+/2(B SlH1 C2IIU - 
UnIlHs+k+1/2(B). 

Using well-known regularity theory for the Laplacian in the interior domain together 
with the Kelvin transform in the case of the exterior domain and then applying 
Corollary 4.8, we have 

(5.9) IleH+_ 0 s C1311U - Unlls+k(r) C411 Pnlls+k-p 

Now, from the Fourier expansion (3.1) and the definition (3.2) of the norm in Hs, 
we easily establish the Sobolev inequality 

(5.10) IIfIIL-(R) -< C(1)I1fI112+,u, u > O,f E H'7 , 

where C(,u)2 
- 

2k,z k`2 = 1 + 2(2g)-1 -2y<(l + 2,u). Since the zeta function 
has a simple pole at 1, it follows that C(,u) - C151ru'/2 for 0 <,u s 1. Combining 
(5.10), (5.9), and Theorem 5.2, we get 

Ilea 'IILI(r) < C6C14C151l/2nI +kt'I- 
' 
M(o)1. 

Setting ,u = (log n)-', the right-hand side becomes 

eC6C 4Ci5nk-t-l/2 log n II P (-)11 

as desired. O 
Measured in L2 on a bounded subset of R2 the derivatives aa(u - un) of the error 

actually converge with higher order than indicated in Theorem 5.4, as we now prove. 
To this end we require in addition to the usual Sobolev spaces Hk(u2+) on the 
interior domain Q+ also certain weighted Sobolev spaces Wk(U_) on the exterior 
domain 2 -. Following [14] we define Wk(W_) for k E N as the set of distributions v 
in 02 for which the following norm is finite: 

1/2 

IIVIIWk(g_) IUZ12+ 
IaUZ12 dz 

(1 + r2)(1 + logj1 + r )2 

where r =I zI. 

THEOREM 5.5. Let k s d + 1 be a positive integer and t E [k - 3/2, d + 1]. Then 
there exists a constant C,6 such that if sp E H' and n > N, then 

(5.11) IIu - UnllHk(+) + jU - 
UnllWk(1 ) 

_ 
Cl6nkt3/2IT 

- 
IT')jj1t. 

Proof. It follows directly from [14, Theorems 1.1 and 1.3] that the left-hand side of 
(5.11) is bounded by a multiple of Ijqm - PnIIk-3/2, so Theorem 5.5 is a consequence 
of Theorem 5.2. Z 

Remark 5.6. Since the stability result of Theorem 4.10 holds in the case e = 1 if 
the parametrization x is only C' (Remark 4.1 1), the same applies to the convergence 
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result of Theorem 5.2. Since the proofs of Theorems 5.4 and 5.5, concerning 
convergence up to the boundary, require only the case - 1 of Theorem 5.2, these 
theorems also hold for a CX parametrization. A modification to the proof of 
Theorem 5.3 shows that, in this more general case, u - un and its derivatives tend to 
zero uniformly on compact sets disjoint from F faster than any polynomial in l/n, 
although we require the analyticity of x to obtain the exponential rate. 

6. Conditioning. It is worth pointing out that the stiffness matrix associated with 
our method has an 12 condition number that grows only with first order as n 
increases. This is the same order as is achieved by an ordinary spline Galerkin 
method. 

Let 

n = {X (_ -l/n)I j E A } 

and 

{v, . . ., = I, 2 sin(2f .),. *, 2 cos((n - 1) )}) 

be bases of ,< and (n respectively. Then the stiffness matrix M E XPi has (j, k) 
entry (A wk, v}). Now let a E Rn be arbitrary. We shall show that 

(6.1) l Ma IS XnJIAILP(L2L2) I a 

and 

(6.2) la I< X--'Cfn71lA IIAI(H',L2) I Ma , 

where I denotes the usual Euclidean norm on RW, Cn denotes the L2 operator norm 
of the spline-trig projectior p i-* 'Pn and Xn and Xn denote the supremum and 
infimum, respectively, over RW\{O} of the ratio 112ajwjll0/llal. Now A is an 
isomorphism of L2 onto H' (Corollary 4.8), and Cn is bounded independent of n 
(Theorem 4.10). Since the ratio XAn/Xn is bounded independent of n [15, Lemma 14], 
(6.1) and (6.2) indeed show that the 12 condition number of M grows with at most 
first order in n. 

Let B= Ma E Rn f = >'Il,B E = A-lf, and let (pn be the spline-trig 
approximation of (p. Then it is easily verified that qpn = Ek= 1 akck. Therefore f is the 
L2 projection of Acpn on 'n and 

1#1= Ilf110 s IIAT)nJIIo s IIAIL(L2,L2)IITfnJIo. 

Noting that I I(pnII S An I a, this demonstrates (6.1). For (6.2) we note first that 

| l -nl I I pn ll _< A-n' CnII p I I < -nl Cn I IA -I 11eH 2)l 1 11l 

Since IIf I I nTI IfII0 forf E Sn (6.2) is proved. 
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