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Generalized Chebyshev Interpolation and Its 
Application to Automatic Quadrature 

By Takemitsu Hasegawa, Tatsuo Torii and Ichizo Ninomiya 

Abstract. A generalized Chebyshev interpolation procedure increasing a fixed number of 
sample points at a time is developed and analvzed. It is incorporated into an efficient 
automatic quadrature scheme of Clenshaw-Curtis tvpe. Numerical examples indicate that the 
present method is efficient not onlv for well-behaved functions but for those w^ith discontinu- 
ous low order derivatives by virtue of adequate error estimation as wvell as saving of sample 
points. 

1. Introduction. We propose an extension of the Clenshaw-Curtis method [2] 
(hereafter abbreviated as CC method) and the Filippi method [4] which are efficient 
automatic quadrature schemes for well-behaved integrands over a finite range 
[-1, 1]. 

These methods rely on a sequence of quadrature rule approximations to the 
integral. Each approximation requires approximately double the number of function 
values required by the previous one. 

Our modification of these methods has the property that each approximation in 
the sequence requires only N more function values than the previous approximation. 
Here N is a power of 2, usually taken to be 8 [8]. 

In general, the CC method, the Filippi method and the modification proposed by 
us work in the same way. After calculating an approximation, its accuracy is 
estimated using the final two or three terms of the Chebyshev series. If this accuracy 
is within the required tolerance, the calculation is terminated, otherwise, it is 
continued by calculating a further approximation. 

Use of our modification may be particularly advantageous when the number of 
function values required is high. If at any stage it is in fact necessary to use double 
the number of function values to attain the required accuracy, all methods are likely 
to do this. But if only a small number of additional function values is really required, 
our modification will handle this efficiently and avoid the possibly significant and 
unnecessary expense of doubling the number of function evaluations. 

The abscissae used by our method may be defined as follows. We choose the 
parameter N which is a power of two, usually 8. We define the sequence 

(1.1) (x1=4, ?l21 =a/2, 4a2i+1 2i + 12 = 1, 2..., 
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and the abscissae (for the integration interval [-1, 1]) are 

(1.2) xi = cos27ral. 

The lth quadrature rule approximation Q'( f ) provides an interpolatory type ap- 
proximation, based on the abscissae x,; i 1,2,... ,(1 + 1)N - 1. Specifically 

(1.3) Q(Of) =flp(x) dx. 

where p1(x) is an interpolatory polynomial of degree (1 + 1)N - 2 satisfying 

(1.4) pi(xi) = f(x1), i = 1,2,..., (1 + 1)N - 1. 

This paper is principally devoted to deriving convenient formulas for calculating 
Q'( f ), 1 = 0, 1,. . ., recursively. To this end we introduce the auxiliary polynomial 

n 

(1.5) Um(X) = 2m IJ (x - cos2T7ak) l0o(x) = 1, 

and show (see Section 2) that it can be expressed in the form 

(1.6) WIN- (X) UN-I(x)4W (TN(X)), 

where TN(x) and UN(x) are the Chebyshev polynomials of the first and second 
kinds of degree N, respectively. 

In Section 3 we show that the interpolatory polynomial may be expressed in the 
form 

N-I 1 N-I 

(1.7) p1(x) = I AOkUkI(X) + E lIA(TN(x)) E 'Al kTk(X), 
k=1 l=l k=( 

where the prime denotes the summation whose first term is halved. The lth 
quadrature approximation is then 

N-I I N-I 

(1.8) O'(f )= p,(x) dx = IE A 0 k W(.k + :E E 'Al, A,k I 
-I k=: I i=() k=() 

where Al,k and Wik do not depend on 1. Because of this fact, the calculation is 
conveniently arranged recursively. To proceed from the result Q'( f) to calculate 
QI?l(f) we need merely Al+lkWJ+'V k 1 k = , 2,... ,N. Convenient methods for 

calculating the coefficients Al,k (which naturally depend on the integrand function 
values encountered) are given in Section 3. A recurrence scheme for calculating the 
generalized weights WY,k is given in Section 4 (see (4.3) and (4.4)). In Section 5 we 
discuss empirically the numerical stability and the rate of convergence of our 
quadrature scheme. In Section 6 we discuss a stopping criterion for the quadrature 
rule approximation Q'(f) given by (|AI,N-J1 +|AI,N_31)HW?+-I,1l which is compared 
with max(|AN 11, 21AI,N_31,21AI,N-51) in the CC method. The performance of our 
stopping criterion is illustrated by numerical examples. In Section 7 we give an 
algorithm for the closed-type quadrature scheme which is an extension of the CC 
method. A brief summary and conclusion are given in Section 8. 

2. Uniform Distribution and Chebyshev Distribution. In this section we give the 
sequence of uniform distribution and the so-called sequence of Chebyshev distribu- 
tion on the open interval (-1, 1) which makes the corresponding sequence of the 
interpolation polynomials converge uniformly on the closed interval [-1, 1] for each 
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function analytic on [-1, 1] [6, p. 254]. The projection on the real axis of the 
uniformly distributed sequence on the unit circle in the complex plane yields the 
sequence of Chebyshev distribution. Let any positive integer 1 be written in radix 2 
notation as 

(2.1) 1 = mI lm 12l1 = 1 + 12 2 +13 * 2 + +Iml 2 

where m = [log21] + 1, lO = O or (1 < i < m- 1), and imr 1. 

LEMMA 2.1. Define a fraction a, lying between 0 and 1 by 

(2.2) a, = 1 2' + 12 2 2 + _* +lm_ - 2rmn? + 0r 2n+ 1. 2-r-I. 

Then the sequence {(a} is uniformly distributed on (0, 1). 

Note that im is the coefficient of 2-m-9, and the coefficient of 2-m is zero and not 

im. 
Proof. Because the sequence {a, + 2-m-'} is the so-called Van der Corput 

sequence [7, p. 127] which is uniformly distributed on (0, 1), the sequence {a,} is also 
uniformly distributed. D 

Remark. The Van der Corput sequence is known to have a smaller discrepancy 
than any others that have yet been found [7]. 

It is easily shown that the sequence {a,} satisfies the recurrence formula (1.1). 
Table 1 illustrates how the sequence {a,} is constructed from the sequence {1}. 

TABLE 1 

Relation between the sequences { I} and {a a} 

I I la, a, 

1 1 .01 1/4 
2 10 .001 1/8 
3 11 .101 5/8 
4 100 .0001 1/16 
5 101 .1001 9/16 
6 110 .0101 5/16 
7 111 .1101 13/16 

The values in the second and third columns are in the radix 2 notation. 

COROLLARY. The sequence {cos27ra,}, whose elements are all distinct, is one of 
Chebyshev distribution on (-1, 1). 

The sequence { cos 2 7r(a, + 2-rmn)} directly constructed from the Van der Corput 
sequence is also a sequence of Chebyshev distribution, but we cannot use this 
sequence as the sample points because some of its elements coincide with each other. 
Figure 1 illustrates how the points {cos 27a, } are arranged on (-1, 1). 
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FIGUE 

Arrangement of points, {cos 2'zTaj}, for / = I, 2,...,7. Numbers on the unit circle and x-axis 
represent the values of 1. 

LEMMA 2.2. Let N be a power of 2, N = 2n. Then the set of N abscissae 

X/N+k-Ccos2T /+k2 k=O, 1,...,N- 1, 

coincides with the set 

cos 2Th(a1 + j)/N, jO, 1 ... ,N-1. 

Proof. Repeatedly applying the recurrence relation (1.1) gives 

(2.3) alN+k a(lt + k*)/N, 

where k* denotes the bit reversal of n-bit integer k. Thus Lemma 2.2 is established. 
a 

COROLLARY. 

N-I 

(2.4) 2`1 I (x - X1N+k) = TN(x) - COS2 a1. 
k=O 

LEMMA 2.3. The set of N - 1 abscissae for N = 2n, 

Xk = coS27Tak, k = 1,2,...,N- 1, 

coincides with the set 

cos'nk/N, k=1,2,...,N-1. 

Proof. The proof is by induction. The case n = 1 is trivial because a , . From 
(2.3) we have, for the integer k < 25, 

(2.5) cos2,ga2 nk cos2,g(a1 + k*)/2n = cos 7T(2 + 2k*)/2n, 
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where 1 s k* < 2'. Using the obvious relation, for 2'- 1 < k* < 2', in (2.5) 

COS '7T(2 + 2k*)/2n = Cos 7T(2n+ - 2k*- )/2 , 

we have 

(2.6) {cosTa2l?k= {Cos7T(k + 2)/2n} (1 ?k<22). 

From the induction hypothesis and (2.6) we have 

{cos27rak}, (1 < k < 2n+) 

- {cos7 Tk/2n, cos7T/2"'+ 1, cos7T(+ + k)/2't} (1 < k < 2't) 

={cos7Tk/2n+'} (1 -k<2k<2'). 

Thus, the lemma is proved for arbitrary n. D 

COROLLARY. 

N-I N-I 

(2.7) 2 N- J (x - cos 2 Jlk )=2Nl JJ (x - cos7rk/N) = UN-(x). 
k= Ikh=1 

From (2.4) and (2.7) we have (1.6). 

THEOREM 2.4. Let 1 be an integer expressed as (2.1) and let _l- (x) denote the 

polynomial of degree I - 1 defined by (1.5). Then 

(2.8) W,1_(x) = 21',U2.n,-,(x) J {T2,-(x) + T2,-,(cos2Taj), 

where v in the summation and product ranges from 1 to m - 1, and T,,(x) = cos nO, 

Un(x) = sin(n + 1)0/sin 0 with x = cos 0 are the Chebyshev polynomials of the first 

and second kinds of degree n, respectively. 

To prove this theorem, we need Lemma 2.5. 

LEMMA 2.5. Let K. be the set of positive integers defined by 

(2.9) K,= {kIlL, 2- ? ?l,. 2-1 2 k < l. 2 

+1 *2- + . . . +1 . 2-, (I 1 

where IL is the integer nearest to v such that 1, # 0, 1,, # 0 and I > v, and 

Kn, {klO k < lm2m2 }, 

then 

(2.10) 22' (x - cos2 ak)= 2{T2,,-(x) + 1i-,-(cos27a,)}. 
k CK, 

Proof. For any complex number z we have 

11 {z - exp(27Tiak)} 
k C K, 

= H [z-exp{227i(k/2v-l +,,u 2-A +.+lm 2-m+2-m)}] 
(2.11) O 

z - exp{2 27,i(41A 2 y + * +Im* 2m + 2m)} 

= 2' + exp(2p7Tia,). 
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If we set z = exp(iO), the Chebyshev polynomial is expressed as 

(2.12) T1(x) = (z' + z-)/2, x = (z + z-')/2. 

From (2.1 1) and (2.12) we can easily prove (2.10). D 
Theorem 2.4 is proved from this lemma and (2.7). 
Remark. The generalized weights W,k in (1.8) are computed recursively by using 

Theorem 2.4 (see (4.3) and (4.4)). 

COROLLARY. 

(2.13) max ko,-,(cosO)sinOI< 42'I < 12 

where the equality holds only for 1 2m-', that is, 21, = 0, when we have 
max I oi(cosG)sinOI1z 1. 

The abscissae {cos 2 a,} are computed recursively as follows. Because cos 2 va2,+, 
= (-1)'cos va1, (i 0, 1), only {cos va,} are required. From (1.1) we have 

(2.14) a2A a2k-I/2, 

a2/'+j a2k-1 +j -a2A (1 <j < 2k 1), 

?la2A+ -- _i 
- 

(a2Ak-+ + a2k) (? < j < 2 k), k = 1, 2,... 

By using the recurrence relation (2.14) with the starting value a, = , the 2n - 1 
elements of {cos va,} (1 < 1 < 2fn), are evaluated with n square roots and 2 n 

multiplications. 

3. Interpolation Scheme on the Open Interval (-1, 1). We shall make use of the 
sequence of abscissae {cos2va,} given in the previous section to construct the 
sequence of interpolation polynomials recursively by adding the fixed number of 
sample points to the previous one. 

3.1. Interpolation Polynomial. Let N be a constant of the form 2n, and let p,(x) 
denote the interpolation polynomial for a function f(x) over [-1, 1] based on the 
(1 + 1)N - 1 abscissae {cos2 ak}, 1 k < (1 + I)N, which prove to be zeros of 

UN_ I(x),(TN(x)) from (1.6). 

LEMMA 3.1. The polynomial po(x) is expressed in terms of Uk(x), 
N-1 

(3._1) po(x) = AO,kUk-(X), 
k=I 

where 

2 N-1 

(3.2) AOk E f(cos TjI/N)sin TjJ/N sin vjk/N. 
NJ.=1 

Proof. The coefficients Ao,k have to satisfy the interpolation condition po(cos 90?) 

=f(cos O0 ), where {Ojo} = {2 aj} = {7j/N}, (1 < j < N), that is, 
N-1 

(3.3) f(cos 7j/N) sin 7jIN =- : AO,ksin vjklN (I <j <N). 
k= 1 

By using the orthogonality of the sine function in (3.3) we have (3.2). 0 
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The right-hand side of (3.2) can be computed using the Fast Fourier Transform 
(FFT). 

For the integer / 1 1, the polynomial p,(x) is expressed in the form (1.7). Suppose 
that p,l(x) is known, that is, all A k (0 ? i < 1, 0 - k < N) are given, and we try to 
evaluate A;k (O < k < N), from which p,(x) is determined. Lemma 2.2 indicates 
that the N abscissae used in the lth stage are cos 0' (' = 27r(a, + j)/N, 0 < 

j < N). 

THEOREM 3.2. Let / be the integer expressed in the form (2.1), and define 1' = - 
2 . Let the formal cosine expansion off(cos 0J1)sin 0 be 

N-1 

(3.4) f(cos OJ')sin O'= 'a' cos k0j'. 
k =O 

Then the coefficients Al, k, (O - k < N) in (1.7) are computed recursively as follows. 
For each k, set the starting value B, as 

(3.5) B = al (AO N-k AOkCos 27a)/sin2Ta, 

- sin 27Ta1 W ,_ I(cos 2va1)A,,k 

and calculate B, by the recurrence relation 

(3.6) Bl_, = (B,,-,+ - AI.- I +, IA ,)/ (cos 2f7Ta- cos2vaT`,l+_ 

(i=1 2.. 1 

Then we have A = Bo, where we have omitted the dependence of B, on k and defined 

A(( = AO,N 0 ? for convenience. 

Proof. The interpolation condition to determine AZA is f(cos 0= p,(cos 0,'); 
specifically, 

N-I 

(3.7) f(cos0,')sin0,'z = AOAksink0' 
A =() 

I ~~~N-1 
+sin 2a, wX _1(cos2Ta,) E 'Alcosk0 (O<j<N). 

i~~~~~~~~I ~ ~ , 

Substituting the expression (3.4) for f(cos Oj')sin 0j inLo (3.7) and using the ortho- 
gonality of the cosine function, we have the expression for AS k 

(3.8) a' (AO - AO kcos2vaI)/sin2vaI 

+sin2va, E wjl(cos2vaI)Aj,k (O < k < N). 
,= 1 

From (2.2) and (2.8) we have the identity 

(3.9) sin27a,o2?- 1_ l(cos27Ta,) = sin2v(2m- Ia) = 1. 

Using (3.9) in (3.8) establishes Theorem 3.2. 0 
The right-hand side of (3.5) may be evaluated using Horner's algorithm. The 

coefficients a' in (3.4) can be computed by the FFT in the way described later. The 
numerical stability of the recurrence relations (3.5) and (3.6) is slightly better than 
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that of the Newton divided difference formula, because the number of divisions 
/ + 1 in this formula is reduced to 1' + 1, (1' < 1/2), in (3.5) and (3.6), although the 
total sum of the number of divisions and multiplications is not reduced. 

By carrying out the procedure given by (3.5) and (3.6) successively for 1 = 1, 2,..., 
we obtain the coefficients Al k (1 1, 2, . . .), which yield the sequence of interpola- 
tion polynomials {p,(x)} as given by (1.7). 

3.2. Fast Algorithm for Cosine Transform. We describe the algorithm for the fast 
cosine transform with shift parameter a in order to compute efficiently the discrete 
Fourier cosine coefficients a' of (3.4). 

Let t( 0) be the cosine polynomial of degree N - 1 
N-I 

(3.10) t(O) - S 'akcoskO. 
k =(0 

Then the coefficients ak of t(O) are determined by making use of the N function 
values tj+?a t(2v(j + a)/N), (O ?<j < N), where the shift parameter a is assumed 
to be a positive fraction. Let us define Ak as 

I N-1 

(3.11) Ak = N tj+aexp[-27ik(j+ a)/N] (O < k < N), 
N 

1=() 

of which the right-hand side can be calculated by the FFT for the real data. Then 

(3.12) AN-k Akexp(-2via) (O < k < N), 

AN = A0exp(-2via), 

where Ak denotes the complex conjugate of Ak. From (3.10), (3.11), (3.12) and the 

orthogonality of the cosine function with respect to the points 2v(j + a)/N, it 
follows that 

(3.13) ak 2Im(ANk)/sin27a (0 k < N). 

If t(O) is the sine polynomial of degree N 

N 

(3.14) t(O) = bksinkO, 
k =1 

then the coefficients bk are given by 

(3.15) bk=2Re(AN-k)/sin2va (I -k<N), 

bN = A 0/sin 2 Ta. 

4. Open-Type Quadrature Formula. The integration over [-1, 1] of the interpola- 
tion polynomial p,(x) of degree (1 + 1)N - 2 given in the previous section yields the 

approximation Q'( f ) given by (1.8) to the integral Q( f) J! f(x) dx. The weights 

Wi,k with k odd in (1.8) are defined by 

(4.1) WO k f Uk-I(x) dx = 2/k, 
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and W k vanishes for k even. From (2.13) we have the bound for Wi+ 1, k 

(4.2) |I+ l,kI I sin Noi(cos NO)cos kOldO < 2(i + 1)2, i > 0, 

for any k. 
Now, we shall derive the recurrence relation for Wi,k, (1 i ? 2), (0 ? k < N), 

with k odd. By using the relation (2.8), the weights W2n k are easily evaluated from 
(4. 1) as 

(4.3) W2n k = 2n+1 - N/ {(2nN)2 _ k2} (n =,1,...), (k = odd). 

By making use of (1.5) and (2.8) in (4.1), we have the recurrence relation for Wi k 

(4.4) Wt+2'-JIk =Wt,2-jN+k + Wt,2n-jN-k 2(cos27Ta2j+2S) Wtkv 

where t = 28 + 2-+ i , s < 2-, I j n and n - 1, 2,. .., m -1. With 
the starting value W2",k evaluated by (4.3), L weights Wi,k (1 ? i < 2m, 0 ? k < N, k 
= odd), where L= 2m * N/2, can be obtained from the recurrence relation (4.4) 
with only about (L/2) log2 L multiplications. 

It should be noted that the present method is an extension of the one due to 
Filippi as the present approximation Q'(f) for 1= 2n - 1 is identical with that of 
Filippi [4]. 

The practical performance of an automatic quadrature scheme depends not only 
on the number of function evaluations needed to satisfy the required tolerance but 
also on the overhead in executing the quadrature scheme on a computer. 

To reduce this overhead it is desirable that the weights WiKk and the abscissae 
{cos 2va,} should be computed as (4.3), (4.4) and by using the recurrence relation 
(2.14) once for all, and then be stored in the storage of the computer in advance. 
From a practical point of view, the increment of the number of sample points N at 
each step of integration is chosen as 8 (= 23). 

The results of numerical experiments on the present method suggest that the 
number of abscissae needed in a double-precision arithmetic (16-place mantissa) 
implementation in a subroutine library is usually at most 511 (= 64N - 1) with 
N 8. From the actual evaluation of the weights Wi2k+1 we find that the 256 
(= 26. 8/2) weights ",2k4- 1 (0 ? i < 26), (0 < k < 3), are positive and bounded by 
3.6 , . which is much less than the bound (4.2). 

5. Numerical Stability and Rate of Convergence. The numerical stability and rate 
of convergence in the open-type quadrature scheme is now described. 

5.1. Numerical Stability. The open-type formula (1.8) can be rewritten as 

(1+ I)N- I 

(5.1) Q( f) w Wl(xi), 
j=1 

where the weights wJ are given by 

(5.2) Wi f1 UN I(X)WI(TN(x))/ {(X - xj)[UN-I(X)oI(TN(x))] X} dx, 

and [ ]' means the derivative with respect to x [5]. 
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Define a condition number 

i I 

Then a1 ' 1. When all weights are positive a' = 1, otherwise a' > 1. The result of 
numerical evaluation of the weights wj' indicates that with N = 8 and 1 < 64, 
a/ < 1.5, except for / = 30 and / = 62 in which cases a/ = 2.22 and 3.65, respec- 
tively. (For the closed case a' < 1.015.) This fact demonstrates that for practical 
purposes the present quadrature scheme may be taken to be stable. 

It is an open problem to evaluate the best bound of a1 theoretically. 
5.2. Rate of Convergence. Let - denote the ellipse in the complex plane z = x + iy 

with foci (x, y) (-1,0), (1,0) and semimajor axis a = (p + p-1)/2 and semiminor 
axis b = (p - p-')/2 for a constant p > 1. Furthermore, let f(z) be single-valued 
and analytic inside and on Ep. Then we shall show 

(5.3) E,(f) = Q(f) - Q'(f) o(p-(l+l)N) 

for the current case, N = 8, 0 ? / < 64. 
Achieser [1, p. 219] gives the following lemma. 

LEMMA 5.1. If f(z) is analytic in E and real on (-1, 1), then there exists a polynomial 
p(x) of degree < N(l + 1) - 2 such that 

(5.4) max 1I(x) - p(x)I < 8 M(p)/pN(I+ 1)-I 

where 

M(p) = maxIRef(z) . 
z E fp 

From this lemma and the fact that E,( p) = 0, it follows that 

(5.5) IE,(f )I E,(f - E,(p)I = IE,(f-P )I 

A|lIf(x) -p(x)ldx + E' IwIf(x,) -p(x,)l 

< 8M(p) dx + w |PN( ) - 

wherej in the summation ranges from 1 to N(l + 1) - 1. Taking into account the 
numerical results on a ', we have that the rate of convergence is geometrical for an 
analytic function on the closed interval [-1, 1]. 

6. Stopping Criterion. The method of adequate error estimation is very important 
in enhancing the efficiency and reliability of an automatic quadrature scheme. In 
what follows a practical estimate of truncation error to the open type formula is 
given. 

The truncation error El f ) of the approximation Q1( f ) is given by 

(6.1) E/(f) f' UN_ I(x)0,(TN(x))21 (? )f X XI, x,... ,x(,?1)N1] dx, 

where f[x, x,... ,x(?+ 1)N-,] denotes the divided difference of order (1 + 1)N - 1 
[3]. Let f(z) be single-valued and analytic inside and on eP. Then the divided 
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difference in (6.1), which is also expressed in terms of contour integral, can be 
expanded in Chebyshev series 

21 -( )N[x xl ,.. I X(+ I)N- 1] 

(6.2) = hi~ I f(z)/ {(z - X)UN-I(Z)Co(TN(Z))} dz 
p 

00 

= ' 
a,+],kTA-(X), 

where the coefficients a+ l 1kare given by 

_ 2 1 - 
(6.3) a, AZ fT(z)UA(Z)/ {UN-l(z)0(TN (Z))} dz. 

7T 27r1i 

The Chebyshev function of the second kind UA(z) is defined by 

(6.4) U(z)J = TA(X)/{ (Z- X) 1-X2 }dx = g / ( 2- wA}, 

where w = z + z2 - 1 and |w| > 1 for z t [-1, 1]. From (6.1), (6.2) and the 
definition (4.1) of weights we have 

(6.5) E,(f) = a, A?lW7?l2A?l. 
A () 

Suppose that f(z) is a meromorphic function which has J simple poles at the 
points z1 (j = 1, 2,...,J) outside ep with residues Res f(z,). Then, carrying out the 
contour integral of (6.3), we have 

(6.6) A, - E UA(Z,)Resf(zJ)/ {UN-l(zJ)((TN(ZJ))) 

From (6.4), (6.6) it can be seen that as k increases la+ 1 ,k I decreases exponentially 
like rk, where r= mmz1 + zm-1 > 1. Taking into account this fact and the 

boundedness of IW,/+, I, (4.2) for fixed 1, we may estimate the truncation error 
E,(f ) in (6.5) as follows, 

00 

Ej(f)j J'WV+,1 I jE la?+12k+lI '|W+111 la 1 (1- 2). 
A=O 

If we use the relation la,+?11 -Ia,N-lIr laI,N_3Ir4, which can be derived by 
using I TN(Z) - cos27Ta,I O(IwIN)in (6.6), then we have 

IE,( f )I |W,ll|(la,N- l I + a, N-3r- )/ (2r2 - 2). 

When r2 > 3/2, it is possible to estimate IE,( f )| by 

(6.7) IE,(f)| C| IW+I,11(l(a1,N-I| +| a,N-3l)- 
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Now we wish to estimate the coefficients of the Chebyshev series of the divided 
difference (6.2) in terms of the available coefficients AZ k, which can be expressed in 
the form (see Appendix) 

(6.8) A/k= * 1, 7 sin2 2,nxa 

Thi#(Ukz) -(coTha,LiN(z)}>< 
wN - cos 

2ha,)f(z)dz 
2 Fg i pf 

CIJ z (cos 2,ga, 
)C{ UN I (Z) / (TN(Z))} 

Under the same assumption on f(z) as that in the derivation of (6.6), performing the 
contour integral of (6.8) gives 

(6.9) A/k 1 E {Uk(z,) (cos2Tha/)L7N k(Z,)} 

(wN - cos 2Ta,/)Res f(zj) 

{ UNlI(ZJ)(./(TN(ZJ))} 

where wj = zj + z2-1 . Comparison of (6.6) and (6.9) gives 

(6.10) a+l k/A/,k = O(r N), 

for large 1, unless the poles z1 of f(z) are close to the range [-1, 1] on the real axis. 
On the other hand, since a/+?lk/alak =O(r-N), we have a/,k - A/ k. Thus from (6.7) 
we could estimate the truncation error E,( f) by e1 as 

(6.11) e, = (IA, N-I IIAA,N-3I)1WI/+l,l I 

0 11 
N f dx ,/o(1-c2)dx 

n 1 x2+a2 \ J 1-2ax+a2 

o 

__ \a=laz. 

V~~~~aV 

-15 I__ _b_l I 
o 50 100 0 50 100 

Number of Sample Points 

FIGuRE 2 

Comparison of the true absolute errors and the estimated errors of the quadrature routine applied 
to the integrals f 11/(x2 + a2) dx and f1l(l - a2)/(I - 2ax + a2) dx. Solid curves are the 
true absolute errors and broken curves are the estimated errors. Circles indicate the errors at the 
number of sample points (2 n -1 ) used in the Filippi scheme [4]. 
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FIGuRE 4 

Comparison of actual and predicted errors for 2l log( x + I) dx and j21 (I - 3/ dx. 

If some poles zj are very close to the range [-1, 1] or the pth derivative f (p)(X), 

(p > 1), is discontinuous on [-1, 1], the error estimate (6.1 1) does not hold. To guard 
against this failure we take the following check procedure. We note that 
|Q2 ( f ) - Q2( f )I should be a better error estimate for the approximation Q2 I) 
than e2fl- I. Therefore, let K(2n) denote | fQ2(f) - Q2 (f )f/e2n-, and if K(2l s 1, then 
we accept el defined by (6.1 1) for 2n s I< 2 Otherwise, let K(24 denote K(i)/K(2'-, 
and if K(2? s 1, then we take e,K(i4 as the truncation error estimate. If K() > 1 and 
Ki4?> 1, then we take e,IK24i2n-. 
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Figures 2, 3 and 4 illustrate the comparison of the true absolute error and the 
estimated error by e1, eK(K) or ei(4?i(24? for the integral f1 f(x) dx where 

(1)f(x) = 1/(X2 + a2), a = 1, 4 

(2)f(x) = (1 - a2)/( - 2ax + a2), a = , 4, 

(3) f(x) = (x + 1)a/2 a = 1, 3, 5, 
(4)f(x) = log(x + 1), 
(5) f(x) = (1 - x2)-3/4, 

with N = 8. Figures 2 and 3 show that the method of the error estimation described 
above works effectively for well-behaved functions but may occasionally be mislead- 
ing for integrand functions with discontinuous lower order derivatives on [-1, 1]. 

7. Closed-Type Quadrature Over the Interval [-1, 1]. In this section we consider an 
automatic quadrature of closed type which has abscissae on both ends of the interval 
[-1, 1]. The procedure for obtaining such a quadrature scheme is similar to that for 
the open-type one described in the preceding sections. 

The sequence of abscissae to be used in this scheme is as follows. The addition of 
two parameters a1 0 and a0 = to the sequence {a,} (i = 1,2....), given in 
Section 2, yields also a uniformly distributed sequence {cos 2a,} (i -1,0, 1,...), 
on the closed interval [-1, 1] whose first 2' + 1 elements coincide with the abscissae 
{cos1Ti/2'} (i =0,1.. .,2), that is, zeros of (1 - x2)U2_(x), used in the CC 
method [2]. 

In a similar way to that in Section 3, let p,(x) denote the interpolation polynomial 
for a well-behaved function f(x) over [-1, 1] based on the (I + 1)N + 1 abscissae 
{cos 2 7a,} (-1 < i < (I + 1)N), with N 2n. Then we have 

N 

(7.1) p,(x) = p (X) + (1 - X)UNI(x) (TN(X)) AkUk-I(X) 

N 

PO(x) = E AO kTk(X), 
k =0 

where the double prime in the summation denotes a finite sum whose first and last 
terms are to be halved. The coefficients Ao,k in (7.1) are given by 

2 N 

(7.2) AOk -= - f(cos 7j/N)cos 77jk/N (O < k < N), 

from the interpolation condition that p0(xj) = f(xj), where { xj } = { cos 2 7a,} 
{cos 7(j + 1)/N) (-1 ?j < N). The interpolation conditions for determining the 
N coefficients A1/k (1 < k < N), in the lth stage of (7. 1) are, analogously to (3.7), 

N 

(7.3) f(cos 0 1) = 2 "AOkcos kOJ 
k =0 

l N 

+sinTharo,2 _ w1(cos27raj) 2 Ai, ksin kGl 
i=l k=1 
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where 01 = 27(j + a,)/N (O -<j < N). In a similar way to (3.4) the discrete sine 
transform of the left-hand side of (7.3) yields 

N 

(7.4) al = f(cos J' )sin kOj'. 

In practice this transform {a'} (1 < k < N), is given by (3.15) and computed by 
making use of FFT (3.1 1) for real data f(cos C). Consequently, from (7.3) and (7.4) 
the recurrence formula for AZ k iS 

(7.5) a' (Ao kcos2T7a, + AO N-k)/sin2Ta, + sin 2Ta, 0 w,l(cos 2a,)A,k, 

where we have used the identity 

(7.6) cos koI = {cos 27a,- sin kOj' + sin( N-k )Ojl} /sin 2 a,. 

The first term of the right-hand side of (7.5) must be halved when k = N. 
The integration of p,(x) expressed by (7.1) over [-1, 1] gives the closed-type 

integration formula 

J N I N 

(7.7) Q'(f) p,(x) dx d= "AOkWOk, + E Ai ,kWi (k even), 
-I k=o =I=1 k=1 

where the weights Wi,k with k even are defined by 

(7.8) WO f= Tk(x) dx = 2/ (1 -k2) 

(7.9) <Y k fI (1 - X2)UN-I(X)W,I_(TN(X))Ukl(x) dX, 

(i 1,, .),(I < k < N). 

These weights may be evaluated by the recurrence relation similar to (4.3) and (4.4). 
The truncation error E( f ) of the approximation (7.7) could be estimated by the 
form analogous to (6.1 1). 

The result of numerical evaluation of the condition number a' for the closed 
formula (7.7) indicates that a' - 1.015 with N = 8 and / < 64, which guarantees, for 
practical purposes only, the numerical stability of the closed formula. 

8. Summary and Concluding Remarks. In this paper we have presented an 
algorithm to generate the sequence of interpolation polynomials increasing the 
number of sample points in arithmetic progression. Applying the algorithm, we 
obtain an automatic quadrature scheme which overcomes the drawback in the 
Clenshaw-Curtis method that the number of sample points is increased in geometric 
progression. An adequate method of error estimation is described. 

We are grateful to the referee for valuable comments. 

Appendix. In this appendix the derivation of (6.8) is given. First we note that the 
coefficients A,,k in (1.7) can also be regarded as the Fourier Chebyshev coefficients 
of the divided difference of order/N - 1,f [X, X1,.I ,XN-1] 

N-I 

(A. 1) 21 -1Nf[xj, I ... xzN_l = 2 'A,,kTk(Xk 
k=1I 
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where {x} ={cos 2 T7aN+J} = {cos 2 7(j + a,)/N} (0 ?j < N). On the other hand, 

we note that the divided difference is expressed in terms of the contour integral as 

shown by (6.2). If we set 
N-I 

(A.2) 1/ (z - xj) = 'Bk(Z)Tk(Xj) (0 <j <N), 
k =0 

where Bk(z) is given by 

( ( 2 1 N-I 
(A.*3) Bk(Z) = N s 2 E {(Tk(xj) - (cos2,ga,)TN-k(XJ)}/ (Z -X,), N sin 2,ga, 1=0 

then from (A.1) and (6.2) we have 

(A.4) A/k= 21.Bk(z)zZ)/{ UN-I(Z) w-I(TN(Z)) dzZ 
p 

By making use of the generating function for the Chebyshev polynomial 

00 

(A.5) 1 2u+u 2 n(X)Un u 1< 1), 

we obtain the Chebyshev expansion of 1/(z - x) for z 4 [-1, 1] 

(A.6) 1/ (z-x) = 2/ Z2- 1 E ' Tn(X)lwn, 
n=( 

where w = z + Vz2-1 . From (A.3) and (A.6) 

(A.7) (sin2 2 7al)Bk(z) 

400 
N-I1 N(Ics~,/w 

=- ' 1: T(Xj) { Tk(Xj) - TNzk(X )COS27Ta)l - j I 
n=O 1=0 

- 2{ m cos(27ma/)/WmN} {/Wk -(cos2 a,)/wNkW/Nz2 -=1 

m=O 

1 
-( W - cos2Tal){k(Z) - NV-k(Z)cosT27a,}/{TN(z) - cosT2a,,} 

where again we have used (A.5) and (6.4) in the third equality. Substituting the last 

expression of (A.7) into (A.4),we have the expression (6.8) for A/,k. 
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