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Factors of Fermat Numbers 
and Large Primes of the Form k- 2"1 + 1 

By Wilfrid Keller 

Abstract. A new factor is given for each of the Fermat numbers F52, F931, F6835, and F9448. In 
addition, a factor of F75 discovered by Gary Gostin is presented. The current status for all F, 
is shown in a table. Primes of the form k 2" + 1, k odd, are listed for 31 < k : 149, 
1500 < ii ? 4000, and for 151 - k - 199, 1000 < ii < 4000. Some primes for even larger 
values of ii are included, the largest one being 5 213165 + 1. Also, a survey of several related 
questions is given. In particular, values of k such that k 2" + I is composite for every ii are 
considered, as well as odd values of h such that 3h 2" _1 never yields a twin prime pair. 

1. Introduction. The search for factors of Fermat numbers F,, = 22" + 1 has been 
unusually intense in the last few years. Various investigators succeeded in discover- 
ing new factors. A summary of results obtained since 1978 was given recently by 
Gostin and McLaughlin [10]. Actually, something more had been accomplished, for 
we had been gathering some additional material during that same period of time. 
Thus, the following three new factors, 

1985 * 2933 + Il F931, 

19 * 26838 + I IF6835, 

g-9450 + I F 19 . 295 +iF9448, 

had already been found in 1980, 1978, and 1980, respectively. While this paper was 
being revised for the second time, we found another new factor, 

21626655 * 254 + I IF52 

the second one known for that Fermat number. Furthermore, we are for the first 
time presenting the factor 

3447431 * 27 + I I F75 

discovered by Gary Gostin, and we are pleased at having been expressly authorized 
to do so. 

In the following, we shall give a full account of our investigation, which has 
gradually extended to several related questions. We shall also report on some further 
computational efforts in searching for factors of Fermat numbers. 

Generally, two different ways of organizing that search are in use, both relying on 
the well-known fact that any factor of F,, has the form k * 2' + 1, where n - m + 2 
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and k is odd. Throughout this paper, let k always denote an odd integer. The two 
ways are: 

Trial division. For fixed n, look for all k less than some search limit Ln to see if 
k * 2n + 1 divides some Fm, m < n - 2. In [12,p. 109], it was described how this is 
conveniently done. 

Tabulation of primes. For fixed k, list all primes of the form k * 2" + 1 for n up to 
some limit Nk. Then, for each prime k 2n + 1 found, look to see if it divides some 
Fm, m < n - 2. For reference, see [20, p. 673] and [8, p. 1419]. 

In both cases, the size of the quantities involved in the computation is essentially 
that of the particular number tested as a possible factor. 

Trial division is best suited if the index m of the numbers Fm to be investigated is 
small compared with the limit Ln on k. Most recently this method has successfully 
been used for values n < 420 by Gostin and McLaughlin, and by Suyama, see [10], 
[23]. On the other hand, tabulation of primes of the form k * 2n + 1 becomes 
attractive if large limits Nk on n are envisaged. The primes in a sequence {k * 2n + 1 } 
for fixed k are of interest in their own right, due to the irregularity and increasing 
sparseness of primes in such a sequence. The first substantial table was presented by 
Robinson [20] in 1958. His table has successively been extended by Matthew and 
Williams [17], Baillie [3], and Cormack and Williams [8]. A further extension was 
announced by Atkin and Rickert [2]. In each case, factors of Fermat numbers Fm 
were discovered for m - 255. We have been following both the outlined ways in our 
search, as will be described in subsequent sections. 

It should be pointed out that occasionally other methods of factoring have been 
used. The celebrated factorizations of F7 and F8 have been achieved through the 
continued fraction algorithm of Morrison and Brillhart [18], in the firrst case, and the 
Monte Carlo algorithm of Brent and Pollard [6], in the latter. However, such 
methods certainly do not apply unless the index m of Fm is quite small, since they 
demand an effective handling of numbers whose size is comparable to that of Fm 
itself. 

2. Factors of Fermat Numbers. Including the five new factors given here, there are 
now 90 known prime factors k 2n + 1 of 75 different Fermat numbers Fm. The 
difference n-rm being always at least 2, it actually takes the values 2,3,4,5,6,7,8 
with frequencies 47, 26, 11, 1, 2, 2, 1, respectively. The current status of the investiga- 
tion of Fermat numbers was last displayed in 1975 [12], so it seems appropriate to 
give an updated version of the status list in Table 1. A complete list of the factors 
themselves may be assembled from Tables 3 and 4 of [24] (note the correction given 
in [10, p. 648]), Table 3 of [10], and the above Introduction. 

Most of the factors k - 2n + 1 are 'small' in that k < 2". Those factors are easily 
proved prime by Proth's theorem (see [20, p. 673]), while 'succinct' proofs for the 12 
factors having k > 2n require some additional information about k, as it was given 
by Brent [5] for 7 of these. For the other 5, corresponding to Fm with m = 10, 10, 
12, 13, 17, such proofs might be added without difficulty. 

None of the known prime factors p gives rise to a square factor p2 of a Fermat 
number Fm. For the major part of them, this has been shown in [10]. We completed 
the test for the remaining factors 

p = 5 - 2"' + 1, 29 . 24727 + 1, 17 . 26539 + 1, 
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and the five new ones given above. Except for the factors of F52, F75, and F9448, these 
primes were independently tested by Philip McLaughlin (personal communication). 
In each case, the computed residue R = Fm mod p2 correctly proved to be divisible 
byp. 

The square factors of Fermat numbers have recently been characterized by 
Ribenboim [19] as follows: If the prime k - 2' + 1 divides some F, then p2 also is a 

factor of Fm if and only if p satisfies the Wieferich congruence 2P-' =- 1 (mod p2); 

cf. [16]. Another necessary condition for p2 to divide F,, is kP-' 1 (mod p2). 

3. The Numbers of Ferentinou-Nicolacopoulou. Let a be an integer, a > 2. The 
numbers Fa, = aa" + 1, which generalize the Fermat numbers Fm = F2 m' were 
introduced by Ferentinou-Nicolacopoulou in 1963 and, more recently, some divisi- 
bility properties for them have been established by Ribenboim [19]. If a is restricted 
to the even integers, then the numbers Fa m m > 1, show a structure very similar to 
that of Fermat numbers. First, for a fixed, the numbers Fa m are pairwise relatively 
prime. Secondly, any prime factor p of Fa m has the form p = k * 2' + 1, where 
n > m; more precisely, if a = b 2c, b odd, then n 2 cm + 1. Finally, if the prime p 
divides some Faim, then p2 also is a factor of Fa, m if and only if p satisfies the 
congruence aP-1 =1 (mod p2). 

Let us recall the elementary fact which implies that 2N + 1 cannot be a prime 
unless N= 2m: If N has an odd factor u > 1, N = uv, and if c > 2, then cv + 1 

TABLE 1 

Status list 

Values of m Character of F m 

0, 1, 2, 3, 4 Prime 

5, 6, 7, 8 Composite and completely factored 

12 Four prime factors known 

10, 11, 19, 30, 36, 38, 52, 150 Two prime factors known 

9* 13*, 15, 16, 17, 18, 21, 23, 25, 26, Only one prime factor known 

27, 29, 32, 39, 42, 55, 58, 62, 63, 66, 

71, 73, 75, 77, 81, 91, 93, 99, 117, 

125, 144, 147, 201, 207, 215, 226, 228, 

250, 255, 267, 268, 284, 287, 298, 316, 

329, 416, 452, 544, 556, 692, 744, 931, 

1551, 1945, 2023, 2456, 3310, 4724, 

6537, 6835, 9448 

14 Composite but no factor known 

20, 22, 24, 28, 31, 33, 34, 35, etc. Character unknown 

*Cofactor known to be composite 



664 WILFRID KELLER 

properly divides cN + 1 (cf. [13, Theorem 17]). With this in mind, we distinguish 
three cases regarding the index a of the numbers Fa m: 

(i) If a = uv with an odd u > 1, then aam/ u + l is a proper factor of F m. 
(ii) If a = 2Uv with an odd u > 1, then 2va + 1 is a proper factor of Fa m. 
(iii) If a = 22, then Fam is a Fermat number Fs, where s r + m- 2r. 
As a consequence, Faim can only be a prime if it is a Fermat number. 
It seemed that no effective factorization of numbers Fa m had yet been attempted. 

So we examined a wide range of these numbers numerically. In determining many 
factors, we were led to the following observations. 

Square factors of Fa m are readily found for m = 1. Thus, 2921 F141, (5 37)21 F181, 
1721 F381, 1721 F401, 1321 F701, etc. 

Apparently, every prime p = k- 2' + 1 divides F2km for some m < n, provided n 

is not too small (in fact, no counterexample was found for n > 9). We are indebted 
to the referee for explaining this as follows: By Fermat's theorem we have (2k)k 2 

-1 (mod p). Hence, unless n is very small, we have (2k)k 2m_ -l (mod p) for 
some m slightly smaller than n. Therefore p divides (2k )k 2m + 1. If m > 1, the latter 
is a proper factor of F2k m because (2k)m/(k - 2m) = km-' is odd and 2k - 2. If, 
instead, m = 1, we at once have p I F2k,1 

Consider, for instance, the known primes 3 2n + 1, which occur for 

n = 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 
353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912 

(see [20], [17], [3], [8]). These primes divide the numbers F6 m for 

m 0, 1, 1,4,6, 10, 16, 27, 34, 38, 64, 185, 195, 203, 273, 
346, 406, 436, 532, 2202, 2812, 3165, 3185, 3909, 

respectively. The prime 3 21 + 1 = F60 = 7 should be discarded because m was 

supposed to be positive. Note, however, that 

F61 = 46657 = (3 . 22 + 1) . (3 25 + 1) - 37. 

Numerical evidence suggests something more general: If p = k * 2n + 1, k odd, is 
a prime number, and if n is not too small, then for every r = 1,3,5, . . . which is not 
a multiple of p there is an mr < n such that p I F2kr m. The explanation that was 
given for r =1 immediately extends to this observation, since by Fermat's theorem 
(2kr)k2 1 (mod p) whenever (2kr, p) = (r, p) 1. Thus p divides infinitely 
many numbers Fai m a even. As a matter of fact, the prime p is a divisor of Fa m for 

many additional values of a. To give an example, the prime 3 - 241 + 1 divides Faimn, 
where ma < 41, for 

a = 2,6*, 12, 16, 18*, 30*, 36, 42*, 46, 54*, 58, 60, 62, 66*, 70,.... 

The values of a of the form 2 - 3 * r corresponding to the above statement are 

marked with an asterisk. 

4. Searching by Trial Division. In our search for factors of Fermat numbers we 

used trial division for all n with 16 < n < 1002, to the limits Kn given in Table 2. All 

factors known to exist in that range were refound, and the new factors of F52 and 

F931 emerged. 
Reporting on the first submitted version of this paper, the referee luckily enabled 

us to join a mutually coordinated action which had already been established between 
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Gary Gostin, Philip McLaughlin, and Hiromi Suyama (the authors of [10] and [23]) 
in order to further extend the search by trial division. With kind permission of the 
named investigators we are presenting in Table 3 the intervals additionally covered 
by them until very recently. That search produced the new factor of F75. The reader 
should be advised that the reported work is still being continued. 

TABLE 2 
Numbers k * 2n + 19 k odd, tested by the author for 1 < k < Kn using trial division 

n Kn n Kn 

1 6-24 232 103-202 105 

25-28 256-n 203-610 2.104 

29-56 227 611-1002 5*103 

57-102 3*10 5 

TABLE 3 

Intervals for k* 2n + 1, k odd, covered recently by other investigators 

n Interval Investigator 

57-82 220 < k < 222 Gostin 

114-134 217 < k < 218 McLaughlin 

136-171 216 < k < 217 McLaughlin 

203-231 max(2 fnf)* < k < 215 McLaughlin 

576-639 1 < k < f * Suyama 

640-707 5*103 < k < fn* Suyama 

f = 21 6-(n mod 8) 
n 

TABLE 4 

Overall search limits for k 2n + 1, k odd, 1 < k < Ln 

n Ln n Ln 

11-14 247-n 135-171 217 

15-24 232 172-202 105 

25-28 256-n 203-231 max(215 fn) 

29-56 227 232-610 max(2.104 ,fn)* 

57-82 222 611-707 max(510 ,fn) 

83-102 220 708-1002 5*103 

103 219 1003-4000 200 

104-134 218 4001-8500 20 

f = 216-(n 
mod 8) 

n 
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The overall search limits Ln for k 2n n 1 resulting from [10] (Table 2 and Note 

added in proof) and our Tables 2 and 3 are put together in Table 4. Also included 

are part of the results obtained for n > 1002, which are completely discussed in the 

next section. 
The varying expression for the limits f = 216 -(n mod 8) encountered in the work of 

Suyama derives from the fact that he used a microcomputer with an 8-bit word. Let 

us briefly consider his proceeding (communicated personally): Setting n = [n/8J 8 

+ nmod8, K= k - 2nmod8, and N= [n/8J, the trial divisor k 2n n 1 might be 

written as k - 2n + 1 = K 256N + 1. Now, if K is allowed to occupy two 8-bit 

words, i.e. K < 216, then K - 256N + 1 is representable by N + 2 words, N - 1 of 

which are zero words. The condition imposed on K just means that k < 216-(nmod8) 

-- fn. As to the convenience of such a representation, cf. Section 8. 

5. Primes of the Form k- 2 n + 1. Of the factors of Fermat numbers we found by 

tabulation of primes, only the given factors of F6835 and F9448 are new. 
Listing primes of the form k - 2n + 1 for fixed k up to a limit Nk, we always tested 

the numbers in question for all n in the interval 1 < n < Nk, thereby confirming 

existing tables. Generally, our limits were Nk= 8500 for 3 < k < 19, Nk= 4000 for 

21 < k < 199, and Nk= 1000 for 201 < k < 1199. In several cases, which are shown 

in Table 6, Nk was taken to be much larger. Those primes with n > 1000 not 

published elsewhere are presented in Tables 5 and 6. (Exception to this is the single 

prime 9 25802 + 1, which already appeared in [2].) The 3964-digit prime 5 - 213165 + 

1 was found on March 25, 1979. Beyond our limits, k = 27 and k = 29 have been 

searched by Cormack and Williams to Nk= 8000 [8]. It should be noticed that, while 

13 - 21? + 1 is a prime, no further prime 13 - 2n + 1 has been found for 1000 < n 

? 17000 (cf. [17], [3], and [8]). 
TABLE 5 

All primes of the form k - 2n + 1 for 31 ? k ? 149, 1500 < n < 4000, 

andfor 151 < k < 199, 1000 < n < 4000 

k Values of n k Values of n 

31 1808, 1944 55 1996, 2744 

33 1630, 3076, 3118 57 1828 

35 2493, 3627 59 2685 

37 1706, 1804, 1904, 2240, 61 3328 

2632, 3104 63 2424, 2478, 3024, 3293 

39 1602, 2211, 3049 65 1631, 1 737, 1859, 1917, 

41 1991 1999, 2353, 3477 

43 2974, 3022, 3528 67 1692, 1782, 1870, 3602 

45 69 2159, 2290, 2306, 2335, 

47 3379 

49 2334 71 2255 

51 1917, 2660, 2967, 3447, 73 1892, 1974, 2210, 3596 

3659 75 1 61 5, 201 7, 2157 

53 1665, 2133, 2765 77 1639 
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TABLE 5 (continued) 

k Values of n k Values of n 

79 1 766, 2162 1 43 

81 1972, 2624, 2829, 3497, 145 1552, 1968 

3945, 3995 147 1731, 2194, 2328, 2568, 

83 2425, 2773, 3253 2915, 3554 

85 2458, 2556, 3638, 3834 149 1599, 1815, 2499, 2995 

87 2324, 2372 151 1124, 1760 

89 1 537, 1 921, 3217 1 53 1001, 1237, 1565, 2665 

91 155 1253, 1301, 2449 

93 1646, 2032, 2066, 2800, 157 1460, 1776 

2816 159 1087, 2478, 3309, 3862 

95 1849, 1987, 3437 161 1453, 3703 

97 2026, 2732, 3880 1 63 1 642 

99 1617, 2025 165 1013, 1407, 1417, 1532, 

101 3767, 3831 1887, 1902, 1993, 2137, 

103 3670 2294, 2381, 2509, 3259 

105 1631, 3063, 3331, 3461, 167 

3619 169 1050, 1470, 1478, 1614, 

107 3087 1970, 2570 

109 1574, 2034 171 1007, 3825, 3837 

111 2344 1 73 

113 1541, 2473, 3461 175 1652, 3254, 3848 

115 3048 177 1032, 1750, 2050, 3980 

117 2656, 2851 179 1511, 1903, 2335, 3063, 

119 2471, 2773 3459, 3623, 3655 

121 1808 181 3560 

123 1677 183 1289, 1616, 1736, 1994, 

125 1631, 1895, 2735, 3475 2344, 3024 

127 2764 185 1187, 1337, 2633, 2993, 

129 2433, 281 7, 3165 3963 

131 2065, 3553 187 1926, 2802 

133 1588, 1652, 1812, 3012, 189 1445, 1590, 1606, 1861, 

3308 2037, 3538, 3730 

135 1523, 1611, 1770, 1923, 191 1249, 1409, 1715, 1995 

2053, 2099, 2242, 2796 193 1052, 1070, 1528, 1804, 

1 37 1979 2568, 291 4, 3712 

139 195 1045, 1270, 1861, 3623 

141 1745, 1805, 2053, 2372, 197 1175, 3047 

3375 199 1302 
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TABLE 6 
Primes of the form k 2n + 1 for n > 4000 

k Range Values of n 

3 4000 < n ' 14000 

5 10000 < n ' 18000 13165 

7 8000 < n 12000 

9 4000 < n 85)0 4842, 5802, 6937, 7967 

11 4000 < n 12000 4543, 10179 

13 4000 < n <17000 

15 4000 < n - 8500 4410, 6804, 7050, 7392 

17 8000 < n ' 18000 

19 4000 < n 12000 4386, 4438, 6838, 7498, 7998, 9450, 11890 

45 4000 < n 7000 6146, 6284, 6359, 6923 

47 4000 < n L 15000 6115 

91 4000 < n 6000 5028, 5536 

139 4000 < n 13000 1 2614 

167 4000 < n 11000 10183 

173 4000 < n 7000 6253 

The sequences { k 2n + 1} corresponding to the values k = 47, 91, 139, 167, 173 
included in Table 6 are those for k < 199 which have the lowest density of primes 
for n < 4000. Below this limit, primes with k = 47 occur only for n = 583, 1483, 
and, likewise, primes occur for k = 91, n = 8, 168, 260, 696, for k = 139, n = 2, 14, 
914, for k = 167, n = 7, 103, 151, 247, and for k = 173, n = 1, 13. In each of these 
cases our search was continued at least until the next prime appeared. Incidentally, 
the highest densities for fixed k < 199 and n ? 4000 are observed for k = 81 (44 
primes), k = 135 (41 primes), and k = 165 (43 primes). An indication of how such 
varying densities of primes come about is given in [3, p. 1333]. 

Among a number of primes obtained for some isolated values of k > 199. only the 
largest one, 271 27780(? +1, seems worth mentioning. 

6. Sierpinski's Problem. As was seen for k = 47, the smallest n for which 
k * 2n + I is prime may be quite large in some cases. But there also exist values of k 
such that k - 2n + I is always composite. For each of the known examples, like 
k = 78557, a covering set of divisors C {p1, P2' ...,PJ is associated with the 
sequence {k - 2n + I }, every term of it being divisible by at least one prime p1 E C 
(see [4]). Obviously, if a sequence {k(- 2" + 1} has the covering set C, then the 

sequences rk, * 2' + I} corresponding to kr = ko + r *PlP2 * A I r - 0, have all 
the same covering set C. 

The nature of possible covering sets has been studied by Stanton [22], who also 
presented some unpublished results of Selfridge and van Rees. Stanton proved that a 
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covering set C of cardinality s < 6 cannot occur, and that for s = 6 the only possible 
covering set is C = {3,5,7, 13, 17,241}. The least k of a sequence {k 2" + 1} 
covered by this set of primes is k = 271129. Generally, for every specified s > 6 only 
a finite number (which might be zero) of 'minimal' covering sets having s primes 
does exist. Selfridge and van Rees found that for s = 7 there are just 20 different 
minimal covering sets. One of these, C {3, 5, 7, 13, 19, 37, 73}, is the unique 
covering set C such that pi ? 73 for all pi E C. This particular set of primes covers 
the sequence {k - 2n + 1} for k = 78557, the smallest known value of k for which 
k * 2n + 1 is always composite. 

Let k* denote the smallest k whichever of that kind. The problem of determining 
k*, first posed by Sierpifnski in 1960 [21], remains unsolved. But it has been known 
for about twenty years that 383 < k* < 78557, and it is believed that in fact 
k* = 78557 (for the history of the problem, refer to [4]). The true lower bound for 
k* has been increased quite recently to 3061 by Baillie, Cormack and Williams [4]. 
Moreover, they listed all 120 values of k < 78557 for which no prime k * 2n + 1 is 
known. They showed that k 21 -+ 1 is composite for all n ? 16000 if k = 3061, for 
all n < 8000 if k assumes one of seven additional values with 3061 < k < 10000, and 
for all n 2000 in the remaining 112 cases. It has since become desirable to 
eliminate as many of these k as possible by searching for corresponding primes 
k - 2n + 1 with n > 2000. This has thoroughly been accomplished by Jaeschke [14] 
for 2000 < n < 3900, who could thus rule out 30 of the former 120 uncertain 
candidates for k*. 

After redoing and corroborating the reported computations of Baillie, Cormack 
and Williams, and Jaeschke, we have been able to amplify the scope of that 
numerical investigation considerably. In Table 7 we give all 21 values of k, 
10000 < k < 78557, for which the least prime k - 2' + 1 has its exponent n in the 
interval 3900 < n ? 8000. We would like to mention here that the two primes 
74221 2 411- + I and 77267 - 2 4159 + I had first been discovered by Gerhard 
Jaeschke (persoiil communlltlllic.ation). 

TABLE 7 
The least prime of the f(rnm k 2" + 1 for some fixed values of k, 10000 < k < 78557 

k n k n k n 

18203 6141 43429 4290 71869 5130 

21167 6095 46159 4790 73189 4278 

23779 5234 47911 5568 73253 6889 

25339 4438 57503 5697 74221 4188 

25861 4848 60829 6398 74959 4274 

32393 4365 65477 5887 77267 4159 

36781 4824 67913 5773 77341 5076 
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We are now left with 69 values of k < 78557 such that no prime of the form 
k - 2n + 1 exists for n ? 8000. They may be drawn from Table 2 of [14] taking into 
account our Table 7. From these 69 values, 24 have been selected to pursue the 
search at least up to n = 12000. Some of these have even been pushed much further. 
The different bounds Bk on n reached are presented in Table 8. It should be 
remarked that for any particular k, all numbers k - 2n + 1 for [Bk/1000J 1000 < 

n < Bk could be dismissed by finding a small factor. Thus, for example, not a single 
number 67607 - 2 n + 1 for 17532 < n < 18170 had to be properly tested for com- 
positeness. 

The sieving procedure we used for 1000 < n < 8000 comprised the computation 
of residues modulo p for all primes p less than a certain limit which varied from 
5 104 to 2 - 106 (the same limits were used for 3 < k < 19; cf. Section 5). Thus, for 
a fixed k, only tk numbers k - 2n + 1 with 1000 < n < 8000 survived our sieving 
procedure, where 22 < tk < 184 for all of the above-mentioned 69 values of k. Table 
8 includes those 21 values of k showing the lowest frequencies tk (in particular, 
t67607 = 22). Besides, we have t3061 156, t5297 = 90, and t5359 = 73. For the purpose 
of comparison, we recorded tk = 729, 300, 755, 851, 447, 327, 1032, 219, 280 for 
k = 3, 5, 7, 9, 11, 13, 15, 17, 19. 

While searching for least primes with n < 8000, n was always advanced at full 
intervals of length 1000, even if a prime appeared. So it could be observed that a 
least prime occurring for large n might nevertheless be closely followed by another 
prime. For instance, 47911 - 2n + 1 is prime for n = 5568, 5652, 52909 - 2n + 1 is 
prime for n = 3518, 3606, and 77521 - + 1 is prime for n = 3336, 3360 (cf. Table 
7 and [14, Table 2]). Also, 11027 - 2n + 1 is prime for n = 1075, 1255, 1287, 1403, 
1827 and no other n < 2000. 

As a result of our experiences with the referred computations, it appears that the 
Sierpifnski problem of determining the least k such that no prime k - 2n 1 exists is 
not likely to be settled in the foreseeable future by mere computation, even if the 
most powerful equipment available today would be applied (cf. [1, p. 43]). That 

TABLE 8 

For a given value of k no prime of the form k 2 n + 1 exists for n < Bk 

k Bk k Bk k Bk 

3061 1 7007 21181 1 2091 54001 1 211 5 

4847 12062 22699 20133 60443 12260 

5297 12030 25819 12001 62093 12016 

5359 12069 27653 1 2344 65567 20154 

5897 20170 28433 12072 67607 18170 

7013 24160 34999 1 2273 69109 12021 

18107 1 2278 39079 12249 75841 12211 

19249 18157 46157 12046 77899 12209 
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impression might be supported by the following consideration. Of the 178 values of 

k < 78557 such that k * 2 n 1 is composite for all n < 1000 (see [14, Table 2]), one 
could eliminate 48, 23, 11, 11, 10, 5, and 0 finding a prime with n in the interval 
1000 - i < n , 1000 * (i + 1) for i = 1, 2, 3, 4, 5, 6, 7, respectively. The rate of success, 
so to speak, apparently tends to diminish. On the other hand, the extremely low 

density of possible candidates k 21 -+ 1 for being a prime observed for most of the 
values of k in Table 8 suggests that the primes sought may lie well beyond the largest 
prime presently known, in a number of cases. 

7. Twin Primes. For each prime k 2" + 1 listed during the search described in 
Section 5, the corresponding number k *2" - 1 was checked for primality to see if a 
pair of twin primes could be detected. Of course, only values of k which are 
multiples of 3 were to be considered. For n > 600 (cf. [3, p. 1333]), the only pairs 
found were 177 * 21032 + 1, 213 * 2726 + 1, and 315 * 2767 + 1. Furthermore, the 
ranges 201 - k ?795, 1000 < n - 3000; 801 ?k < 1197, 1000 < n 2000; and 
1203 < k ? 1497, 1 ? n < 2000 were searched for twin primes, and the additional 
pairs 291 2 + 1, 1035 . + 1, 1065 * 2 ? 1, and 1365 * ? 1 were 
found. 

Mention should be made of three considerably larger prime-pairs of that same 
form k *21 + I discovered by Atkin and Rickert in 1979 [1] and 1980 [9]. These 
primes are 256200945 - 23426 + 1, 347251905* 2 230 + 1, and 1159142985 - 2 + 1, 
where all three values of k are divisible by 15015 = 3 * 5 . 7 - 11 13. 

The concept of a covering set discussed in the preceding section similarly applies 
to a sequence {3h 2' + 1}, h odd and fixed, which fails to produce any twin pair of 
primes. The set of primes C { P P2- .. P} will be said to be a covering set for 
the sequence {3h 2" +- 1} if for every n either 3h 2' - I or 3h 2"1 + 1 is divisible 
by at least one p, E C. For instance, the sequence {3 79 2" ? 1 } has the covering 
set C {5, 7, 13, 17, 19, 241}, and {3 269 - 21 1} is covered by C 
{5, 7, 13, 19, 37, 73}. Clearly, there are also infinitely many values of h such that 
3h - 2' ? 1 never gives a twin prime pair. On the other hand, for every odd h, 
I < h < 37, there is a twin prime pair 3h - 2'1 I with n < 14. If we denote by h* 
the smallest value of h such that 3h * 2" ? 1 never gives a twin prime pair, then we 
have 37 < h * < 79. Moreover, h* could only take one of the values h = 37, 41, 51, 
53, 57, 61, 63, 73, 75, 79. None of these produces a prime pair for n < 4000. Also, 
there is no twin pair of the form 3 - 37 * 2n + 1 for n < 20458. In establishing this 
result, we discovered the prime 111 * 210883 + 1; its companion, the composite 
number 111 2 183 - 1, has no divisor less than 107. 

8. The Computations. Nearly all of the computations reported here were per- 
formed on a TELEFUNKEN TR 440 computer using the Rational Arithmetic 
System [7] developed by Ingo Buchel and the author. That system is entirely written 
in the TAS assembly language and, in particular, it deals with arbitrarily large 
integers very efficiently. The system provides a procedure for integer division by a 

power of 2 based on the binary shift operation. This allows the reduction modulo 

k * 2' + 1 needed in testing numbers of that form to be done with a running time 

proportional to n if n is large. 
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For a description of that reduction algorithm, see [10, p. 647]; the reader may also 
consult [15, p. 614]. An improvement suggested by Hiromi Suyama (cf. Section 4) is 
based on the idea of representing k * 2A + 1 as K- 2wN + 1, where w is the word 
length of a binary machine. Thus all shifting operations moving across the word 
boundaries could be avoided. 

Our computing times on the TR 440 were as follows. Trying the divisibility test 
for k * 2' + 1 through, say, the whole interval 1 < k < 5000 took about 200, 440, 
1700, and 6300 seconds for n- 100, 200, 500, 1000, respectively, including the time 
for the preliminary sieving procedure. For large exponents n, the primality test for 
k 2n + 1 required about 3.2(10-3n)3 + 5.9(10-3n)2 seconds. In particular, 139 
minutes were needed to test the prime 5 213165 + 1. In a later stage of the 
computations, this could moderately be speeded up by introducing a few steps of the 
'recursive bisection' method [15,pp. 278-279] into the squaring operation, which 
consumes the predominant part of the testing time. 

Trial division for 16 < n < 56 was done on a SIEMENS 7 * 882 computer taking 
advantage of the built-in extended precision floating-point arithmetic. 
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