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Abstract. Let Z be the class of real-valued functions, defined and continuous on the closed

interval I = [-1, 1], such that f(=1) = 0 and | f(§) — 2f{({ + 1) /2} + f(n)|<|§ — 7| for all
£and nin I. Let K = sup;e ;max .¢/|f(x)|. We will prove that 13/10 < K < 1014/779 <
1.301669.

1. Introduction. Zygmund [7] introduced the class of real valued functions f(x),
defined and continuous on the closed interval I = [-1, 1], such that

(1) /(&) = 2/((& +n)/2} + f(n)| < M|¢ — |
for some constant M and all £ and 7 in I. Timan [4], [5], [6] called such functions
“quasi-smooth”. Let Z be the class of quasi-smooth functions for which M = 1 and
f(-1) = f(+1) = 0. Suppose that
K = sup max|f(x)].
feEZ x€eJ

Timan [6] proved that K <4/3 and asserted that this was not the best result.
Brudnyi [1] attributed to Abramov the claim that K < 383/288. He exhibited a
function in Z whose maximum value is 5/4; hence K = 5/4. Sokolova [3] proved
that K <4/3 — 4/381 = 168 /127 < 1.322835, and conjectured that K = 5 /4.

In this paper we will prove that

1.3 =13/10 < K < 1014/779 < 1.301669,

thus disproving Sokolova’s conjecture. (In no way discouraged by her failure, we
conjecture that K = 13/10.)

The proof starts with the derivation in Section 2 of upper bounds for |f(£)]| as f
ranges over Z when £ is one of twenty-six particular numbers in I. Each of these
upper bounds is the consequence of a particular identity in the functional values of f
and the inequality (1). It is easy to see (cf. Section 5) that there is a function f, in Z
and a point x, in I such that fy(x,) = K. In Sections 4 and 5 we derive two basic
inequalities from which can be inferred upper bounds on X if it is known that x, lies
in a subinterval (a, b) of I and if upper bounds for f(a) and f(b) as f ranges over Z
are known. In Section 6 we apply these basic inequalities to each of the subintervals
determined by adjacent values of £ considered in Section 2, and thereby obtain the
asserted upper bound on K. In Section 3 we show that the membership in Z of a
piecewise linear continuous function f(x) on I, whose corners lie in an arithmetic
progression (with distance N~' between successive numbers) can be decided in
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2N(2N — 1) arithmetical tests, and then exhibit such a function with N = 20 that
passes all of the tests, so that it is in Z, and that has the value 13/10 when
x = 3/10. This demonstrates the asserted lower bound on K. In Section 7 we
describe the manner in which we used a computer to assist in the discovery of the
functional identities used in Section 2 and of the piecewise linear function in Z
recorded in Section 3. We emphasize, however, that the proofs of the identities and
of the properties of the piecewise linear function are independent of the computer.

2. Some Preliminary Numerical Results. We will show in this section that, if f € Z,
) 1/0) <1, 1/(1/2)I<1, |f(1/4)|<5/4, |f(1/3)|<23/18,
17(1/5)1<32/25, 1£(1/6)|<35/27, |f(2/7)|<127/98,
1f(2/9)|< 415/324, |f(2/11)|<2821,2178, |f(3/10)|< 13/10,
|f(3/16)|< 373,288, |f(3/20)|<193/150, |f(4/23)|< 686,529,
I[f(5/17)|< 751/578, |f(5/18)|<419/324, |f(5/31)|< 1244/961,
1f(5/32)|< 31,24, |f(7/20)|<127/100, |f(7/22)|<313/242,
1£(9/31)|< 161,124, |f(11/35)|<3179,/2450, |f(11/36)|<421/324,
|f(13/42)|< 1145/882, |f(19/64)|< 1331/1024, |f(23/76)|< 1877/1444,
|f(25/84) |< 2293 /1764.

Consider (1) when £ = -1, n =1, M = 1. Because f(=1) =0, it follows that
|f(0)|=< 1. We infer from the identity

2/(1/2) =[2/(1/2) — £(0) — A(D)] + £(0) + f(D),

an application of (1) when M = 1, the just established upper bound for f(0), and the
vanishing of f(1), that |f(1/2)|< 1. Because f(—x) € Z when f(x) € Z, it follows
that |f(-1/2)|< 1 also.

The remaining inequalities in (2) are consequences of analogous, but more
complicated identities, recorded at the end of the paper, and similar reasoning.

3. Piecewise Linear Functions in Z. Let N be a positive integer, and x, =
(k—N)/N, k=0,1,...,2N. Let y be a 2N + 1’ tuple (y,, y;5-.-,)2,) such that
Yo = ¥an = 0, and suppose that f(x) is a real-valued continuous function on I such
that f(x,) = y,. A necessary condition that f € Z is that

3 Ve = 2Vkss T Virul<2L/N

for all integers k and / such that 0 < k<2N —2, 1 </< N — (k/2). It is also
necessary that (3) hold when [ is half of an odd integer such that 3 <2/<2N — k,
if y, 4, is defined as f[(k + / — N)/N] for such values of /. If f is known to be linear
on each interval (x,, x, ), the following lemma asserts that these conditions are
sufficient.

LemMA 1. Suppose that x, = (k — N)/N, that f(x) is linear on each interval
(Xgs Xi1q), and that f(x,) = y,. Then f € Z if, and only if, y, =y, =0 and (3)
holds whenever k and 21 are integers such that 0 <k <2N —2,2<2]/<2N — k,
and the value y, , \ ,, is defined as (y; + yi11)/2.
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Consider the functions Q(§,n) = -1)’{f(§) = 2fI(§ +m)/21 + f(m)} —n + §
(j=0,1). For each 1 in (-1,1) these functions are piecewise linear, continuous
functions of £ on [-1, n] with corners in the set consisting of n and those points x,
and 2x, — 7 that lie in [-1, 5]. It follows that Q (£, 1) < 0 when —1 < § < if, and
only if, Q(x,,m)<0 and Q;(2x, —n,m)<0 for all k such that x, <7 and
~-1<2x, — n <n, respectively. (Note that Q,(n,m) =0.) For each j and k, the
functions Q (x,,n) and Q (2x, — m, n) are piecewise linear, continuous functions
of 1 on the respective intervals [x,, 1] and [x,, x;], in which x; = min(2x, + 1, 1).
The corners of Q (x,,n) lie in the set of those points x, and 2x, — x, that are in
[x4, 1], and the corners of Q(2x, — 7, n) lie in the set of those points x, and
2x, — x, that are in [x,, x;]. Moreover Q(x,,n)<0 and Q;(2x, —n,7) <0
for the appropriate values of k and 7 if, and only if, Q,(x;,n,) <0 and
Q,(2x, —m,, n,) <0 whenever 7, is an appropriate corner. Because 2x, — x, =
Xyp_x» it is now clear that Qj($, 1) <0 for all §, n such that -1 < {<qy<1if and
only if, Q (x,, x,) <0 for all k¥ and & such that 0 < k <h <2N. If we define / so
that h = k + 2/, then 2/ is a positive integer and the lemma is now obvious, after we
observe that (3) is trivial when / = 1/2, and that 1 /2 is the only permissible value of
Iwhen k = 2N — 1.

Consider the piecewise linear function f|(x) defined when N = 20 by the value
y=1(0,1/52/5,11/20,3/5,3/4,17/20,19/20, 19,20, 19,20, 1,11 /10,6 /5, 6 /5,
6/5,23/20,11/10,21/20,1, 1,1, 11/10, 6/5,5/4, 5/4,5/4, 13/10, 5/4,23/20,
21,20, 1, 21,20, 1, 19,20, 7/8, 7/10, 3/5, 11,20, 2/5, 1/4, 0). There are
2N(2N — 1) = 1560 tests (3) in Lemma 1, and all of them are passed, so f,(x) € Z.
Because f,(3/10) = 13/10, f(0) = 1, f(1/2) = 1, f,(1/4) = 5/4, we conclude that
the inequalities in (2) for f(3/10), f(0), f(1,/2) and f(1/4) are best possible, and that
K = 13/10. This example refutes Sokolova’s conjecture [3] that K = 3 /4.

It is also true that there exists, for each £ in the set {1/3, 1/5, 1/6, 2/7, 2/9,
3/16,3/20,4/,23,5/31,7/20,7/22, 11 /36, 19/64}, a piecewise linear function in
Z for which the upper bound in (2) is attained. Because all of these upper bounds
are less than 13/10, this knowledge does not help us improve the lower bound
13/10 for K, and we omit the proof of this assertion. We have been unable to decide
whether the remaining inequalities in (2) are best possible.

4. The First Basic Inequality. For each f in Z let x, be a point in I at which |f(x)|
attains its maximum value a,. It follows from (1) that, if §{ and n = 2x,— £ are both
in I, then

(4)  2a,<2x,— £ HAO I HAMI, o <2|x,— £ +24(8),

if A(§) is an upper bound on Z for | f(§)|/2. Therefore, a; < K’ for some K" if § € I,
K’ = 2A(¢), and

(%) max[- (1 — £)/2, § + A(§) — (K'/2)]
<x,<min[(1 +£)/2,§— 4(¢) +(K'/2)].
If a and b are any two points 1n / such that a < b, the set of values x, that satisfy
(5) either when £ = a or when § = b surely contains the interval (a, b) if
max[- (1 — b)/2,b+ A(b) — (K'/2)] <min[(1 + a)/2,a — A(a) + (K'/2)].

Thus we see that the following lemma is true.



576 J. ERNEST WILKINS, JR. AND THEODORE R. HATCHER

LemMmA 2. Iff€ Zand -1 <a < x,;< b < 1, then a; < K,, in which
K, = max[A(a) + A(b) + b—a,24(b) +2b—a — 1,
24(a) —2a+ b —1,24(a),24(b)].
Sokolova [3] had already proved that
a; < K, = 2min{A(a), A(b)} +2(b —a)

if fEZ, a<x;<b, and -1<2a—b<2b—a<1. (This result follows easily
from (4) when £ = a and ¢ = b.) Under these circumstances it is easy to see that
K, <K, if, and only if,

A =]A(b) — A(a)l/ (b —a) <1,

and then K, = A(a) + A(b) + b — a. Thus we have proved the following corollary
to Lemma 2.

COROLLARY. Suppose that -1 <2a —b<2b—a<1Iffe Z ifa<x;<b,and
if A <1, then

(6) a,<K,=A(a)+A(b) +b—a.

It follows from Lemma 2, but not from the corollary, when a = 0, b = 1, and
when a = -1, b = 0, that a; < 3 /2 (because A(0) = 1/2, A(+1) = 0). Therefore, the
set Z is uniformly bounded, and K < 3/2.

5. The Second Basic Inequality. Sokolova [3] asserted that the set Z is compact in
the space of continuous functions on I. (She offered no proof, but the result is an
immediate consequence of Ascoli’s theorem [2], the fact that Z is uniformly
bounded, and the existence of a modulus of continuity [6] that applies uniformly for
fin Z, so that the functions in Z are equicontinuous.) It follows that there exists a
function f; in Z and a point x, in I such that fy(x,) = K.

Given two points a and b in I such that a < b, the function f*( y), defined so that

o ooy = DO T O DD) (b oap)
_2x—a) _ 1,
b—a

is easily seen to be in Z. Therefore, |f*(y)|< K.

Because K < 3/2, there is no loss of generality in supposing that K’ < 3/2 in (5).
The existence of the function f,(x), described near the end of Section 3, shows that
A(§) = 1/2 if |¢|< 1/2. The argument leading to (5) thus shows that K = a; < K’
if|¢]1<1/2,24(¢§) <K' <3/2,and

£+ A(8) — (K'/2) <xo<§&—A(§) + (K'/2).
In particular,

(8) K<K' ifa<xy<a =a—A(a)+ (K'/2),
K<K' ifb+A(b)—(K'/2) =b <x,<b,
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and if 2 max{A4(a), A(b)} <K'<3/2, 0<a<b<1/2. Note that in this case
both2a — band b — 2a are in 1.

If a’ < b’, so that K’ is less than the right-hand side of (6), it does not follow from
(8) that K < K’ if a’ < x, < b'. It does, however, follow from (7) that, if a’ < x, < &/,

_ (x — a)A(b) + (b— x)A(a) | . (b—a)K
®) K\zu/‘é‘.?éb»{ T ]+ 2

The maximum in (9) occurs when x = b’ if A(b) = A(a) and when x = a’ if
A(a) = A(b), so that

(10) K <2(1+ A)max{A(a), A(b)} — AK' + (b —a)K/2.

Therefore, K is surely not greater than K’ when a’ < x, < b’, if K’ is not less than
the value K, at which (10) is an equality when K’ = K = K. Thus we have proved
the following lemma when K; <K, and K, <3/2. (Its validity is obvious if
K,=K,orK,=3/2)

LEMMA3. If0<a<x,<b<1/2and A <1, then
(11) K < K, =2max{A(a), A(b)}/[1 = (b —a)/2(1 + A)].

The result in Lemma 3 is an improvement over an earlier result of Sokolova [3]
that

K < K, =2max{A(a), A(b)}/[1 — (b—a)/2]
if a < x, < b. We will refer to (6) and (11) as the basic inequalities.

6. Application of the Basic Inequalities. We arrange the values of x, for which we
exhibited upper bounds on Z for |f(x)| in (2), into an increasing sequence £, = 0,
£, =3/20,...,6,, = 7/20, §,; =1, and calculate K, for each interval (a, b) =
(¢, &,, ), verifying along the way that A < 1. It is obvious that -1 <2a — b <2b
— a <1, so that the corollary to Lemma 1 is applicable, except when (a, b) =
(§56- §27) = (7/20,1) when we must use Lemma 1 itself. The values of K, are
recorded in Table I as the smallest six-place decimal fraction that is not less than the
actual rational number computed from (6). We conclude that

K < 3004633,/2304324 < 1.303911.

We now calculate K, for each interval (a, b) = (§,, §,,,), starting with the
interval for which K is largest and continuing in descending order of K, until we
reach a value K, that is less than the largest value of K, so far calculated. In this
manner we conclude that

K < 1014/779 < 1.301669.

This completes the proof of the assertion that 1.3 < K < 1.301669. The estimate
K = 1.300834 is in error by less than 0.0642%.
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TABLE 1
Values of K| and K, calculated from the basic inequalities (6) and (11)
£ A($) K, K,
0 1,2
1.293334
3,20 193,/300
1.295417
5/32 31,48
1.298117
5/31 622 /961
1.300767
1/6 35/54
1.303788 1.301348
4/23 343 /529
1.303911 1.301469
2/11 2821 /4356
1.300864
3/16 373/576
1.300070 1.300201
1/5 16,25
1.302655 1.294979
2/9 415/648
1.293210
1/4 5/8
1.299383
5/18 419/648
1.302501 1.300327
2/7 127 /196
1.301848 1.300752
9/31 161,248
1.302643 1.301511
5/17 751/1156
1.302314 1.301451
19/64 13312048
1.300590
25/84 2293 /3528
1.302325 1.301514
3/10 13/20
1.302563 1.301669
23/76 1877 /2888
1.302547 1.301621
11/36 421/648
1.302753 1.301627
13/42 1145,/1764
1.302631 1.301090
1135 3179 /4900
1.299366
7,22 313 /484
1.300735
1/3 23/36
1.290556
7,20 127,200
1.285000
1 0

7. A Related Linear Programming Problem. Although our paper is logically
complete, it may be helpful to explain the origin of the various identities used in
Section 2 to obtain upper bounds, and of the various piecewise linear functions in Z
that were (or could have been) used in Section 3 to obtain lower bounds.
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We say that the 2N + 1" tuple y = (yy, Yi» Va»--->Yan—1> YVon) 18 admissible if
Yo = ¥an = 0 and the inequalities (3) hold whenever k and / are integers such that
0<k<2N-—-21<I<N—(k/2). Let P, be the (linear programming) problem
of finding an admissible y for which y,, is a maximum. Let y,,, be this maximum
value. Then y,, x = y,y_,, y because f(-x) € Z when f(x) € Z. It is obvious that
fx,)<y.niffEZ

We say that the 2N + 1’ tuple y is *admissible if y, = y,,, = 0 and the inequalities
(3) hold whenever k and 2/ are integers such that 0 < k <2N — 2,2 <2]/<2N —k
and the value y, ., ,, is defined as (y, + y,4,)/2. Let P}y be the linear program-
ming problem of finding a *admissible y for which y,, is a maximum. Let y* be this
maximum value. By virtue of Lemma 1 it is obvious that

sup f(x,,) = ymn-
ez

We have written a computing program for the Cyber-176 that calculates the
coefficients for both P, , and P*,, and stores them for use in the general purpose
linear programming routine APEX 111 [8]. Each of the points &, for which an upper
bound for |f(£)| was furnished in (2), is a rational fraction of the form x,, =
(m — N)/N in which m and N are relatively prime integers and N <m < 2N.
Accordingly, we can use the computer to find y,, , and y¥ .

The computer output for P, , contains, among other things, not only y,,, and the
values y, (kK = 1,2,...,2N) corresponding to the maximizing solution, but also the
values of the ““marginal” variables (= dual variables = Lagrange multipliers) corre-
sponding to each of the 2 N? inequalities (3). It is a well-known fact that the sum of
the products of each marginal variable and the left-hand side of the corresponding
inequality is identically equal to the function being maximized. These identities are
the ones recorded in the appendix at the end of the paper after two modifications.
All of the computer output is expressed as finite decimal fractions (mostly 5 place
accuracy). We have guessed simple rational fractions to which the decimal fraction
values for the marginal variables appeared to be reasonably accurate approxima-
tions. That our guesses were appropriate is confirmed by the observations that the
identities in the appendix, written down with the guessed rational fractions (and
multiplied by a least common denominator in order to use only integers as
coefficients), are actually identities, verifiable ab initio without any refernce to their
computer origin. Next, the integers m and N can be multiplied by the same factor «
without changing x,. It is obvious that y ., .~ <y,y and X . =y* if kis a
positive integer. Accordingly, the identity actually recorded in the appendix corre-
sponds to the smallest « in the set of k for which the problem P,  , can be handled
by APEX-III on our computer and for which y,,, ., is least. It may happen that
there is an integer «’ for which the problem P}, .., can be handled by APEX-III on
our computer and for which y%, .\ is equal to the least y,,, .. In this case,

sup f(x,,) = Y -

ez
so there is notmng to be gained by proceeding to larger values of x or k’. The
numerical data show that it is possible that y, ., = ¥, v (€.8., V128 = Yea = V32 = 1),
that ,,, 55 < Vm,n (€8 V353 = 83/64 < yi5,6 = 13/10), that y;y =y, (€8, V4
=ysqa=5/4), that yy\ <y, (eg, y3s = 23/18 <y, = 35/27), that k' = k> 1
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(€8 Y713 <Via2e < P30 <Vissa = 439/338 = yeg 52 < V3a26 < ¥s139 < V17.3) that
K<k (€8, Yo <Pihus <VHar <Visze = 415/324 = Yeg 1 < V1163 < Ves.5a < Vssas
< Vaaze < V3327 = Ya2u8 = Vo) and that k" >k (e, y¥i0 < Vi <V =
193 /150 = yy5.40 < ¥2320)- The fifth of these examples also shows that y,,, .y need
not be monotone in k.

The computer output for P, contains not only yk, but also the values y}
(k=1,...,2N — 1) corresponding to the maximizing solutions. These decimal
fractions satisfy conditions (3) as in Lemma 1, within some unknown round-off
error. We have replaced the decimal fractions with simple rational fractions to which
the decimal fraction appeared to be reasonably accurate approximations. The new
values of y/, recorded in the case N = 20, m = 26 and alluded to in other cases in
Section 3, were then independently verified to satisfy (3) without any reference to
their computer origin. This verification can be carried out by arithmetical operations
in the ring of integers if each y} and the tests (3) are first multiplied by the least
common denominator of the numbers y}f. No round-off errors need occur and the
arithmetic can be programmed for our computer.

A Set of Useful Identities
64F(19/64) = 8[2f(19/64) - f(-13/32) - f(1)] + 8[2f(19/64)

- f(17/64) - f(21/64)] + 10[2f(19/64) - f(3/32)

- f(1/2)1 + 4[2f(19/64) - f(7/64) - f(31/64)]

+ 2[2F(19/64) - f(9/64) - £(29/64)] + 4[2f(-13/32)

- f(-33/64) - f(-19/64)] + 4[2f(17/64) - f(1/32)
)
)

- £(172)1 + 4[2fF(21/64) - £(-11/32) - f(1)]
+ 10[f(-3/32) + f(3/32) - 2f(0)] + 4[f(-19/64)
+ f(7/64) - 2F(-3/32)] + 2[2f(31/64) - f(-1/32)
- F(1)] + 2[f(-9/64) + f(9/64) - 2£(0)]
+ [2F(29/64) - £(-3/32) - £(1)] + 2[2f(-33/64)
- f(-1) - £(-1/32)] +4[f(-1/32) + f(1/32)
- 2F(0)] + 2[2f(-11/32) - f(-35/64) - f(-9/64)]
+ [2F(-35/64) - f(-1) - f(-3/32)] + 3f(-1)
+ 32F(0) + 14fF(1/2) + 15f(1),
76F(23/76) = 20[2f(23/76) - f(21/76) - f(25/76)]1 + 8[2f(23/76)
- F(3/19) - f(17/38)] + 4[2f(23/76) - £(2/19)
- f(1/2)] + 6[2f(23/76) - f(-15/38) - f(1)]
+ 10[2fF(21/76) - f(1/19) - f(1/2)] + 10[2f(25/76)
- f(-13/38) - f(1)] + 3[f(-5/19) + £(3/19)
- 2F(-1/19)] + S[f(-3/19) + f(3/19) - 2f(0)]
+ 4[2F(17/38) - f(-2/19) - f(1)] + 4[f(-2/19)
+ f(2/19) - 2f(0)] + 3[2f(-15/38) - f(-10/19)
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£(-5/19)] + 10[f(-1/19) + £(1/19) - 2f(0)]

5[2F(-13/38) - f(-10/19) - f(-3/19)] + 4[2f(-10/19)
f(-1) - f(-1/19)] + 4f(-1) + 38f(0)

+

+

+

14F(1/2) + 20f(1),
126F(25/84) = 16[2f(25/84) - f(11/42) - f(1/3)] + 16[2f(25/84)
- f(23/84) - f(9/28)] + 16[2f(25/84) - f(2/7)
- f(13/42)] + 5[2f(25/84) - f(2/21) - f(1/2)]
+ 4[2f(25/84) - f(5/42) - f(10/21)] + 4[2f(25/84)
- f(11/84) - f(13/28)] + 2[2f(25/84) - f(1/7)
- f(19/42)] + 8[2f(11/42) - f(1/42) - £(1/2)]
+ 8[2fF(1/3) - f(19/84) - f(37/84)] + 8[2f(23/84)
- f(1/21) - £(1/2)] + 8[2f(9/28) - f(-5/14)
- F(1)] + 8[2f(2/7) - £(1/18) - £(1/2)]
+ 8[2f(13/42) - f(5/21) - f(8/21)] + 2[%(-5/21)
+ f(2/721) - 2F(-1/14)1 + 3[f(-2/21) + f(2/21)
- 2F(0)] + 4[f(-5/42) + f(5/42) - 2f(0)]
+ 2[2F(10/21) - f(-1/21) - £(1)] + 4[f(-5/28)
+ £(11/84) - 2f(-1/42)] + 2[2f(13/28) - f(-1/14)
- F(1)] + 2[f(-5/21) + f(1/7) - 2f(-1/21)]
+ 3[2F(19/42) - f(-2/21) - £(1)] + 4[2f(19/84)
- F(0) - £(19/42)] + 8[f(-1/42) + f(1/42)
- 2f(0)] +4[2F(37/84) - f(-5/42) - f(1)]
+ 8[f(-1/21) + £(1/21) - 2F(0)] + 4[2f(-5/14)
- f(-15/28) - f(-5/28)]1 + 8[f(-1/14) + £(1/14)
- 2f(0)] + 4[2fF(5/21) - f(-11/21) - f(1)]
+ 4[2fF(8/21) - f(-5/21) - f(1)] + 2[2f(-15/28)
- f(-1) - f£(-1/14)1 + 2[2f(-11/21) - f(-1)
- F(-1/21)] + 4F(-1) + 66F(0) + 29f(1/2) + 27f(1).
S oY - L r(1/4) - f(0) - f(1/2)] + F(0) + f(1/2),
6r(1/3) - 2[2f(1/3) - £(-1/3) - £(1)] + 2f(1)
+ [2F(1/3) - f(1/6) - f(1/2)] + f(1/2)
+ [2F(-1/3) - £(-1/6) - f(-1/2)] + f(-1/2)
+ [f(-1/6) + £(1/6) - 2f(0)] + 2f(0),
5F(1/5) = 2[2f(1/5) - f(-3/5) - f(1)] + 2f(1)
+ [f(-1/5) + f(1/5) - 2f(0)] + 2f(0)
+ [2f(-3/5) - f(-1) - f(-1/5)] + f(-1),
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9f(1/6) = 4[2f(1/6) - f(-2/3) - £(1)] + 4f(1)
+ [f(-1/6) + f(1/6) - 2f(0)] + 2f(0)
+ 2[2F(-2/3) - f(-1) - f(-1/3)] + 2f(-1)
+ [2f(-1/3) - f(-1/72) - f(-1/6)] + f(-1/2),

14F(2/7) = 3[2f(2/7) - f(1/14) - £(1/2)] + 4[2f(2/7)
- f(-3/7) - f(1)] + [f(-3/14) - 2f(-1/14)
+ F(1/14)]1 + 2[f(-1/14) - 2F(0) + £(1/14)]
+ 2[2F(-3/7) - f(-1/2) - £(-5/14)]1 + [2f(-5/14)
- f(-1/2) - £(-3/14)] + 3f(1/2) + 4f(1)
+ 4F(0) + 3f(-1/2),
36F(2/9) = 10[2f(2/9) - f(0) - f(4/9)] + 4[2f(2/9)

f(5/24) - £(17/72)]1 + 4[2f(2/9) - f(7/36)
- f(1/74)] + 5[2F(4/9) - f(-1/9) - £(1)]

+ 2[2f(5/24) - f(1/9) - £(11/36)] + 2[2f(17/72)
- f(0) - f(17/36)] + 2[2f(7/36) - f(1/9)

+ [2F(11/36) - f(1/9) - f(1/2)] + [2f(17/36)
- f(-1/18) - £(1)] + [2f(5/18) - f(1/12)

- f(1/2)] + [f(-1/18) + f(1/18) - 2f(0)]

(
)
- f(5/18)1 + 5[f(-1/9) + f(1/9) - 2f(0)]
(
)

+ 24F(0) + 4f(1/4) + 2f(1/2) + 6f(1),
264F(2/11) = 28[2f(2/11) - f(-7/11) - £(1)] + 104[2f(2/11)
f(5/33) - f(7/33)] + 4[2f(5/33) - f(1/33)
F(3/11)] + 14[f{-3/11) - 2f(-2/33) + f(5/33)]
+ 28[2f(5/33) - f(2/33) - f(8/33)] + 26[{f(5/33)

- 2f(0) + f(-5/33)] + 52[2f(7/33) - f(-19/33)

- F(1)] + 14[2F(-7/11) - F(-1) - £(-3/11)]

+ 2[2F(3/11) - f(1/33) - £(17/33)] + 7[f(-1/33)

- 2F(0) + f(1/33)] + [2f(17/33) - f(1/33)

- f(1)] + 28[f(-2/33) - 2f(0) + f(2/33)]

+ 14[2f(8/33) - f(0) - f(16/33)] + 7[2f(16/33)

- f(-1/33) - f(1)] + 26[2f(-19/33) - f(-1)

- f(-5/33)] + 136f(0) + 88f(1) + 40f(-1),
10F(3/10) = 4[2f(3/10) - f(-2/5)~ f(1)] + 4f(1)

+ [2f(3/10)- f(1/10) - f(1/2)] + f(1/2)

+ 2[2f(-2/5) - f(-1/2) - f(-"/10)] + 3f(-1/2)
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+ [f(-1/10) - 2f(0) + £(1/10)] + 2f(0)

+ [2f(-3/10) - f(-1/2) - f(-1/10)],
24F(3/16) = 8[2F(3/16) - f(1/6) - f(5/24)] +32[2f(3/16)

- f(-1/48) - £(19/48)] + 2[2f(3/16) - f(D)

- f(3/8)] + 2[2f(1/6) - F(1/12) - f(1/4)]

+ [f(-1/4) + f(1/6) - 2f(-1/24)] + [f(-5/24)

+ f(1/6) - 2f(-1/48)] + 2[f(-1/6) + f(1/6)

- 2F(0)] + 4[2f(5/24) - f(0) - f(5/12)]

+ 4[f(-1/48) + f(1/48) - 2f(0)] + [2f(19/48)

- f(-5/24) - f(1)] + [2f(3/8) - f(-1/4)

- F(1)] + 2[f(-1/24) + f(1/12) - 2f(1/48)]

+ 2[2f(5/12) - f(-1/6) - f(1)] + 18f(0)

+ 2f(1/4) + 4f (1),
60f(3/20) = 14[2f(3/20) - f(1/20) - f(1/4)] + 12[2f(3/20)

- f(1/8) - f(7/40)] + 4[2f(3/20) - f(1/10)

- f(1/5)] + 14[f(-1/20) + f(1/20) - 2f(0)]

+ 6[2f(1/8) - f(-3/4) - £(1)] + 6[2f(7/40)

- f(-1/20) - f(2/5)] + 4[f(-1/5) +.f(1/10)

- 2f(-1/20)] + 2[2f(1/5) - f(0) - f(2/5)]

+ 3[2F(-3/4) - f(-1) - f(-1/2)] + 4[2f(2/5)

- f(=1/5) - f(1)] + 3f(-1) + 3f(-1/2)

+ 30F(0) + 14F(1/4) + 10F(1),
40[2f(4/23) - £(3/23) - f(5/23)] + 6[2f(4/23)

- f(-1/23) - f(9/23)] + 12[2f(3/23) - f(1/23)

- f(5/23)] + 13[f(-3/23) + £(3/23) - 2f(0)]

+ 3[f(-5/23) + f(3/23) - 2f(-17/23)] + 26[2f(5/23)

- f(0) - £(10/23)] + 12[f(-1/23) + £(1/23)

- 2f(0)] + 3[2f(9/23) - f(-5/23) - f(1)]

+ 13[2f(10/23) - f(-3/23) - f(1)] + 76F(0) + 16F(1),
14[2F(5/17) - f(3/34) - £(1/2)] + 8[2f(5/17)

- f(-7/17) - £(1)] + 4[2F(5/17) - £(9/68)
£(31/68)] + 4[2f(5/17) - £(9/34) - £(11/34)]
4[2f(5/17) - £(19/68) - f(21/68)] + 12[f(-3/34)
£(3/34) - 2f(0)] + [f(-7/34) + £(3/34)
2F(-1/17)1 + [f(-9/34) + £(3/34) - 2f(-3/34)]

92f(4/23)

68f(5/17)

+

+



584 J. ERNEST WILKINS, JR. AND THEODORE R. HATCHER

+ 4[2F(-7/17) - £(-35/68) - f(-21/68)] + 4[f(-21/68)
+ £(9/68) - 2f(-3/34)] + 2[2f(31/68) - f(-3/34)
- F(1)] + 2[2f(9/34) - £(1/34) - f(1/2)]
+ 2[2F(11/34) - f(1/4) - f(27/68)] + 2[2f(19/68)
- f(1/17) - f(1/2)] + 2[2f(21/68) - f(-13/34)
- f(1)] + [2f(27/68) - f(-7/34) - f(1)]
+ 2[f(-1/17) + £(1717) - 2f(0)] + [2f(-13/34)
- f(-1/2) - f(-9/34)]1 + 2[2f(-35/68) - f(-1)
- f(-1/34)] + 2[f(-1/384) + f(1/34) - 2f(0)]
+ 2F(-1) + f(-1/2) + 32f(0) + 2f(1/4)
+ 18F(1/2) + 13f(1).

36F(5/18) = 8[2f(5/18) - f(1/18) - f(1/2)] + 8[2f(5/18)
- f(1/4) - £(11/36)] + 2[2£(5/18) - f(1/12)
- £(17/736)] + [f(-1/6) + f(1/18) - 2f(-1/18)]
+ 7[f(-1/18) + £(1/18) - 2f(0)] + 4[2f(11/36)
- f(-7/18) - f(1)] + 2[f(-7/36) + f(1/12)
- 2fF(-1/18)] + [2f(17/36) - f(-1/18) - f(1)]
+ [2f(-7/12) - f(-1) - f(-1/6)] + 2[2f(-7/18)
- f(-7/12) - £(-7/36)] + f(-1) + 14f(0)
+ 8F(1/4) + 8f(1/2) + 5f(1),

31F(5/31) = 12[2f(5/31) - f(-21/31) - f(1)] + 2[2f(5/31)
- £(3/31) - £(7/31)] + 3[f(-5/31) + f(5/31)
- 2F(0)] + 6[2F(-21/31) - f(-1) - £(-11/31)]
+ 2[F(-3/31) + £(3/31) - 2f(0)] + [2f(7/31)
- F(-17/31) - £(1)] + 3[2f(-11/31) - f(-17/31)
- f(-5/31)] + 2[2f(-17/31) - f(-1) - f(-3/31)]
+ 8F(-1) + 10f(0) + 13f(1),

48F(5/32) = 8[2f(5/32) - f(1/16) - f(1/4)]1 + 1€[2f(5/32)
- f£(1/8) - f(3/16)] + 8[f(-1/16) - 2f(0)
+ £(1716)] + 4[f(-1/8) - 2f(-1/16) + f(1/8)]
+ 6[2F(1/8) - f(-3/4) - £(1)] + 8[2f(3/16)
- £(0) - f(3/8)] + 4[2f(3/8) - f(-1/4)
- f£(1)] + 3[2F(-3/4) - f(-1) - f(-1/2)]
+ 8F(1/4) + 24F(0) + 10f(1) + 3f(-1) + 3f(-1/2)
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[2F(7/20) - £(1/5) - f(1/2)] + 2[2f(7/20)

- f(3/10) - f(2/5)] + 2[2f(7/20) - f(-3/10)

- £(1)] + [f(-1/5) - 2f(0) + f(1/5)]
[2f(2/5) - f(-1/5) - f(1)] + [2f(3/10)
f(1/10) - f(1/2)1 + [2f(-3/10) - f(-1/2)

- £(-1/10)1 + [f(-1/10) - 2f(0) + £(1/10)]

+ 2F(1/2) + 2F(1) + 4f(0) + f(-1/2)
4[2f(7/22) - £(13/44) - £(15/44)] + 4[2f(7/22)

- f(5/22) - f(9/22)] + 2[2f(7/22) - f(2/11)
f(5/11)] + [2f(7/22) - f(3/22) - f(1/2)]
2[2F(13/44) - £(1/11) - £(1/2)] + 2[2f(15/44)
f(-7/22) - £(1)] + 2[2f(5/22) - f(-6/11)

- £(1)1 + 2[2f(9/22) - f(-2/11) - (1)1
+2[f(-2/11) + £(2/11) - 2F(0)] + [2f(5/11)
F-1/11) - £(1)] + [f(-3/22) + f(3/22)
2F(0)] + 2[F(-1/11) + £(1/11) - 2f(0)]
+ [2f(-7/22) - f(-1/2) - f(-3/22)] + [2f(-6/11)
- f(-1) - F(-1/11)] + £(-1) + f(-1/2)
+ 10f(0) + 3f(1/2) + 7€(1),
248f(9/31) = 40[2f(9/31) - f(-13/31) - £(1)] + 40[2F(9/31)
- f(17/62) - £(19/62)] + 34[2f(9/31) - f(5/62)
- f(1/2)] + 8[2F(9/31) - f(7/62) - £(29/62)]
+ 2[2F(9/31) - f(2/31) - £(16/31)] + 20[2f(-13/31)
- f(-1/72) - f(-21/62)] + 20[2f(17/62) - f(3/62)
- f(1/2)] + 16[2f(19/62) - f(-12/31) - £(1)]
+ 4[2f(19/62) - f(15/62) - f(23/62)] + 20[f(-5/62)
+ f(5/62) - 2f(0)] + 10[f(-11/62) + f(5/62)
- 2f(-3/62)]1 + 2[2f(5/62) - f(2/31) - f(3/31)]
*+ 8[f(-17/62) + £(7/62) - 2f(-5/62)] + 4[2f(29/62)
- f(-2/31) - F(1)] + 4[f(-2/31) + f(2/31)
- 2f(0)] + [2(16/31) - £(1/31) - £(1)]
*+ 10[2f(-21/62) - f(-1/2) - f(-11/62)] + 20[f(-3/62)
(0)1 + 8[2f(-12/31) - f(-1/2)
- f(-17/62)]1 +2[2f(15/62) - £(0) - f(15/31)]
+ 2[2f(23/62) - f(-8/31) - f(1)] + 2[f(-8/31)

10f(7/20)

+

22f(7/22)

+

+ f(3/62) - 2f
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f(3/31) - 2f(-5/62)] + [f(-1/31) + £(1/31)
2F(0)]+ [2F(15/31) - f(-1/31) - f(1)]
38f(-1/2) + 92f(0) + 54f(1/2) + 64f(1),

700F(11/35) = 144[2F(11/35) - f(-13/35) - f(1)] + 72[2f(11/35)

+

+

+

f(4/35) - £(18/35)] + 72[2f(11/35) - f(13/70)
f(31/70)] + 28[2f(11/35) - f(8/35) - f(2/5)]
14[2F(11/35) - £(1/7) - £(17/35)] + 8[2f(11/35)
f(3/10) - £(23/70)] + 8[2f(11/35) - f(2/7)
f(12/35)1 + 2[2f(11/35) - f(6/35) - f(16/35)]
2[2f(11/35) - £(9/70) - f(1/2)] + 72[2f(-13/35)
f(-39/70) - £(-13/70)] + 72[f(-4/35) + f(4/35)
2f(0)] + 36[2f(18/35) - f(1/35) - f(1)]
72[f(-13/70) + £(13/70) - 2f(0)] + 36[2f(31/70)
f(-4/35) - f(1)] + 14[2f(8/35) - f(-19/35)
(1)1 + 140F(-1/5) + £(1/7) - 2f(-1/35)]
14[2f(2/5) - f(-1/5) - f(1)] + 8[2f(17/35)
f(-1/35) - £(1)] + 2[2f(17/70) - f(0)

f(17/35)] + 4[2F(3/10) - £(1/10) - f(1/2)]
4[2f(23/70) - £(17/70) - £(29/70)] + 4[2f(2/7)
f(1/14) - £(1/2)] + 4[2f(12/35) - f(-11/35)
f(1)] + 2[f(-6/35) + f(6/35) - 2f(0)]
[2f(16/35) - f(-3/35) - f(1)] + 2[f(-9/70)
f(9/70) - 2F(0)] + 36[2f(-39/70) - f(-1)
f(-4/35)] + 36[f(-1/35) + f(1/35) - 2f(0)]
702F(-19/35) - f(-1) - f(-3/35)] + 4[f(1/14)
f{1/10) - 2f(3/35)] + 8[f(-3/35) + f(3/35)
2F(0)] + 2[2f(29/70) - f(-6/35) - f(1)]
2[2F(-11/35) - f(-1/2) - £(-9/70)] + 43f(-1)
2f(-1/2) + 386f(0) + 10F(1/2) + 259f(1),

36f(11/36) = 12[2f(11/36) - f(5/18) - f(1/3)] + 4[2f(11/36)

+

+

f(5/36) - £(17/36)] + 2[2f(11/36) - f(-7/18)
f(1)] + 6[2f(5/18) - f(1/18) - f(1/2)]
6[2f(1/3) - f(-1/3) - f(1)] + 3[f(-5/36)
f(5/36) - 2F(0)]+ [f(-1/4) + £(5/36)
2F(-1/18)1 + 2[2f(17/36) - f(-1/18) - f(1)]
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+ [2F(-7/18) - £(-19/36) - f(-1/4)]1 + 6[f(-1/18)
+ £(1/18) - 2F(0)] + 3[2f(-1/3) - f(-19/36)

- £(-5/36)1 + 2[2f(-19/36) - f(-1) - f(-1/18)]

+ 2fF(-1) + 18F(0) + 6F(1/2) + 10f(1),

294f(13/42) = 64[2F(13/42) - f(2/7) - £(1/3)] + 33[2f(13/42)
- f(5/42) - f(1/2)] + 30[2f(13/42) - f(1/4)
- F(31/84)] + 16[2f(13/42) - f(25/84) - f(9/28)]
+ 4[2F(13/42) - £(13/84) - f(13/28)] + 32[2f(2/7)
- F(1/14) - £(1/2)] + 32[2f(1/3) - f(-1/3)
- F(1)] + 18[f(-5/42) + f(5/42) - 2f(0)]
+ 15[f(-11/42) + f(5/42) - 2f(-1/14)] + 15[2f(31/84)
- f(-11/42) - f(1)] + 8[2f(25/84) - f(2/21)
- f{1/2)] + 8[2f(9/28) - f(-5/14) - £(1)]
+ 4[f(-13/84) + f(13/84) - 2f(0)] + 2[2f(13/28)
- F(=1/14) - £(1)] + 32[f(-1/14) + f(1/14)
- 2f(0)] + 16[2F(-1/3) - f(-23/42) - f(-5/42)]
+ 2[2f(-47/84) - f(-1) - f(-5/42)] + 8[f(-2/21)
+ f(2/21) - 2F(0)] + 4[2f(-5/14) - f(-47/34)
- f(-13/84)] + 8[2f(-23/42) - f(-1) - f(-2/21)]
+ 10f(-1) + 124F(0) + 30f(1/4) + 73f(1/2) + 57F(1),

64f(19/64) = 8[2f(19/64) - f(-13/32) - f(1)] + 8[2f(19/64)
- f(17/64) - £(21/64)] + 10[2f(19/64) - f(3/32)
- f(1/2)] + 4[2f(19/64) - f(7/64) - f(31/64)]
+ 2[2f(19/64) - £(9/64) - f(29/64)] + 4[2f(-13/32)
- f(-33/64) - f(-19/64)] + 4[2f(17/64) - £(1/32)
- f(1/2)] + 4[2f(21/64) - f(-11/32) - f(1)]
+ 10[f(-3/32) + f(3/32) - 2f(0)] + 4[f(-19/64)
+ f(7/64) - 2f(-3/32)] + 2[2f(31/64) - f(-1/32)
- f(1)] + 2[f(-9/68) + £(9/64) - 2f(0)]
+ [2f(29/64) - f(-3/32) - f(1)] + 2[2f(-33/64)
- F(-1) - £(-1/32)] +4[£(-1/32) + £(1/32)
- 2f(0)] + 2[2f(-11/32) - f(-35/64) - f(-9/64)]
+ [2f(-35/64) - f(-1) - £(-3/32)] + 3f(-1)
+ 32(0) + 14f(1/2) + 15F(1),
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76F(23/76) = 20[2f(23/76) - f(21/76) - f(25/76)] + 8[2f(23/76)
- £(3/19) - £(17/38)] + 4[2f(23/76) - f(2/19)
- f(1/2)] + 6[2f(23/76) - f(-15/38) - f(1)]
+ 10[2F(21/76) - £(1/19) - f(1/2)] + 10[2f(25/76)
- f(-13/38) - f(1)] + 3[f(-5/19) + f(3/19) /
- 2F(-1/19)] + 5[f(-3/19) + f(3/19) - 2f(0)]
+ 4[2F(17/38) - f(-2/19) - f(1)] + 4[f(-2/19)
+ f(2/19) - 2f(0)] + 3[2f(-15/38) - f(-10/19)
- f(-5/19)]1 + 10[f(-1/19) + f(1/19) - 2f(0)]
+ 5[2F(-13/38) - f(-10/19) - f(-3/19)] + 4[2f(-16/19)
- f(=1) - f(=1/19)] + 4f(-1) + 38f(0)

+ 14fF(1/2) + 20F(1),
126F(25/84) = 16[2f(25/84) - f(11/42) - f(1/3)] + 16[2f(25/84)

- f(23/84) - f(9/28)] + 16[2f(25/84) - f(2/7)

- £(13/42)] + 5[2f(25/84) - f(2/21) - f(1/2)]

+ 4[2f(25/84) - f(5/42) - f(10/21)] + 4[2f(25/84)
- f(11/84) - f(13/28)] + 2[2f(25/84) - f(1/7)

- £(19/42)] + 8[2f(11/42) - f(1/42) - f(1/2)]

+ 8[2f(1/3) - f(19/84) - f(37/84)] + 8[2f(23/84)
- f(1/721) - f(1/2)] + 3[2f(9/2é) - f(-5/14)

- f(1)] + 8[2f(2/7) - f(1/14) - f(1/2)]

+ 38[2f(13/42) - f(5/21) - f(8/21)] + 2[f(-5/21)
+ f(2/21) - 2F(-1/14)1 + 3[f(-2/21) + f(2/21)

- 2F(0)] + 4[f(-5/42) + f(5/42) - 2f(0)]

+ 2[2F(10/21) - £(-1/21) - £(1)] + 4[f(-5/28)

+ £(11/84) - 2F(-1/42)] + 2[2f(13/28) - f(-1/14)
- f(1)] + 2[f(-5/21) + £(1/7) - 2f(-1/21)]

+ 3[2fF(19/42) - f(-2/21) - £(1)] + 4[2f(19/84)

- F(0) - £(19/42)] + 8[f(-1/42) + f(1/42)

- 2F(0)] +4[2F(37/84) - f(-5/42) - f(1)]

+ 8[f(-1/21) + £(1/21) - 2F(0)] + 4[2f(-5/14)

- f(-15/28) - f(-5/28)] + 8[f(-1/414) + f(1/14)

- 2F(0)] + 4[2f(5/21) - f(-11721) - £f(1)]

+ 4[2f(8/21) - f(-5/21) - £(1)] + 2[2f(-15/28)

- F(-1) - £(-1/18)] + 2[2f(-11/21) - f(-1)

- F(-1/21)] + 4f(-1) + 66f(0) + 29f(1/2) + 27F(1).
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