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Solutions of the Diophantine Equation 
A 4 + B 4 = C4 + D 4 

By Aurel J. Zajta* 

Abstract. A survey is presented of the more important solution methods of the equation of the 
title. When space permits, a brief description of the methods and numerical examples are also 
given. The paper concludes with an incomplete list of 218 primitive nontrivial solutions in 
rational integers not exceeding 106. 

1. Introduction. The Diophantine equation 

(1) A4 +B4 = C4 + D4 

was first proposed by Euler [1] in 1772 and has since aroused the interest of 
numerous mathematicians. Among quartic Diophantine equations it has a distinct 
feature for its simple structure, the almost perfect symmetry between the variables 
and the close relationship with the theory of elliptic functions. The latter is 
demonstrated by the fact that Eq. (1) is satisfied by the four elliptic theta functions 
of Jacobi, Ala9I, 3, 1,2 and i4, in that order [6]. 

One of the intriguing aspects of the equation is that numerical solutions are not 
easy to come by. Naturally, we are interested only in primitive and nontrivial 
solutions in real (and, occasionally, in Gaussian complex**) integers. The first 
known examples of solutions, and among these the solution in "least integers", i.e. 
(A, B, C, D) = (134, 133, 158, 59), were computed already by Euler [1], [2], [3]. Some 
others were found by later researchers (see [4, pp. 644-647]), but it was not until the 
advent of computers that systematic searches could be conducted. The most exten- 
sive lists published to date are due to Lander and Parkin [16] and Lander, Parkin 
and Selfridge [17]. These lists, to be called LPS lists, contain 31 and 15 solutions, 
respectively, and are complete in their respective ranges. 

In this paper we discuss the more important solution methods and in conclusion 
present a list of 218 numerical solutions. This contains all presently known primitive 
and nontrivial solutions in the range max(A, B, C, D) < 106. Motivation to produce 
the list has come from the need for empirical material to study Eq. (1). To produce a 
largest possible selection of varied numerical examples, we have used all available 
methods at our disposal, while making no effort for completeness. 
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2. Some Preliminary Remarks. Due to its special form, Eq. (1) is invariant under 
the transformations, 

(2) SA : Al = -A; SB: B' = -B; SC: C' = C; SD: D' = -D, 

(3) PAB: A = B, B = A; PCD: C' D, D' C, 

(4) PAC PBD:A =C,B'=D,C' A,D' B, 

and their products. We shall call these the elementary transformations of Eq. (1). 
Solutions obtained by elementary transformations from a given solution will not be 
considered different, but different forms of the same solution. Of the 27 = 128 forms 
of any nontrivial solution we shall choose one as the normalform and define this by 
the following criteria: 

(i) All four numbers A, B, C, D are positive. 
(ii) B and D are odd. 
(iii) The peak, i.e. max(A, B, C, D), is equal to B when it is odd and to C when it 

is even. 
When there is no reason to do otherwise, the numerical solutions are quoted in 

their normal forms. 
Following Euler, we shall use the notations p = (C + A)/2, q = (C -A)/2, 

r = (B + D)/2, s = (B - D)/2. With these substitutions we have 

(5) pq( P2 + q 2) = rs(r2 + s2) 

an equation equivalent to (1). When computed from normal forms, all four numbers 
p, q, r, s are integers and positive. 

3. Solution Methods. In contrast to the analogous cubic equation, no formula 
exists for the complete solution of Eq. (1). In its absence we have a large variety of 
methods at our disposal, each of which supplies a different set of solutions. The 
methods can be classified as (i) arithmetic methods, (ii) computer methods and (iii) 
mixed methods. 

In the case of arithmetic methods we make special assumptions and use existing 
solutions to derive new ones. Since both the initial and derived solutions necessarily 
satisfy the same special conditions, no arithmetic method can yield all the solutions. 
However, it is possible to produce, at least in principle, a complete list of solutions in 
any given range by the application of computer methods.*** Naturally, in practice, 
the range of search is limited by the processing capacities of the computer used. 

A pure computer method was used to produce the LPS lists. This is described in 
[16] and hence will not be discussed here. 

In the case of mixed methods the computer search is coupled with an arithmetic 
preparation and subsequent algebraic calculations. In all known mixed methods the 
computer is used to check if a given algebraic expression takes the value of a perfect 
square. When this occurs, a solution of (1) is obtained by a further simple 
calculation. 

*** As a matter of fact, at least for the present, this is possible only by computer methods. The fact that 
the solution (A, B, C, D) = (134, 133, 158, 59) is the "smallest", was established also by the use of 
computer [14], and no other proof is known. 
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Of all the methods the simplified "Pythagorean triplets" method, a mixed method, 
has proved in practice the most efficient. The majority of solutions in the list was 
obtained by this method. We shall discuss it within the next section. 

4. The Method of Pythagorean Triplets (PT). This method, in its original form, 
can be summed up as follows. Let (a,, bl, cl) and (a2, b2, c2) be Pythagorean 
triplets, i.e. numbers representable in the forms: 

al = 2u v, bl = u12- v2, cl = u12 + v12 

and 

a2 = 2u2v2, b2 = U2-v2 = u2 + v2 

for some integers uI, vI, u2, v2. If the triplets are such that 

(6) (alc + a2C2 )2 + (b,c, + b2c2)2 = perfect square, 

then a solution of Eq. (1) is readily at hand. To obtain it, we first remove the 
common factor p of l (a1c1 + a2c2) and b,c, + b2c2 and then solve for U and V 
the system 

(7) 2UV= - (a,c, + a2c2), U2 - - 1 (b,c, + b2c2). 
p p 

Then with 

(8) p = Uu + Vv, q = UvI-VuI, r =Uu2 + VV2, S -Uv2 + VU2 

we have A =p-q, B=r+s, C=p+q, D=r-s as solution of Eq. (1). 
Finally, we simplify by possible common factors of A, B, C, D and set them in 
normal form. The solution is nontrivial if the greatest common factor of u2 + v2, 

u 2 + V2 and uu2 vv2 equals 1. The formulas used in the method can easily be 
verified by applying (5). 

When using this method, every solution will be obtained sooner or later. More- 
over, it can be shown that every nontrivial solution can be computed from four 
different sets of parameters u1, vl, u2, v2, if their selection is subject to the restric- 
tions (i) u1, v1, u2 > 0, (ii) ul > v, u2, I V2, (iii) the greatest common factor of 

U12 + v2, u2 + V2 and uu2 + v1v2 is equal to 1. E.g. for the solution (134, 133, 158, 
59) these sets are (26, 8, 14, 13), (45, 22, 6, -35), (55, 16, 40, -7) and (56, 34, 34, 
-31). 

The disadvantage of the method lies in the difficulty of computing with high 
enough precision square roots of functional values of 8th degree polynomials. 
Nevertheless, when the method was first tried at the University of Zambia in 1972, 
47 nontrivial solutions of (6) were obtained during one weekend night. Of these, 17 
correspond to solutions not present in the LPS lists. The computer search was 
conducted by my former colleague, Jorma Pihlatie, using a relatively simple FOR- 
TRAN program and an IBM 1130 computer. 

In a significant number of cases we have vI = u2 or u1 = v2, and this observation 
has led to a modification of the method. For, if vI = u2, then 

a1c1 + a2c2 = 2x(ul + v2)(u 2 -uv2 ? v+2 + x2) 
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and 

blc, + b2c2 = - = (u, ? v2)(u-v2)(u2 + v2), 

where x denotes the common value v, = u2. Hence (u, + v2)2 can be removed from 
the left-hand side of (6), which then reduces to 

(9) 4X2( - (U2 v2 ? + V2 + x2)2 + (U1 - VI)2(U2 + v2)2 = - 

This equation, or its simplified form, 

(10) x2(X2 + 3y2 + Z2)2 + 4y2(y2 + z2)2 - D 

(where y = (u, - v2)/2 and z = (u, + v2)/2), contains only 6th degree polynomi- 
als in three variables. Both the numerical work of polynomial evaluations and the 
dimension of search are hence reduced. 

The majority of solutions marked by "PT" in the list was obtained by this 
simplified method. A search on the PDP-10 computer of the State University of 
Campinas has produced 222 nontrivial primitive solutions of (9) in the range 
u1, vI l 1061, ul >l 2 1. However, not all corresponding solutions of Eq. (1) are 
contained in the list. Excluded are 26 solutions whose peaks exceed 106. Further, 
there are many instances of coincidence, i.e. different solutions of (9) leading to the 
same solution of (1). (Every nontrivial solution of Eq. (1) can be obtained from 8 
different primitive sets of parameters.) Hence the number of solutions marked by 
"PT" falls well below 222. 

5. Semisolution Methods. By a semisolution of Eq. (1) we mean a parametric 
solution A = A(u, v, t), B = B(u, v, t), C = C(u, v, t), D = D(u, v, t), where the 
parameters u, v and t have to satisfy a further Diophantine equation Q(u, v) t2. 

Here Q(u, v) denotes a homogeneous quartic polynomial. Through the semisolutions 
the problem of solving Eq. (1) is thus reduced to the problem of making a quartic a 
perfect square. 

Quite frequently, in lieu of A, B, C, D, the numbers p, q, r, s are given as 
functions of u, v, t, as e.g. in the semisolution 

(11 ) p =ft, q = gu(f 2U - g2V), r = gt, S = fV(f 2U - g2v) 

which goes back to Euler [2]. Here f and g are integral constants (free parameters) 
and 

(12) t2 = (f 2U-g2V)(f 2v3 - g2u 3). 

The equation Q(u, v) = t2 will be referred to as the quartic equation of the 
semisolution in question. We shall agree that a solution of a quartic equation is 
termed nontrivial, if it leads to a nontrivial solution of Eq. (1). 

The importance of solving quartic equations was recognized already by Euler who 
himself gave three different methods to make a quartic a perfect square. Following 
Euler several other methods have become known, but the basic problem, namely to 
find the complete solution of any given quartic equation has still remained unsolved. 
A method most frequently used is the following. Suppose we have found a represen- 
tation of the quartic Q(u, v) in discriminant form, i.e. 

(13) Q(u, v) = 2(u, v) - a(u, v) * y(u, v), 
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where a(u, v), /3(u, v) and y(u, v) denote quadratic homogeneous polynomials in u 

and v. Suppose further that a solution u0, v0, to of the quartic equation is already 
known. Then the roots of the quadratic equation 

a(uo, vo) x2- 2/(uo, vo) _ xy + y(uo, vO) _ y2 = 0 

are rational numbers, namely 

x - /(u0, v0) - and -x =(u0, V0) + to 
YO ae (uo, vo) YI a(uo .vo) 

Now the equation 

(14) a(u, v) x--2-2(u, v) xy + y(u, v) y2 - O 

is quadratic and homogeneous in u and v. Moreover, when we put x/y = x,,Iy,, 
n - 0, 1 it has one rational solution for u/v, namely u0/v0. It follows that the other 
solution must also be rational. In this way we obtain solutions u_l/vl (when 
x/y = x0/y0) and uI/vI (when x/y = xI/y,). Repeating this argument with the 
new values u l, v; and u1, v1, we obtain further solutions, etc. The ratios u,1/v,1 and 

x,1/y,1 form, in general, a doubly infinite chain,t 

U-1 X0 U0 XI ul x 
(15).. .. 

v( I YV V0 YI VI Y2 

determined by the equation (14) and an initial ratio u0/v0. Accordingly, we shall call 
Eq. (14) a chain-generating equation. 

For a detailed account of the various arithmetic methods see Dickson [4, pp. 
639-644]. All these are equivalent, in one way or another, to the chord and tangent 
process of finding rational points on an elliptic curve (see [8, Chapter 16]). It is a 
well-known fact that, by applying this process, all rational points can be generated 
from a finite set of them. Consequently, all solutions of a quartic Diophantine 
equation, Q(u, v) = t2, can be found from a finite set of solutions by arithmetic 
methods. The main difficulty is that no known method exists to determine this finite 
set in the general case. Otherwise it would be possible to determine it e.g. for the 
quartic equation 

u4 -Mv4= t2 

with general integral M. For this equation it is known that when M is representable 
in the form a4 + b4, it has the independent solutions 

u = a2 + ab + b2, v = a + b, t = ab (2a2 + 3ab + 2b2) 

and 

u = a2-ab?b2, v a-b, tab (2a2-3ab + 2b2) 

When M is representable as a sum of two, biquadrates in two different ways, we have 
two more solutions of this kind. The number of solutions in the finite set hence 

depends, among others, on the number of ways of representing M in the form 

a4 + b4. Thus the problem goes back to solving Eq. (1). 

t The other possibility is a cycle. 
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The possible failure of arithmetic methods notwithstanding, computers can always 
be used within the limits of their capacities to solve quartic equations. Then the 
result is a complete list of solutions in the range of search. When the quartic 
equation of a semisolution is solved this way, we have another instance of solution 
methods of mixed type. 

6. Some Examples of Semisolutions. The second example of semisolutions that 
appeared in the literature, was also given by Euler [3]. In simplified formulation we 
quote it as follows: 

A =2Pu2 + Qv2 

SB = t, 

C= 2Pu + 2(Q - P)uv - Qv2, 

SD = -2P(Q - p)U2 + 4PQuv + Q(Q -p)V2, 

with the quartic equation, 

t2= 4p2(Q _ p)2U4 + 8P(Q -p)(Q2 + p2)U3v 

+4(Q4 - 3Q3P - 3QP3 + P4)U2v2 

-4Q(Q - p)(Q2 + p2)UV3 + Q2(Q _ p)2v4. 

The parameters P, S, Q form a Pythagorean triplet, i.e. p2 + S2 Q2, but are 
otherwise unspecified. We have nontrivial solutions when Q2 + Qp + p2 is a 
perfect square, as in the case P= 3, Q= 5, observed by Euler and leading to 
Solution 5, (see also [9]). However, these are not the only nontrivial solutions. An 
example when Q2 + Qp + p2 is not a perfect square is the following: P = 400, 
Q = 689, S = 561. Then we have the solution u= 51, v = 20, t= 761210360, 
leading to Solution 43 of the list. 

Strictly speaking, the simplified PT method is also a semisolution method, since 
Eq. (10) turns into a quartic equation by substituting u/v for z and multiplying 
every term by v4. Another semisolution can be derived from the original PT method 
by assuming that v2 = 0. Then we have a2 = 0, b2 = u2 , and hence by (7) 

2UZ =-* 2 ulvl( 2 + v2 )adU 2 _ V 2 =- 4 4 - + U4 2UV .2u,v (I?vI and .(l-V ) 
p p 

Without loss of generality we may set U = K(U 2 + v2), V = u,V1/(Kp), with K 

denoting an appropriate constant. Substituting these in the second equation, we have 

K2 (U 2 + V2 )2 - 
1 

2V 2 = 4 4 + U 2) 

K P ~~p 

In the simplest case, i.e. when K 2p = 1, this last equation reduces to 

u 2vl2 =4 2- 2Vl4 
22 

2 

Now the equation 

(16) t2 u4-2v4 

is known to have infinitely many nontrivial solutions (see [8, pp. 72-74]). Using 
these, we have the following expressions for u1v1, u2 and vI: uv1 = a2t, u2 = u, 

VI = Uv, whence, by choosing a = v, u= t, vI = v2 and u2 = uv follow. For 
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p, q, r, s then we have, by (8), 

(17) P = u4t, q-v6 r3 uv(u4-v4), s = uv3t 

Applying the simplest nontrivial solution of (16), i.e. (u, v, t) = (3, 2, 7), the result is 
Solution 6 of the list. 

Finally, let us mention the semisolution of Fauquembergue [10], who gave it as an 
identity. We present it in the following formulation: 

(18) A = t, 

B = 4u4 + 9uv + 4v2, 

C = 4u2 + 15uv - 2v2, 

D =-2u2 + 15uv + 4v2, 

with the quartic equation, 

(19) t2 = 4u4 + 132u3v + 17u2v2 + 132uv3 + 4v4. 

Fauquembergue's example can be easily generalized and developed into a full-scale 
theory. In the next section, however, we shall give only the main results, owing to the 
considerable length of calculations. 

7. Fauquembergue Type Semisolutions. Observing that a sum of two biquadrates 
in two ways is also a sum of two squares in two ways and that as such it can be 
represented as a product of two sums of two squares each, we set 

A4 + B4 - C4 + D4 = (a2 + b2)(c2 + d2 

and choose 

(20) A2 = ac-bd, B2 =ad+ bc, C2 = ac + bd, D2 =ad-bc. 

Then 

C2-B2 = (a-b)(c-d) and B2-D2 = 2bc. 

Hence, without loss of generality, we may assume that 

(21) C + B = tt(a -b), C -B =(c -d ), B + D = 2vc, B -D =-b b 

for some yt and P. We shall denote the product ytv by T. This quantity, which occurs 
frequently in the formulas, playing the role of an invariant, has the following 
expressions, derivable from (21) and (20). 

(22.a) T B + C . B + D (B + C)(B + D) 
a -b 2c A 2- B2?+C2?+D 2 

and 

c -d b A 2____2_ -___-_D_ 

(22.b) C B B -D 2(C -B)(B-D) 

For 2B we obtain from (21) the expressions, 

yt(a-b)-- --(c-d) and -+ 2vc, 
I'C P 
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which, when equated, yield a linear relation between the four parameters a, b, c, d. 
In addition there exists a quadratic relation, too, namely 

(23) 4ad = 2B2 + 2D2 = (B + + (B- D)2 (2vc)2 + ? 

Using the linear relation, we can reduce this last one, (23), to an equation in 3 
variables. Introducing 3 new variables, X, E and p, defined by the linear substitu- 
tions, 

(24) A = d-af,2, 

-25) - d + a,2 - (2T + l)c 
(25) 

V T+l 

(26) (4T + 1)c + (T + 1)(2T + 1)E, 

the result is a Diophantine equation in which only pure quadratic terms appear, 
namely 

(27) -2 - (4T + 1)X2 - A1A2E . 

Here we use, for brevity, the notations 

(28) Al\- 22 + 1, A2= 2T2 + 4T + 1. 

The solution of (27) is straightforward (see, e.g., [5, Chapter 4, Section 29]). Using a 
known solution, (Po, X(, E(, and two free parameters, u and v, the complete solution 
of (27) may be written as follows: 

PT = pou2 + 2X0(4T + l)uv + q< - (4T + l)v2, 

(29) PX = XOU 2 + 2q,,uv + X (. (4T + l)v2, 

PE = E,u2- . (4T + I)v2, 

with p denoting a proportionality factor. This can he dropped (or its value set to be 
equal to 1) since we are interested only in the ratios Tp: X: E. The initial solution, (po, 
X0,, is returned by the choice u = 1, v = 0. 

An initial solution To, A,,, E( of (27) is readily available from a known solution AO, 
B0, Co, Do of Eq. (1), using the linear relations (21), (24), (25) and (26). As a result, 
the complete solution of (27) can be expressed in the terms of Bo, CG, Do instead of 

(Po, X09, E(, and so can the parameters a, b, c, d and the variables B, C, D. The 
formulas for the latter are quoted as follows: 

(30) B = Bou2 -[(2T2 -_ )B( + 4TC( - (2T2 + l)Djuv 

+ [(4T 3+ 6T2 + 2T)Bo - (4T3 + 6T2 - - l)Djv2, 

(31) C = COu2-[(2T2 + 4T+ 3)Bo + 2CO-(2T2+ 4T- -)D Dj uv 

+[(6T 2+ 4T + 1)(Bo - DO) +(4T + l)Cj v2, 

(32) D = Dou2 -[(2T2 - )BO + 4TCO-(2T2 + 1)Dj]UV 

+ [(4T + 6T2 + 6T + )BO -(4T3 + 6T2 + 2T)D(v2. 

These three formulas, together with 

(33) A = t, 
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express a semisolution whose quartic equation is 

(34) t2 = C2 + D2-B2 + 2T(C-B)(B-D). 

Here on the right-hand side, the expressions given at (30)-(32) are to be substituted 
for B, C and D. The relation (34) is an immediate consequence of (22.b) and (33). 

The semisolution just derived has a structure similar to the one of Fauquem- 
bergue's example (18)-(19). We can obtain infinitely many others from it by 
subjecting the parameters u, v to linear (nonsingular) transformations. We shall refer 
to all these as Fauquembergue type semisolutions, or briefly F-solutions. 

The quartic in (34) can be brought into a discriminant form (13) in various ways 
and thus be solved arithmetically. Following are some discriminant forms of which 
the last two are symmetric in C and D. 

(35) t2 = C2 - (B - D)[B + D + 2T(B - C)], 

(36) t2= (B-C-D)2 -2(T + 1)(B-C)(B-D), 

(37) t2 =[(2T + 1)B + C + D]2 

-4(T + 1)[(T + 1)B + CT-D] [(T + 1)B + D - TC]. 

A further one can be obtained from (35) by interchanging C and D. 
Numerical Example. Starting from (AO Bo, CO, Do) = (292, 193, 256, 257), (a 

form of Solution 3), we have by (22.a) 

T_ (Bo + Co)(B( + Do) 449 
. 

450 9 
A 2- B 2 + C(29 + D(29 179600 8 

Using this value, we can now compute the right-hand sides of (30)-(32) and (34). 
The result is the semisolution 

A 

B = 193u2 - 540uv + 419v2 

(38) C= 256u2 - 898uv + 57OtvA 

D = 257u2 - 540uv + 67v2, 

with the quartic equation, 

(39) t2 = 85264u4 - 477344u3v + 999100u2v2 - 927096 uv3 + 273420v4. 

The discriminant form (37) of the quartic is as follows: 

2 1 U t (4561 - 12772uv + 7995 v2)2 

153 
16 (377U2 - 1438uv + 1385v2)(337u2 - 602uv + 281v2). 

Hence we may set 

a(u, v) = 377U2 - 1438uv + 1385V2, 

/3(u, v) = 456 1u2 - 12772uv + 7995v2 

and 

y(u, v) = 153(337u2 - 602uv + 281v2) 
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as coefficients of the chain-generating equation, (14), and compute elements of the 
chain. The initial values u0 = 1, v0 = 0 (that correspond to the initial solution 

A0, Bog C0, Do) give for x0/y0 the ratio 9/1, and for x1/y, the ratio 5729/377. Using 

xo = 9, yo = 1, we obtain u1/v-l = -313/592. On substituting 313 for u and -592 
for v in (38) and (39), we obtain Solution 41, i.e. (12772, 9153, 13472, 5121), after 
removing the common factor 29041. 

From the formulas (30)-(34) it is clear that F-solutions can be derived from every 
(nontrivial) numerical solution of Eq. (1). Moreover, since we have 16 different 
T-invariants for every nontrivial solution of Eq. (1) (these are obtained from 
formulas (22.a) or (22.b) by applying the elementary transformations to A, B, C, D), 

it is easily seen that every nontrivial solution of Eq. (1) generates 16, essentially 
different, F-solutions. 

In the special case when 4T + 1 is equal to a rational square, say (2n + 1)2, i.e. 
T= n(n + 1) for some rational n, the complete solution of (27) can be expressed 
without the use of a known solution, namely as 

(40) p(p = (2n + 1) * (A1U2 + A2v2), pX - A1u2 - A2v2, pc = 2(2n + 1) uv. 

Using these, we can derive the following semisolution: 

A =t, 
B = 2 

- (4T3 + 6T2 - 2T -)uv + TA2 v2, 

(41) C = -nz\ u2 - (6T2 + 4T + l)uv + (n + 1)A2v2, 

D =TA 2 - (4T3 + 6T2 + 6T + l)uv + TA2V , 

with the quartic equation, 

(42) t2 - n2A2u4 - 2nAl[2T 2- - 1 + 2(n + 1)(T + 1)(4T + l)]u3v 

+ [(2T ? 1) AA2 + 8T2(T + 1)(6T2 + 4T ? 1)] u2v2 

+2(n + 1)A2[2T2- 2T -1 - 2n(T + 1)(4T + 1)] UV3 

+ (n + 1)2A2V4. 

Formulas (41) and (42) become trivial and hence useless when n = 0, -1 or -1/2. 
Otherwise n may take any rational value. When n -1/2, (41) and (42) are replaced 
by the following: 

A =t, 
B (4 23-)u 2v 2 

(43) C= 2u2 - uv + 4v2 

I 4u 2 - uv - 2v 2 

(44) t2 = 16u4 + 8u3v + 23u2v2 - 8uv3 + 16v4. 

Fauquembergue's example (18)-(19) corresponds to the case T= 2, i.e. n = 1 or -2, 
and can be obtained from (41)-(42) by an appropriate linear transform on u and v. 

The quartic in (42) has-among others-the following discriminant form: 

(45) t2 = [nA u2 - (2T2 - 2T -1 + 2(n +- 1)(T + 1)(4T + 1))uv 

+ (n + 1)(6T2 + 6T + I)v2]2 

-4T(T + 1)(2T + 1)(4T + 1)[(n + 2)u - (n + I)v]2v2. 
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When using this form to generate a chain (15), the resulting new solutions of Eq. (1) 
are in general different from those obtainable through the use of the other discrimi- 
nant forms (35)-(37). 

8. Algebraic Reductions. By making special assumptions, Eq. (1) can be reduced to 
a linear one and thus solved promptly. One way to do this is by applying Cauchy's 
method of reducing cubic homogeneous Diophantine equations in three unknowns 
[7]. For this we start from Eq. (5), which is already of 3rd degree in each of its four 
variables, and observe with Desboves [11] that it can be made a 3-variable homoge- 
neous equation, e.g. by assuming that p/r - - = const and eliminating p. However, 
the same results can be obtained more quickly by direct methods which are possible 
due to the special symmetric character of Eq. (1). Depending on the assumptions to 
be made, we arrive at the methods (i) of Lander [18], (ii) of Swinnerton-Dyer [13], (iii) 
the perfect cube method and (iv) the two-solution method. 

In the case of Lander's method we add to the assumption 

p/r = (C + A)/ (B + D) = y = const a similar one, 

namely (A + D)/(C - B) = v = const. Then, by denoting the variables of the new 
solution by primes, we have 

(46) p' = px, r' = rx, 

(47) A' + D' = (A + D)y, C'-B' = (C-B)y, 

i.e. 

(48) q' = qy + (x -y)r, s' = sy + (x -y)p. 

Substituting the expressions for p', q', r' and s' in the equation 

(49) p'q (p'2 + q'2) -r's'(r'2 + S,2) = 0, 

it is readily seen that this reduces to a linear equation in x and y, since it can be 
simplified by xy(x - y) for obvious reasons. After simplifications we obtain 

x(rs3 - pq3 + 2rp3 - 2pr3 + 3pqr2 - 3rsp2) + y[r(s - p)3 - p(q - r) ] 

Thus 

(50) px = p(q-r )3-r(s-p )3 

and 

(51) pyrs3-pq3 + 2rp3-2pr3 + 3pqr2 - 3rsp2, 

where p is an appropriate proportionality factor. Substituting (50) and (51) in (46) 
and (48), we obtain p', q', r', s' as 5th degree functions of p, q, r, s. 

The relationship between the original and the new solutions is symmetric as is 
evident from the formulas (46) and (47). That means that the initial variables 
p, q, r, s, are also 5th degree functions of p', q', r', s'. (For this reason the author 
terms the method as a dual transform of the variables.) It is also evident that by 
changing the signs of A, B, C, D, each of the eight, essentially different, sign-combi- 
nations yield a different solution. Thus any nontrivial solution leads to 8 new 
solutions. Each of these 8 solutions can of course be employed again to obtain 8 
other solutions and so on up to infinity. However, among the 8 solutions obtained 
from any of the first eight there are only seven new ones, the other one being 
identical to the initial solution for the symmetry mentioned above. 
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To illustrate this point, in Tables 1 and 2, respectively, we list the 8 solutions, in 

normal forms and in increasing order of their peaks, that are obtained from the 

solutions 2 and 3, i.e. (7, 239, 227, 157) and (256, 257, 292, 193), respectively. These 

examples serve also to show how widely the order of magnitude of the new solutions 

varies. Other examples were given in [18] and [19]. 

TABLE 1 

No. A B C D 

1 256 257 292 193 
2 3 364 4 849 4 288 4 303 
3 94 108 378 507 333 384 301 387 
4 219 380 858 201 840 360 463 207 

5 840 766 518 255 869 338 161 105 
6 1247 062 1 221 659 1 466 462 381 787 
7 154 215 814 112 532 691 164 145 966 6 129 427 

8 480 321 046 695 642 811 732 188802 20 030 203 

TABLE 2 

No. A B C D 

1 7 239 227 157 
2 248 2 797 2 524 2 131 

3 3 080 39 789 30 348 35 885 
4 21 708 1 102 237 1 047 672 721 699 

5 732 965 11 610 623 11 589 385 3 395 261 
6 4 925 561 37 899 133 37 834 817 10 984 277 
7 524 937 467 3 830 530 437 3 823 811 431 1 121 601 087 

8 7 493 624 732 2 184 895 107 7 507 106 424 432 984 899 

In the case of Swinnerton-Dyer's method we keep the transformation formulas 

(46), but replace (48) by the following ones: 

(52) q' = qx + vy, s' = sx + uy. 

Substituting these in (49) and simplifying by x and y, we obtain a quadratic equation 
in x and y, i.e. 

(53) (p3V + 3pq2V - r3u - 3rs2u)x2 + 3(pqv2 - rsU2)Xy + (pV3 - rU3)y2 0. 

This can further be reduced by giving u and v values that make the coefficient of x2 

zero, namely 

(54) u =p(p2 + 3q2), v = r(r2 + 3s2). 

Thus, from (53), 

y/x = -3(pqv2 - rsu2)/ (pV3 -ru3), 
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whence, after substitutions and simplifications, 

px = r2(r2 + 3s2)3 _ p2(p2 + 3q2)3 

pY = -3qr(r2 + 3s2)2 _ps(p2 + 3q2)2 

with p denoting a proportionality factor. 
Substituting the values (55) and (54) in (52), we obtain the variables of the new 

solution as 9th degree functions of the variables of the initial solution. Unlike 

Lander's method, here the relationship between the original and the new solution is 

not symmetric. However, the number of derived solutions obtainable from a 

nontrivial solution is also eight, since different sign-combinations and/or different 

orders of A, B, C, D (see Elementary transformations, Section 2) lead to different 

solutions. 
Despite this prolific character, the method is of little use in practice, unless we do 

not mind obtaining solutions in big numbers. E.g. starting from (A, B, C, D) 
(-7,239,227,157), (a form of Solution 2), we obtain 

A' = 96 781 561 849, B' = -22 312 231 691, 
C' = -57 072 919 679, D' = 93 787 787 597 

as new solution. The sudden increase in the order of magnitude of new solutions is 

due to the 9th degree expressions mentioned above. 
The perfect cube method can be applied only in the special case when for the initial 

solution the ratio p/r is the cube of a rational number, u/v. Then the coefficient of 

y2 in (53) disappears and thus 

x/y = -3(pqV2 - rsu2)/[pv(p2 + 3q2) - ru(r2 + 3s2)], 

whence, after simplifications, 

(56) px = -3uv(uq - vs), py = u2(p2 + 3q2) - v2(r2 + 3s2). 

Substituting x and y in (46) and (52), we obtain a new solution. 
As an example, let us start from the semisolution, 

(p, q, r, s) = (u4t, v6, uv3t, uv(u4 -v4)) 

where t2 =u4 - 2v4 (a variant of semisolution (17)). Since p/r = u3/v3, the meth- 
od can be applied. Thus, by (56), px = 3u2v3t2 and py = u2t2(u8 - 3u4v4 - v8). 

Letting p = u 2t3, from (46) and (52) we obtain for the new variables: 

(57) p' = 3u4v3, q' = vt(u4-v4), r' = 3uv6, s' = ut(u4+ 2v4). 

This new solution represents, of course, also a semisolution with the same quartic 

equation. Substituting (u, v, t) = (3, 2, 7), the result is Solution 12. 
We wish to remark that Euler's well-known 7th degree parametric solution can 

also be deduced this way. For the initial solution we choose the trivial solution 

(p, q, r, s) = (u3, v3, v3, u3) and have, by (56), 

px = 3u2v2(u2 - v2), py = (U2 - v2)(u6 - 2u4v2 - 2U2V4 + V6). 

Letting p = u2 - v2, from (46) and (52) we obtain 

p' = 3u5v2, q' v(u6-2u4v2 + u2v4 + v6) 

r' = 3u2v5, s U (U6 + U4V2 - 2U2V4 + V6) 

which is a variant of Euler's solution. 
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Finally we discuss the two-solution method. We denote the known solutions of (5) 

by (pi, q,, r,, s) and (P2, q2, r2, S2), and assume that 

(58) p, Ir, = p2/r2 = y = const. 

The variables of the new solution are set as 

(59) p' =pIx + P2Y, q' = q1x + q2y, r' = r,x + r2y, s' = s,x + s2Y. 

Since by (58) p'/r' p pl/r1 = P2/r2, the equation (49) reduces to a cubic equation in 
x and y, namely 

p1(q,x + q2y)[(pix +P2Y) + (q1x + q2Y)2] 

-r1(s1x + s2y)[(rIx + r2y)2 + (sIX +- s2y)2] = 0. 

In this equation the coefficients of x3 and y3 are equal to zero (because (p,, qI, r,, s 

and (P2, q2, r2, S2) satisfy (5)), and the ratio x/y can thus be readily computed: 

0 px =p (qp + 2pp2q2 -+ 3qq 2) - r,(s1r22 + 2r1r2s2 + 3s sS2), 

P2 + 2p1p2q1 + 3q 2q2) + r (s2rl 2+ 2r1r2s1 + 3S s2)S 

Substituting x and y in (59), the variables of the new solution are obtained as 5th 

degree functions of the initial variables. The relationship between the two initial 

solutions and the derived solution, however, is quite symmetric, as is evident from 

(59). That means that by choosing e.g. (p,, q,, r,, s) and (p', q', r', s') as initial 

solutions, (P2, q2, r2, S2) is obtained as a derived solution. 

It should further be noted that from any two solutions satisfying (58) there can 

actually be obtained one more solution by this method. For this we change the signs 

of P2 and r2 in (59) and (60). 
As a numerical example, we mention the computation of Solution 98 by this 

method, starting from 

(pi, q,, r,, si) = (4563, 1409, 845, 5535) 

(obtained from a form of Solution 13) and 

(P2, q2, r2, S2) = (-1053, 1714, -195, 3342) 

(obtained from a form of Solution 15), for which p I/r, = P2/r2 = 27/5. The other 

solution, computed by using 

( P2' q2, r2, S2) = (1053, 1714, 195, 3342), 

is the following: 

(A, B, C, D) = (13721986, 37753977, 34224263, -28875042). 

The two-solution method includes, as a special case, the method of Lander. To 

show this, we choose for initial solutions a known solution, (pi, q,, r,, Si) = 

(p, q, r, s), and an associated trivial solution, (P2, q2, r2, S2) (p, r, r, p). Sub- 

stituting these in (60), for the ratio x/(x + y) we have 

(rs3 -pq3 + 2rp3 - 2pr3 + 3pqr2 - 3rsp2)/[p(q - r)3 - r(s -p)3]. 

Hence, in view of (50) and (51), we are back at the method of Lander. The 

two-solution method can thus be regarded as a generalization of Lander's method. 
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In all four methods discussed in this section we have p/r = const, and this same 
condition is satisfied also by the semisolution (11)-(12). In fact, all derived solutions 
can also be obtained from the semisolution formulas by using different techniques to 
solve the quartic equation (12). For instance, when we use the discriminant-form, 

(61) [g2U2 + (f2 + g2)uv +f2V2]2 

-[g2(U2 + UV + V2) + ff2V2][g2U2 +-f2(U2 + UV + V2)], 

of the quartic in (12) to set up a chain-generating equation, the resulting solutions of 
Eq. (1) are identical to those obtainable by Lander's method. 

9. Parameter Transformations. In the context of parameter transformations by 
parameter we mean intrinsic parameters, such as the integral-valued solutions u, v, t 
of quartic Diophantine equations, t2 = Q(u, v), with u and v having no common 
prime factors. The term "intrinsic" is used to convey their characteristic behavior 
and to distinguish them from the "free" parameters, not subject to any constraints. 

We arrive at the concept of intrinsic parameters through "homogenization". E.g. 
instead of considering the problem of finding the rational points P(x, y) on a 
quartic (or cubic when eo = 0) elliptic curve 

y2 = eox4 + ex3 +e2x2 e3x e4Q(x, 1), 

we apply the substitutions, x = u/v, y = t/v2, and consider the equivalent problem 
of finding integral-valued solutions of t2 = Q(u, v). The numerators and denomina- 
tors, u and v, thus divorced from each other, that is liberated from being formal 
parts of a fraction, will then behave as independent entities in the course of further 
calculations. For example, they will transform independently of each other. 

Theoretically, all quartic and cubic Diophantine equations, which can also be 
looked upon as functional equations satisfied by certain elliptic functions, have their 
own systems of intrinsic parameters. Due to the large variety of functional equations 
between elliptic functions, the number of possible parameters is also large. For Eq. 
(1) alone the number of parameters that are more significant is over 50. 

When applying a parameter transformation, some parameters take on new values 
while others remain invariant. Examples of ratios (in the case of Eq. (1)) whose 
values may remain invariant are as follows: 

II - (C + A)/ (B + D), I2 = (C2 + A2)/ (B2 + D2), 

I3 = (C2 + A2)/ (B2 - D2). 

I4= (A2- B2 + C2 - D2)/(AB - CD), 

15 = (A2 + B2 + C2 + D2)/ (AB - CD), 

I6 = T =(B + C)(B + D)/ (A2 -B2 + C2 + D2), 

I7 = I4 (B - D)/ (A - B +- C + D). 

The transformations can be characterized and classified according to which of these 
and other ratios remain invariant. 

We shall call a transformation dual, if the transformation formulas are symmetric 
in terms of the old and new values of transforming parameters. Of the presently 



650 AUREL J. ZAJTA 

known transformations only two types are dual, but the methods based on these two 
supply the largest number of new solutions in relatively small integers. 

The Simple Dual Transformation (SD) is characterized by having two invariants of 
type I, and four invariants of type I6. As a method, it is equivalent to the method of 
Lander, thus in general it results in the same eight new solutions. 

The Composite Dual Transformation (CD) has 16 = T (or any of the other 15 
similar expressions) as its main invariant. A further invariant is I7 or a similarly built 
expression. When using it as method, it is more prolific than the SD, since the 
number of new solutions obtainable from a nontrivial solution is equal to 32. If the 
method is applied to one of the derived solutions (and this itself is nontrivial), then 
of the 32 newer solutions one is identical to the solution used at the outset. 

Invariably, all methods of solving Eq. (1), which use one known solution to derive 
another, imply also a simultaneous transformation of parameters. However, when we 
talk about parameter transformations as methods, we mean carrying out the computa- 
tions in terms of the parameters. This means a reduction of computational efforts, 
since the parameters are in general numerically smaller than the original variables 
A, B, C, D orp, q, r, s. 

The dual transformations were discovered by the author in the years 1973-1974. 
Since then they have been used with success, as witnessed by the great number of 
solutions marked by SD or CD in Table 3. Unfortunately, lack of space does not 
permit to present here a more detailed account of them. 

However, there exist equivalent methods that can readily be defined. For the SD 
this is Lander's method, already mentioned (see Section 8), or the semisolution 
method using ( 1), (12) and discriminant-form (61). The F-solution (30)-(34) 
provides methods equivalent to SD or to CD. More particularly, when (35) or (36) 
are used to form chain-generating equations, the results are methods equivalent to 
SD, and when (37) is used, we have a method equivalent to CD. Accordingly, the 
initial and the derived solutions, (Solutions 3 and 41), of the numerical example of 
Section 7 are composite dual transforms of each other. 

10. Parametric Solutions. Many numerical solutions can be obtained from for- 
mulas of two-parameter solutions. The simplest set of formulas, denoted E(u, v), is 
the following: 

A = A(u, v) = u7 + -IV2 - 2u3v4 - 3u2v5 + uv6 

or, giving only the coefficients, 

A = (1,0,1,O,-2,-3,1,0), 

B = A(v,-u) = (0, 1, 3, -2, 1, 0,1), 

(62) ~~~~C A A(u, I-v) =(1, 0, 1, 0, -2, 3, 1, 0), 

D =A(v, u) (0,1,-3,-2,0, l,0, 1). 

These find their origin in Euler [2], but in their present form are due to Gerardin 
[12]. 

In contrast to the intrinsic parameters, the parameters u, v of two-parameter 
formulas are without any constraints. However, to avoid obvious common factors in 
the values of A, B, C, D, we choose for u and v integers that are relatively prime. 
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The modern way of computing sets of two-parameter solutions is by applying one 
of the existing parameter transformation methods to an already known parametric 
solution. E.g. E(u, v) can be derived by applying the simple dual transformation to 
the trivial solution (A, B, C, D) = (u, v, u, -v). Similarly, by applying SD to E(u, v), 
four new sets of parametric solutions are obtained [18], [19]. Including CD in the 
process will result in further sets of solutions. Of the rich variety of solutions found 
in this way we cite below the two simplest ones, denoted P,(u, v) and P2(u, v). They 
are of 11th and 13th degree, respectively. 

(A = (-1, - 1 ,4,17, 33,49, 58, 52, 32, 12,2,0), 

B = (1,4,8,7,5,17,44,64,58,34,12,2), 
(63) {C = (1,3,8,13,9, -136 -4,8 -64, -58, -34, -12, -2), 

D = (1, 2, 2, 7, 27,59,78,66,36,12,2,0). 

fA = (1,3,10,22,44,67,88,95,84,58,30,10,2,0), 

(64) B = (0,0,3,9,24,45,72,91,94,80,54,28,10,2), 
C = (I1,3,10,22,40.,63.,82.,95.,94.,80.,54.,28.,10.,2)., 
D = (0,2,5,15,28,47,64,73,66,48,26,10,2,0). 

Some of the simplest numerical solutions are special instances of these parametric 
solutions. E.g. Solution 3 can be obtained as P1(l, 1) as well as P9(1, 1), Solution 2 as 
P1(1, -2) and Solution 4 as P,(2, -1). 

Obviously, the number of numerical solutions obtainable from two-parameter 
formulas and the number of two-parameter formulas themselves is infinite. How- 
ever, it is not known whether or not every numerical solution of Eq. (1) can be 
represented as a special case of a parametric solution. 

11. The List of Numerical Solutions. In Table 3 we present all known primitive 
and nontrivial solutions of Eq. (1) whose peaks do not exceed 106. Accordingly, the 
list includes the solutions of the LPS lists, too, these occupying the first 46 entries. 

The solutions are listed in their normal forms (see Section 2) and in the increasing 
order of their peaks. For reference purposes they are numbered with serials 1 

through 218. The k th solution in the list will be denoted by Sk. 

In the "Remark" column the abbreviations PT (Pythagorean triplets), SD (Simple 
dual transformation), CD (Composite dual transformation), 2S (Two-solution 
method, see Section 8), SS (Semi-solution method), refer to particular methods by 
which the solutions were obtained. The notation FS(...), with a numerical value 
between the parentheses, refers to F-solutions of the type (41)-(42). The inscribed 
number gives the value of the invariant T. E(u, v), P,(u, v) and P2(u, v) denote, 
respectively, solutions computed from sets of two-parameter formulas given by (62), 
(63) and (64), respectively, with parameter values u and v. 

At some of the first 46 solutions the Remark box is left blank, indicating that 
these solutions would not have been discovered yet without the special computer 
method producing the LPS lists. 

Some interesting finds are also among the solutions. SI 14 has the property that the 
values of A and B have a common factor greater than 1, namely 41. Accordingly, we 
have a numerical solution of the equation 414 (a4 + b4) c4 + d4 with values 
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a = 1447, b = 3271, c = 123497, d = 100807. Further, there are three solutions that 
are linked together by having their common origin in the triple coincidence 

4011684 - 172284 = 415137 4- 2482894 = 4212964 - 2735884, 

or 

44(100292 4- 43074) = 34(1383794 - 827634) = 124(35108 4- 227994). 

Keeping one equation at a time and simplifying by possible common factors, we 
obtain S107, S118 and SI64. The last solution, S164, was discovered by this observa- 
tion. 

TABLE 3Pt 

A list of primitive nontrivial solutions of the equation 

A4 + B4 = C4 + D4 in the range A, B, C, D < 106 

NO A B C n REMARK 

1 134 133 15R 59 F(2,1)hFS(2),FS(6),FS(-1/4),FP(3/4),PT 

2 7 239 227 157 PI(1,-2),FS(2),FS(-4/25),PT 

3 256 257 292 193 PI(1,1 ),P2(1,l),SD OF S2,FS(2), 

FS(-4/25),PT 

4 298 497 502 271 P(20,-I),FS(-1/4),;F5(6/25),PT 

5 514 359 542 103 SS,PT 

6 222 631 558 503 S5,FS(_6/25),PT 

7 76 1203 1176 653 E(391),FS(6),Ft(12),FS(_2/9),FS(4/9), 

PT 

8 878 13S1 1342 997 PT 

9 1324 2189 1784 1997 PT 

t0 1042 2461 2026 2141 SS,PT 

11 248 2797 2524 2131 P2(1,,2)OSD OF S3,FS(2),PT 

12 1034 2949 2854 1797 SS,PT 

13 2986 2345 3190 157'? p2(2,-1),SD OF $4#FS(-1/4),pT 

14 2338 3351 3494 1623 E(3,2),F'S(3/4) 

15 661 3537 3147 2767 PT 

16 3364 4849 4288 4303 SD OF S2,FS(2),PT 

17 2694 4883 3966 4397 F'S(40/9) 

ttIn the Remark column the notation "S" followed by a number should read with the number in 
subscript position. Thus e.g. the notation "S22" means "S22", etc. 
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TABLE 3 (continued) 

18 6(14 50S3 sa483 1283 Pr 

19 4840 5461 6140 2027 PT 

20 274 6619 5942 5093 PT 

21 3070 67o0 6730 2707 SD OF' 54,FS(-1/4),FS(-6/25),PT 

22 498 6761 5222 6057 FS(6/25),PT 

23 1259 7557 7269 4661 PT 

24 6336 7037 '1604 5181 SS 

25 7432 7559 8912 1651 FS(a4/25),PT 

26 6262 8961 7234 8511 SS 

27 6842 8409 90i18 4903 P1(2,1),FS(3/4),PT 

28 5098 9043 674.2 8531 Vl(2,-),FFS(3,4),PT 

29 635 9109 9065 3391 FS(234/25),PT 

30 1104 9253 8972 5403 FS(-14/225),PT 

31 1142 9289 4946 9097 PT 

32 4408 9197 9316 173 

33 5452 9733 7528 9029 CD OF S22,FS(b/25),PT 

34 7054 9527 10142 3401 

35 5277 10409 9517 8103 

36 8332 9533 10652 3779 85 

37 3644 11515 5960 11333 FS(-b/49),FS(-66/1225),PT 

38 2903 12231 10381 10203 SD OF Si 

39 3550 12213 12234 1525 FS(-9/10o),PT 

40 1149 12653 12167 7809 SD OF S17,FS(40/9) 

41 12772 9153 13472 5121 SD OF S19,CD OF S3 

42 5526 13751 11022 12169 

43 6470 14421 14190 8171 SS 

44 6496 14643 13268 11379 

45 261 148b1 14461 8427 SD OF Sb,FS(mb/25) 

46 581 15109 14723 8461 SD OF S36 

47 6101 15265 13085 12743 51 OF S25,FS(-4/25) 

48 15594 6485 15642 5675 PT 

49 4441 15869 14767 11291 PT 

50 7168 16293 15188 11R77 FS(10/9)tPT 

51 691 16377 15663 10411 PT 

52 155b6 13297 16886 9649 PT 
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TABLE 3 (continued) 

53 17236 6673 17332 529 E(4,1) 

54 4058 20117 17554 16213 PT 

55 4091 22131 21027 14539 SD OF S48,PT 

56 21526 19447 23702 14321 FS(171/100),FS(138/2H9),PT 

57 6502 24207 9738 24079 PT 

58 19218 25451 27294 5653 FS(-30/289),PT 

59 758 27407 27374 7217 SU OF S39,FS(-9/100) 

60 15393 27785 25355 22107 FS(40/9),PT 

61 2558 28061 28058 4189 FS(56),PT 

62 12787 30411 26511 24959 PT 

63 5468 31731 25596 27661 Si OF S15 

64 6484 32187 29812 23109 E(4,v3) 

65 4535 32241 32237 5565 SD OF S78 

66 7713 36977 34107 2b851 SU UF S20,PT 

67 13348 37721 37868 167 PT 

68 25489 38281 36001 30713 CD OF S3,PT 

69 21676 38939 39448 17701 FS(-6/25),PT 

70 3080 39789 30348 35885 SD OF S3,PT 

71 11888 40465 40540 2513 E(5,1),FS(-4/25) 

72 28544 41591 43676 11447 SI OF S9,PT 

73 1499 44203 43007 25097 CD OF S3,FS(-4/25),FS(-72/289),PT 

74 15052 45453 41324 34419 PT 

75 18292 45883 46136 10757 P1t1,-3),FS(6),PT 

76 41524 43847 49792 26887 PT 

'77 31494 53935 35710 52881 F(5,3) 

78 45942 55247 53742 48271 PT 

79 28997 60369 59777 33237 P1(1,2),FS(6),PT 

80 5966 61583 61418 17743 PT 

81 38078 60763 b2206 29531 P2(2,1),SD OF S28,FS(3/4) 

82 23841 64369 60033 46063 SD OF $8 

83 61528 45471 65196 27103 FS(b) 

84 60328 56941 66308 45869 PT 

85 33050 68303 46130 65521 PT 

86 3698 72121 70594 3-8599 PT 

87 1661 73059 71807 37143 So UF S10 
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TABLE 3 (continued) 

88 11884 73833 37404 72599 SD OF S36 

89 5728 74253 54212 68301 CO OF S8,PT 

90 6464 74411 54044 68587 CD OF S89,PT 

91 22813 78021 71089 58593 SD OF S31 

92 8427 80399 79419 37631 PT 

93 14493 81539 80623 37593 CD OF S6,FS(-6/25),PT 

94 37996 81885 54520 78621 sn OF S50,FS(10/9),PT 

95 23359 83771 74167 66269 PT 

9b 39393 87797 85173 55073 PT 

97 15322 89345 59679 84545 E(S,2) 

9$ 37686 9o017 81622 69474 25 FROM S13 AND S15 

99 27879 90829 99841 43307 P1(3,-2),FS("2/9),PT 

100 89236 58231 93032 2359 PT 

101 37879 94543 92213 55733 SU OF S42 

102 17006 97681 29882 97489 PT 

103 1788 101819 60752 98427 SD OF S33,FS(6/25),PT 

104 47139 1o3543 98o49 72389 PT 

1OS 57832 103809 83004 94529 PI(3,-1),FS(-2,9),PT 

106 13614 104909 57582 102451 SD OF S42 

107 100292 68397 105324 4307 P'r 

t38 5444 106931 78952 97907 Si) OF S89,PT 

109 99978 761a05 107478 27275 PT 

110 29286 117473 111838 ib616 S:) OF S56,FS(171/100),FS(138/289) 

111 12840 12b253 72960 122579 PT 

112 39717 126659 109213 104133 PT 

113 110758 108b19 127034 73547 PT 

114 59327 134111 123497 100807 PT 

115 34813 134413 114613 111631 SD OF S1,FS(2) 

116 122664 112507 139356 55483 S) UF S205 

117 3800 140047 49328 139505 PT 

114 91196 138379 140432 62703 PT 

119 125844 135829 143844 113003 PT 

120 8052 144401 135504 99409 CD OF S23,PT 

121 72274 144733 73766 144541 CD OF S22,PT 

122 91508 147941 99848 145627 PT 
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TABLE 3 (continued) 

123 78804 153863 129644 133383 PT 

124 151394 92839 154522 73703 CD OF 51,SD) OF S27,,FS(3/4),PT 

125 157582 85491 158642 77811 F,5(3/4) 

126 28580 160133 159544 56635 SD OF S181 

127 126168 164705 131760 161951 PT 

128 113690 156959 166314 54i55 CD OF S50,FS(1O/9) 

129 125516 16t405 174484 7805 E(S, 4) 

130 29259 175o33 156241 136131 PT 

131 18657 178559 178509 33499 PT 

132 171266 148247 191218 50327 Pr 

133 48478 198665 168254 166135 F6-(.-9/jlO),?PT 

134 6758 200635 36350 200581 FS(56),PT 

135. 190444 207971 191512 207139 PT 

136 153664 203349 213672t 116309 PT 

137 219256 47769 219312 23641 Si, OF 5147,F'S(42) 

138 88198 226063 138394 2i9i21 Co UF 5S4,PT 

139 22125 228901 228825 44393 PT 

140 81416 235201 233212 109951 F5(39b/625),PT 

141 248034 134611 252974 64$51 F5(.560/7569),PT 

142 53797 253163 249751 122527 SD UF SIt 

143 112304 255295 253172 131455 P2(1,2),FS(6),SD OF S75 

144 243690 196343 255718 164745 PT 

145 32458 261143 88046 260311 PT 

146 72489 2o6063 230099 217443 FS(10/9) 

147 266116 52361 266192 36553 FS(42),PT 

148 95248 282751 277724 151361 SD UF S37,FS(-6/49);,S(-66b/1225) 

149 287178 67429 2813v4 20773 E(6, 1) 

t50 283516 226531 3 )08 Rz 2 45b83j PT 

151 1b64h8 331047 295116 2o8441 Pr 

152 30519 3348,43 32'183 162n69 SL OF S83JF5(b) 

153 136321 342041 329619 220803 CD OF 5120,PT 

154 217863 348197 315957 289111 PT 

155 240394 332259 349582 155997 Sf) OF S8,PT 

156 146514 354041 350254 183033 P2(2,-3),SD OF S27,FS(3/4) 

157 177070 356307 339310 251501 5V OF S95 
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TABLE 3 (continued) 

159 130841 357787 356663 149387 SD OF 55 

159 143066 362975 358090 191137 SO UF 535 

160 33058 374989 338918 284813 SO OF SS 

161 94108 378507 333384 301387 Si) UF 52 

lb2 238231 379915 339231 323605 PT 

1b3 379674 157775 382090 96207 P2(1,-3),SD OF S79,FS(6) 

164 17228 415137 401168 248289 TRIPLE COINCIDENCE (SkE SLC. 11) 

165 31238 419909 419762 81659 E(7, 1) 

166 19687 421653 410253 239359 PT 

167 389242 381583 441718 279311 SD OF S22,FS(6/25),PT 

168 292314 454681 33S1hi8 4j9i47 Si) OF S18 

169 348208 476025 396792 450695 PT 

170 345588 444311 480032 108201 E(7,3) 

171 482944 106163 483172 70157 PT 

172 418394 405359 487906 176687 SP) OF S73,FS(-4/25)fFS(-72/289) 

173 485288 378327 500508 338921 50 OF S135 

174 59870 515353 175754 S13o25 CD OF 531,15 OF S102 

175 142934 519249 4870i2 300303 P2(30-1)?SD OF S99,F'S(-2/9) 

176 452420 434539 525152 14bY65 CL) OF SlFs(6) 

177 149317 533957 49b473 376b71 PT 

178 504474 364829 535658 111459 CD OF S3,fD Of 6b8 

179 119014 539943 470878 435687 SO UF S12 

180 490250 500971 54b278 417515 CD OF S13,PT 

181 258176 547461 554092 57o69 PT 

182 227697 558305 531145 377271 PT 

183 346622 565325 564730 349171 PT 

184 21103 569609 569459 102653 SD OF S6l,FS(56) 

t85 50131 571037 57O971 $6299 CD UF S61,SD OF S134,FS(56) 

186 317810 622241 627862 261985 SD OF 5b,F5(-b/25) 

187 37945 631909 b30563 191905 50 OP' S9 

188 358894 633457 537338 554063 PT 

189 34468 b34003 278128 628051 PT 

190 214319 635423 623861 341849 CD) OF S67,PT 

191 196179 639311 599911 445397 P1(31-4)IFS(4/9) 

192 426592 616049 640612 305713 PT 
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TABLE 3 (continued) 

193 3119 641471 567683 505829 FS(2) 

194 507984 589471 651848 81249 P1(3v1),$F(4/9) 

195 424494 674693 5356)4 629819 FS(-9/100) 

196 14586 683105 635586 483295 E(6r5) 

197 558182 711809 590654 694079 CD OF S2,PT 

198 651215 727017 720115 660483 PT 

199 232484 739885 520640 691859 E(7,5) 

200 465236 747633 614656 682161 PT 

201 b89308 564749 756424 100019 SD OnF Sl,FS(2) 

202 421689 763169 726783 550489 Si) UF S4,,FS(-6/25) 

203 751414 399079 766018 38017 SD) OF S49 

204 2367446 774887 778382 328807 50 OF S48 

205 305123 785947 7667n3 459407 PT 

206 16409 826669 804679 467443 SD OF S5 

207 532244 827969 768896 869313 Pr 

20h 842204 438241 850912 354271 PT 

209 219380 858201 840360 463207 SI) UF S2 

210 244553 H64709 730471 726091 CO OF S13,S) OF S138 

211 329626 867849 538734 838711 SD OF St0,Fb(40/9) 

212 84q766 518255 869338 16i1bh SD OF S2 

213 69892 875477 241352 874219 PT 

214 3106 884947 400262 875539 E(7,2) 

215 505481 905509 874987 623833 S0 OPF 54 

216 897898 465669 906222 387653 SI) OF S2R#FS(3/4) 

217 168824 909613 8770o4 553453 PT 

218 230394 925087 769o86 787873 FS(-bU/361),PT 
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