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By Ralph Baker Kearfott 

Abstract. A method for computing fo' f(t) dt, x = (0, 1) is outlined, where f(t) may have 
singularities at t = 0 and t = 1. The method depends on the approximation properties of 
Whittaker cardinal, or sinc function expansions; the general technique may be used for 
semi-infinite or infinite intervals in addition to (0, 1). Tables of numerical results are given. 

1. Introduction and Summary. Here we present a basic method and experimental 
results for approximating F(x) = J6 f(t) dt, x E (0, 1), where f is smooth, but may 
have singularities at t = 0 or t = 1. The method is based on approximation proper- 
ties of sinc functions 

sin[(,g/h)(x - kh)] 
(11) S(k, h)(x) ('nyh)(x-kh) 

With minor modifications, the method may also be employed to compute 1a f(t) dt, 
t E (a, b), where a, b or both a and b are possibly infinite. 

Our underlying formula is similar to formula (3.36) in [4], given there without 
proof. Our formula is considered in detail here, is proven, and is backed by 
numerical experiments. (See Section 4 for more discussion.) 

In Section 2 we give the relevant properties of sinc functions, assumptions, and 
basic techniques. (Such techniques appear in more detail in [4] and elsewhere.) In 
Section 3 we present and verify our integral approximation formulas. Four tables of 
experimental results and conclusions appear in Section 4. 

2. Underlying Properties and Assumptions. A general review of sinc functions and 
their uses has recently been given by Stenger in [4]. We therefore only outline 
properties important to our present goals, and refer the reader to [4] for further 
references. 

Approximations on (0, 1) are obtained from corresponding approximations on 
R = (-x, o) via a conformal map. To be approximable on R, f E C?(R) must 
obey certain analyticity and boundedness conditions in a strip in the complex plane 
C which contains R. Through the conformal map, we obtain a corresponding 
"eye-shaped" region (cf. Figure 4.1, p. 185, of [4]) containing the interval (0, 1), in 
which our integrands must obey certain analyticity and boundedness conditions. 
With this in mind, we first list properties over R. 
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Defintion 2.1. Let d > 0 and let 6'Dd denote the open strip 

(2.1) 6Dd = {z c- C : Ilm(z) j< d)} 

Let BP(6Dd) denote the family of all functions f that are analytic in 'cd and which 
satisfy 

(2.2) fdIf(x + iy) I dy O as x -+oo 

and such that 

(2.3) Nf if (x I iY) IP d + (f(d )- iy) r dx )}< oo 

We denote BI(6Dd) by B(6Dd); in all results below, p= 1 for simplicity unless 
otherwise stated, although most of these results generalize to arbitrary p; cf. [4, 
Section 3.1 ]. 

Iff & B( 6d)) we approximate f by a truncated "Whittaker cardinal series" 

N 

(2.4) f(x) = CN(f, h)(x) = f(kh)S(k, h)(x), 
k=-N 

where S(k, h)(x) is as in (1.1). We state the following without proof: 

THEOREM 2.1. (See [2, pp. 237-238], and [4, pp. 177-178].) Suppose f & Bpfr6Dd) for 
some p & [ 1, oo), and suppose 

(2.5) f1(x) 1I< CeaI1XI for all x & R (i.e., if(x) J= O(ea-lxl)) 

for some C and a > 0 dependent on f. Choose h = [Td/(caN)]'/2. Then there is a C' 
dependent on f, but not on N, such that 

(2.6) l1f(x) - CN(f, h)(x)II, < C'N /2e 

where fl * is the supremum norm over R. 

Here we need not only to approximate functions f, but also their integrals. We 
have 

THEOREM 2.2. (Trapezoidal Rule; cf. e.g. [2, p. 229], or [4, p. 178].) Suppose 
f & B(6D), suppose f satisfies (2.5), and choose h' = [2 Td/aN] 1/2. Then 

N 

(2.7) f_ f(t) dt - h' : f(kh') < C1e -(27daN)1/2 

-oo k=-N 

for some integral approximation constant C1 dependent on f but not on N. 

To obtain approximations over (0, 1), we make use of the following conformal 
map: 

z1 
(2.8) 4(Z) = log( -Z ) qY(z) 

1 z z(i -z)~ 

For any d such that 0 < d < 7T/2, (p maps the region 

(2.9) (d ={z: I arg[z/ (11 -z)] < d} 
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onto 6Dd where 6Dd is as in (2.1). (Note that a 6Dd consists of two circular arcs 
intersecting symmetrically with an angle of 2d at 0 and 1); (cf. [4, p. 185].) Define 

ew 
(2.10) z = ,(w) = -'(w) '(w) = (w)[ - (w)]. 

Supposef is defined and analytic in the interior of 6jd and define 

(2.11) 1(w) = f(4(w)>(w)[l - o(w)] 

for w E Dd Thenf E- B(6Dd) provided 

(2.12) lim inf fIf(z)dz <oo, 
CC6Dd e- a6d d 

where C is some curve; we obtain (2.12) from (2.2) and (2.3) by applying the change 
of variables z 4 +(w) to the integrals in (2.2) and (2.3). 

Suppose, for example, f has singularities at z = 0 and at z = 1, but f is analytic in 
6D and f is continuous on 36d\{O, 1}. Then, by examining the integrals over 

portions of the curves C near z = 0 and z = 1 and the integrals over portions of C 
away from z = 0 and z = 1 separately, one can show (2.12) holds if and only if 

f if(z)dz< 0oo. 
aDd 

Suppose further that f is such that we may take d = ?T/2, so a6d {z I - 1 2 } 
Then 4 maps the line {z: Im(z) = ST/2} to the semicircle {Iz- 4, Im(z) > 0} 

and the line {z: Im(z) = -S/2} to the semicircle {Iz - = 1, Im(z) < 01. Condi- 
tion (2.12) then becomes 

(2.12)' flf(z)dzl= 21 f(2 + elt dt 

f3 T/4If(elucos(u)) I du + 7T/4 if(I - eivcos(v)) I dv < Xo. 
ST/4 -ST4 

Condition (2.12)' then holds for thosef which satisfy 

(2.13) f(z) o 0(lzlao) asz -*0, and f(z) = 0(11 - zla) asz 1, 

where a0 > -1 and a, > -1, and which are continuous elsewhere on the closure of 

6d and which are analytic in 6Dd. 

Corresponding to Theorem 2.1, we have 

THEOREM 2.3. Suppose f is analytic in some 6Dd as in (2.9), suppose f satisfies (2.12) 

(or (2.12)'), suppose 

(2.5)' lf(x) 1< Cxf(1 - x), 0 < x < 1, 

for some /3 > -1 and some C dependent on f and set h = ['d/aN]1/2, where 
a =/3+1. Then 

N 
(2.6)' f(x)- E f(4(kh))4(kh)[l-4'(kh)]S(k,h)(p(x)) 

k= -N 0 

< CN 1/2e -(daN)1/2 

for some C' dependent on f but not on N. 



562 RALPH BAKER KEARFOTT 

Similarly, we have 

THEOREM 2.4. Suppose f is analytic in G9d for some d, suppose f satisfies (2.12) (or 
(2.12)'), suppose f satisfies (2.5)' for some /3> -1 and some C dependent on f, and set 
h = [2-7d/aN]'72. Then 

(2.7)' ff(t) dt - h' 2 f(4(kh'))4(kh')[1 - p(kh')] < Ce-(2daN)/2 
0 k=-N 

for some C, dependent on f but not on N. 

3. The Indefinite Integral Approximation Formulas. Analogously to Section 2, we 
will first obtain an approximation procedure for integrals of the form 

(3.1) F(w) - f(t) dt, 

where f E B(6Dd) (cf. Definition 2.1). We will then use the conformal mapping 
procedure to obtain approximation rules for integrals of the form 

(3.1)' F(x) f | 
X 

f((t))dt, 
{(-X) 

where q, and 4 can be as in formulas (2.8) and (2.10), respectively. We begin with the 
following lemma, which is a direct consequence of Theorem 2.1. 

LEMMA 3.1. Define F(w) as in (3.1), suppose F E BP(6Dd), for some p E [1, o), 
suppose IF(w) I Ce aWII for some C and a > 0 and all w E R, and set h 
[7d/(aN) '1/2. Then 

(3.2) f (t) dt - 
h 

[|f(t) dt S(k, h)(w)t C'N1/2 e( wdaNV'I 

for all w E R and for some indefinite integral approximation constant Cl which does 
not depend on N. 

Lemma 3.1 does not apply to general integrals F as in (3.1), since in general 

Jf?O, f(t) dt #t 0, and formula (2.5) is not valid. For such F, we consider the related 
function 

w ~~~~eaw/2 ?? 

(3.3) G(w) = f(t) dt- eaw/2 2ff(t)dt 
- 00 e- w/2 + e aw/2 -0 

= w|f(t) - oe 
IOO(f )dt =|g(t) dt, 

_00 (eat+ 1- 

where 

(3.4) g(t) = f(t)- ae I0(0f IOO( f )= | f(t) dt. 
(eat+ -00 

We then have 

LEMMA 3.2. Suppose If(w) IS Ce -Il for some C and a > 0 and all w C R, and 
suppose G is as in (3.3). Then there is a CG such that I G(w) I< Cce aIwl for all w E R. 
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Proof. We have 

eaw/2 w | G(w) e f(t) dt-Ioo(f. 

eaw/2 + e aw/2 j_0 e- aw/2 w 

+ e aw/2 + e - aw/2 |. 
f (t ) dt. 

We will consider each factor in the two terms on the right as w -x -oc and as 
w-* +x0. 

Case 1, w -x -o. The second factor in the first term is bounded and approaches 

-I.( f ), while the first factor in the first term is bounded by e-alwl . The first factor in 
the second term is bounded by 1, while the second factor in the second term is 
bounded by Cealwll/a. 

Case 2, w -x oc. The first factor in the first term is bounded by 1, while the second 
factor in the first term is equal to -Jw f(t) dt and hence is bounded by Ce?aIwl/a. 
The first factor in the second term is bounded by e a1wl, while the second factor in 
the second term is bounded and approaches I,,( f). 

Combining the above, we may take 

CG C/a + max sup f(t) dt-I00(f), sup f(t) dt} 
w o - 00 w O - oo 

CaC/a+ I'00(f)I. 

Combining Lemma 3.1 and Lemma 3.2 immediately gives 

THEOREM 3.1. Suppose f E B(6Dd), suppose If(w) I Ce aIwl for some C and all 
w E R, and suppose G E Bp( Dd) for some p, where G is as in (3.3). Define 

N kh 
(e 

at 
+ ) 11 )w (3.5) FN( w) 

= 
[ ff(t) - 

at f f(u) du] dt S(k, h)(W) 

e aw/2 00 

e-aw/2 + eaw/2 J f(t) dt, 

where h = [7Td/(aN)] 1/2. Then there is a C,, independent of N such that 

JW f(t) dt - FN(W) < C;'N1/2e-(daN)'/2 
- 00 

for all w E R. 

In practice the quantities 

if(t) 2 at f f(u) duj dt f'kg(t) dt = G(kh), 
-?? (ea + 1)2 _o00 

and the quantity fJ2,. f(u) du = I0(f ) must be approximated. Below, we show how 
to do this so that the order of approximation in (3.5) remains O(N2e-(TdaN)'/2). 

First observe that linear combinations of functions in B( 6d) are also in B(6Dd); 
also linear combinations of functions satisfying (2.5) satisfy (2.5) (with a different 
C). Thus, we deduce 
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LEMMA 3.3. Suppose f E B(6Dd), suppose I1(w) 1< CeaIwl for some C and a > 0 and 
all w E R, and suppose g is as in (3.4). Then g E B(6Dd), and there is a Cg such that 

Ig(w) CgeYaIWI for all w E R. Thus, g and f-2 g(t) dt may be approximated as in 

(2.6) and (2.7), respectively. 

Let CN(g, h)(t) J=7Ng(jh)S(j, h)(t) be the approximation to g. We use 

CN(g, h)(t) to approximate the quantities G(kh) in (3.5). 

LEMMA 3.4. Let f E B(6Dd), suppose If(t) I< Ceall, t E R, and set h 

[7d/(aN)]'I2. Suppose g and G are as in (3.3) and (3.4), and define 

N W 

(3.6) 6N(W) =| CN(g, h)(t) dt = 2 g( jh)|-N S(j, h)(t) dt, 
-Nh I =-N -N 

where -Nh < w < Nh. Then there is a constant C dependent on f such that I GN(W)- 

G(w) I? CNe-(daN)'/2 for all w E R. 

Proof. 

|GN(w)- G(w)j <I G(-Nh) I +Nh I g(t) - CN(g, h)(t) I dt. 

But I G(-Nh) I< CGe-aNh = CGe -(7rdaN)I/, from Lemma 3.2. Also 

f Ig(t) - CN(g, h)(t) I dt < (NH + w)C N1/2e -(7TdaN)/2 23/2h Ce -(7daN)'/2 
-Nh 

- CNe-(S7daN)'/22 

from Lemma 3.3. Thus 

|GN(W) - G(w)| < CGe daN)/ + CNe-daN)'/2 < eNe-daN)'/2 

for some appropriate C. 
We now replace G(kh) by G(kh) in Theorem 3.1. 

LEMMA 3.5. Suppose the assumptions of Theorem 3.1 hold, but 

kh ae ateat 
G(kh) - fh[f(t) - ae + f(u) du dt 

-? (0 at+ 1)2 G 

in (3.5) is replaced by GN(kh) as in (3.6), to obtain 

N eaYw/2 0y4 

(3.5)' FN(W) k=2 GN(kh)S(k, h)(w) + -W + (W f(t) dt. 
k=-N e~~~~~~/ + eawl oo 

Then there is a CF independent of N such that 

JW f(t) dt - FN(w) ? CFN2e-N aN)/e 

Proof. 
JW 

f(t) dt - FN(w) 
J 

f(t) dt - FN(w) + I FN(w)-FN(w) I, 
-00 -00 
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where the first term on the right is bounded by C,NI/2e -(daN)'/2, by Theorem 3.1. 
On the other hand, 

N 

I FN(w) - FN(w) I= : [G(kh) - GN(kh)]S(k, h)(w) 
k= -N 

N 

:E I G(kh) -GN(kh) 1< 2N(CNe-(7rdaN) /2 

k= -N 

< CFN 2e-(S7daN )I /2 

for some constant CF dependent on f but not on N. 
For the main result, we must replace Ioo(f) fJ?? f(u) du in (3.5)' without 

changing the order of approximation. 

LEMMA 3.6. Suppose the assumptions of Theorem 3.1 hold, but in (3.5)' we replace 
I,(f) =J2O f f(t) dt by IN(f) = khY=Nf(kh), where h [7d/(aN)]'72. Then the 
conclusion of Lemma 3.5 is still true. 

Proof. If there are a C and an a > 0 such that If(t) I Ce-aI'l( t E R, then, if 
a' = a/2, lf(t) I< Ce-a "M, t E R. Thus from Theorem 2.2, 

(3.7) II,(f) IN( f ) I< C1e (7TdaN)I2 

Define 

N [e ]j 
(3.8) gN(t) fh e N N(f) S(j, h)(t), 

(eajh + 1)2 

and define 

GN(W) =| CN(9N, h)(t) dt 
-Nh 

and 

N eaw/2 
(3.9) FN(W) = 6 N(kh)S(k, h)(w) + e aw/ IN(f 

k=-N e-aw/~2 -F eaw/2'Nf 

Then 

(3.10) f_f(t) dt -FN(W) f f(t) - FN(W) + IPN(W) - FN(W) I 
- 00 ~~~~~~00 

where EN is as in (3.5)'. By Lemma 3.5, the first term on the right of (3.10) is 
bounded by eFNe , while 

N 

(3.11) IFN(W) - FN(W) 1 E [N(kh) - GN(kh)]S(k, h)(w) 
k= -N 

eaw/2 

e -aw/2 + eaw/2 I00(1f) IN(f )I 
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where GN is as in (3.6). The first term on the ri2ht of (3.11) equals 

(3.12) 

k-N 
{=N 

e 
I(f)]fk 

S(j, h)(t) 
dt}S(k, 

h)(w) 
2 2 

(aih + 1) h)(t)of h 
(W 

while the inner sum in (3.12) equals 

N ae ajh (f)]kI sin(rt) 
(3.13) Ak,N = jh [ IN ([f) -Ix( N ) dt. 

j=-N (eJ + 1)2 

But Ak,N is a trapezoidal rule approximation, as in Theorem 2.2, to fx XAkN(t) dt, 
where 

(3-14) Xk,N(W) [IN(f) If ) 2 ] nTt dt 

-a[IN(f)-I(f] klhsin(7Tt) dje a[Q)] 

4 [I-Nwlh 7t t ] [(2) 

where h' = (7Td/aN )'/2 = (27Td/la'N )'/2 for a' = a/2. But the magnitude of the 

integral in (3.13) is bounded by 

2 asin(t) dt < 2; 

thus 

(3.15) Xk,N(w)IW) II 
f2f < 2a I IN( f)-Io(f)I alwl. 

(e aw/2?+ -aw/2) 
2 

It is also possible to verify that XkN(W) E B(6Dd). Thus, as in Theorem 2.2, 

(3.16) JXk,N(t) dt - AkN S CN e-daN)e/2 

for some constant CA dependent on f but not on N. But, by (3.7) 

(3.-17) J|XAk N(t) dt a I IN(f ) I ( |sech[(2)t] dt} 

=1 IN(f) - I( f ) I S C,e -(7TdaN)'/2 

Combining (3.17) and (3.16), we see that the quantity in (3.12) is bounded by 

N 

(3.18) 2 (CI + C)e (daN)'/2 =2(CI + CA)Ne-(daN)'/2 
k= -N 

Combining the bounds (3.18), (3.7), and (3.1 1) now gives 

(3.19) FN(w) - FN(w) I 2(C, + CA)Ne-(daN)'/2 + Ce-(daN)'/2 

We obtain the conclusion in Lemma 3.6 from Lemma 3.5, 3.10, and 3.19. 
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We summarize the above in the following 

THEOREM 3.2 (MAIN RESULT). Suppose f E B(6Dd), and If(w) I< Ce a1W1 for some 
a > 0 and C, and all w E R. Suppose further G E B( 6d), where G is defined in terms 
off by (3.3). Define aq, q an integer, by 

(3.20) 'gq = | dt. 

Set h = ['rTd/(alNa)] 1/'2, and approximate fjc f(t) dt by 

(3.21) 

JFN(w) h[k{=[f(jh) 

- 

ajh + 
2 

jIN(f 
(GN+j + okj) S(k h)(w)] 

eaw/2 

e -aw/2 + eaw/2IN(f 

where IN(f) hYENk Nf(kh). Then there is a constant CF independent of N such that 

f f(t) dt - FN(W) < CFN2e-daN)/, 
-00 

for all w E R. 

Proof. Theorem 3.2 is a restatement of Lemma 3.6, once one observes 

h(UN+J + ak-J) jkh S(j, h)(t) dt. 

A table of (q, q = 1,..,100, is found on p. 175 of [4]. Also, aq = Si(q7T)/7, an 
asymptotic expansion for which is given on p. 244 of [1]; we are told this expansion 
gives 20 significant figures for q : 20. 

Theorem 3.2 is used in conjunction with conformal mapping techniques (ex- 
plained in [4, Section 4], and the references therein) to evaluate singular integrals of 
the form f,J f(t) dt, where a or b or both a and b are finite, and f possibly has 
singularities at a or b. We consider here (a, b) = (0, 1), and the conformal maps q 
and 4 defined in (2.8) and (2.10). From Theorem 3.2 and considerations in Section 2 
of this paper, we obtain 

THEOREM 3.3. Suppose (as in (2.8)-(2.13)) that f E B(6Dd), and suppose 

(3.22) If(x)1< CIxI,(1 - x)' allx E (0, 1), 

for some C a(d 1/3 > -1. Set a /3 + 1, and set h = (7Td/aNN)1/2. Define 

(3.21)' 

FN(x) h| f 1 L(x )(xi)(' xi) X/ _IN(ft )(OFN + (akj)| 

x ) 

S(k, h)(cp(x)) + a+1 x) aIN(f 
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where IN( f ) hjk= Nf(xk)(xk)(l xk) and where xj = 4(jh) = eih/(l + eih). 

Then, for x E (0, 1), 

(3.23) f(t) dt - fN(X) < CFN2e -(daN)/2 

for some C dependent on f but independent of N. If f(z) = 0(1 z I1A) as z 0, z E C, 
then f E B(6Dd), with d = T/2. 

Note that (3.22) is equivalent to 

If(4(w))4(w)[l - i(w)] 1=jf(x)x(l + x) I< ce-'lwl for w E R. 

Theorem 3.3. is otherwise obtained from Theorem 3.2 by making the transformation 

(3.24) f(t) dt =f|()f(14())44)[1- 4(u)] du, 

then applying Theorem 3.2 to the right member of (3.24). 
To comment on the power of the approximations in Theorem 3.2 and Theorem 

3.3, we note that it is unnecessary to know precisely what the order a is; in 
particular, if If(t) I ce - and 0 < a' < a, then we may replace a by a' in any of the 
formulas. Note that the convergence order is not preserved in this way when we use, 
say, Newton-Cotes or Gauss type formulas derived with the method of moment! for 
weighted integrands of the form xap(x), p a polynomial. Also, sinc function 
approximations are optimal, as explained in [3]. 

4. Experimental Results. To empirically test formula (3.21)', we tried it for various 
N on the following functions: 

(i)f1(X) = X-2/3; 

(ii)f2(x) = 3x1/3; 

(iii) f3(x) = I [x -2/3 + (1 - X)-2/3]; and 
(iv) f4(x) = 43[X--9 + (1X)-7]. 

In each case, the difference FN(x) - Jxf(t) dt was computed at x .li, i =1, . 0, 
for N = 4, 8, 16, and 32, corresponding to 9, 17, 33, and 65 evaluations of f, 
respectively. These results were compared to the errors FN(x) - Jox f(t) dt, where 

FN(x) is the result of applying a 2N-point Gauss-Legendre formula to compute 

fox f(t) dt, for 2N = 8, 16, and 32; F64(x) was defined to be the result of applying 
the composite 32-point Gauss-Legendre formula with 2 subdivisions. These particu- 
lar formulas were chosen for comparison since the Gauss formulas are commonly 
thought to be generally accurate, and since the 8-,16-, and 32-point formulas were 
closest in number of points to 9,17, and 33 of those formulas already programmed 
on our system. 

The functions fi, i = 1,. . . , 4, are normalized so that Jol fi(t) dt = 1. The functions 
have singularities at x = 0 and x = 1 of varying orders; the singularities of f3 are the 
same order at x = 0 and x = 1, while the singularities of fi, i #P 3, differ in order at 
x=Oandx= 1. 

Four tables appear, corresponding to each of the four functions. Table 3 has three 
parts, corresponding to various estimated orders ,B (cf. (3.22)). 

The sinc function approximations compare favorably to the corresponding Gauss 
formulas, except for f2(x). We postulate that the worse the singularity, the better the 
merit of the sinc function approximation. 
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For Table 1, ,B = -2/3 (a = 1/3) was used, while B = 1/3 in Table 2. The values 
,B = -2/3, , = -.467, and ,B= -.867 were used in Tables 3a, 3b, and 3c, respec- 
tively, while the value 3= -.9 was used in Table 4. From these and other 
experiments, it appears it is better to underestimate /3 than to overestimate it. 

In all cases, d was taken to be v/2. 
Stenger has proven a formula analogous to (3.5)', namely 

N N 

(4.1) f_g(t) dt = h E E ak_,g(lh)S(k, h)(x) + O(Ne-(TdaN)'/ ), 
k=-N 1=-N 

using formulas (2.17), (3.7), and (3.1 1) in [4] and the uniqueness of the coefficients in 
the sinc function expansion [5]. (This formula appears without proof as formula 
(3.36) in [4]*.) It is then possible, using the same argument as in the proof of Lemma 
3.6, to obtain an analogue to Lemma 3.6 from (4.1). This analogue was also tried in 
the same cases as above; in all cases, the tables of errors were the same to at least 
two significant digits. Since (4.1) is more elegant and requires less additions, it is 
perhaps to be preferred. 

The formula resulting from (3.21) when IN is replaced by Ix was also tried. From 
the resulting error tables, it appeared that the approximation for Ix accounted for 
approximately half of the total error. Thus, it seems unnecessary to use a separate 
stepsize h in computing IN' as suggested by (2.7). Also, taking d other than ST/2 in no 
case improved the performance. 

The computations were done on a Honeywell 6880 (Multics system) in double 
precision (63-bit mantissas). To get values at x = 1, x = 1 - 262 was used. 
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