
MATHEMATICS OF COMPUTATION 
VOLUME 41, NUMBER 164 
OCTOBER 1983, PAGES 675-68 1 

Sets of n Squares of Which Any n - 1 
Have Their Sum Square 

By Jean Lagrange 

Abstract. A systematic method is given for calculating sets of n squares of which any n - I 

have their sum square. A particular method is developed for ii = 4. Tables give the smallest 
solution for each n < 8 and other small solutions for n < 5. 

1. Introduction. We give numerical solutions in positive integers of the equations 

( 1 ) x l + y 
2 x 21 + 2, x l+ + x2* >3) 

with x, #X- x for i #-j. The cases n = 3,4 have been studied by many authors; 
references are given in [ 1, Chapter XIX]. 

For general n, Gill [2] gave in 1848 a method for finding solutions of (1), but his 
method, based on complicated trigonometrical calculations, is impractical for find- 
ing actual solutions for n > 5. 

We give a simple method for finding explicit solutions for n ? 5. 

2. Method. We study the more general equations 

(2) ax 2 X21 Y,2 p( ' X2) 

where a and ,B are given integers. From a known solution (x,, y,) we construct 
another solution (x', y,'). Setting 

S= X2, P= x 

XI I 
l l 

we seek X, y such that 

X, = ASx -Py1, 

{y, = ajiPx, + XSy, 

is another solution. We easily find 

ax,2 + y1'2 
- /S(X2S2 + a2P2), I 

X2 = S[X2S2 + (A2(n3 - a) - 2XA )P2], 
,= 

I 

whence 2X = (n/ - 2a). The solution sought is 

fx =(nfl - 2a)Sx -2Py1, 

(3) 1 y1' = 2aPx, +(n/ - 2a)Sy,. 
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Iteration of the formulae (3) leads back to the original sol -.on. However, we obtain 
a different solution if we first change the sign of one or niore of the x. We can thus 

construct solutions of the equations (2) provided that we know a particular solution, 
which may be trivial. For the equations (1) the formulae (3) become 

x = (n - 2)Sx, - 2Pyi, 
y, = 2Px, + (n - 2)Syi, 

and we have a trivial solution 

XI = .-. = Xn-2 = ? Xn-I = a, xn = b, 

where a and b are integers satisfying a2 + b2 = c2. 

3. Small Values of n. (a) n 3. The solution 0, a, b, with a2 + b2 = c2, is not 

wholly trivial, as it satisfies xl # xj for i #j, but it is of little interest. An application 
of the formulae (4) gives 

xI = 4abc, x2= a(c2 -4b2), x3= b(c2 -4a2) 

Yi = c3, Y2 b(c2 + 4a2), y3 = a(c2 + 4b2). 

We thus obtain the Euler cuboid (rectangular parallelepiped with integer edges 

x1, x2, x3 and integer face diagonals Yi, Y25 y3; see [4], for example). From a = 3, 

b = 4, c 5 we obtain the solution 

44, 117, 240. 

(b) n = 4. The same method gives the " semitrivial" solution 

xI = x2 = 2abc, x3 a(b2 - a2), x4= b(a2 -b2) 

YI = Y2 = c, y3= b(2a2 + c2), y4= a(2b2 + c2). 

Changing the sign of x2 (to ensure a new solution) and X4 (to simplify), we apply (4) 
to obtain 

xI = 2abc(4b4 - 3c+), x2= 2abc(4a4 -3c4) 

a(b2 - a2)(4a4- 3c4), x4= b(b2 - a2)(4b4 - 3c4). 

From a = 3, b = 4, c 5 we obtain the solution 

23828, 32571, 102120, 186120. 

(c) n = 5. We give only a numerical solution. Beginning with a trivial solution 

having xl = x2= X3= X4, we apply the formulae (4) to 

xI = x2= -x -x4 = 4, X5 = 1, 

Y1 =Y2 =Y3 =y4 = 75 y5= 8. 

Tlis gives 

xI = x2= 668, X3 = X4 = 892, X5 =67, 

y1 =y2= 1429, y3=y4= 1301, y5= 1576. 

Changing the sign of x2 and X4 and applying (4) again, we obtain the solution 

1673 15281, 46847 01124, 52882 64996, 63838 46756, 69333 47524. 

(d) n = 6. We apply (4) to the trivial solution 

xI = x2 x3 = x4 = 0, X5 = 3, x6= 4, 

Y1 =Y2 Y3 = Y4 = 5, Ys = 4, y6 = 3 



SQUARES WITH SQUARE SUMS 677 

and obtain 

xl = x2 =x3 = x4-60, X5 = 27, x6= 64, 

y1=y2=y3=y4 1255 y5= 1365 y6= 123. 

Changing the sign of x3 and x4 and applying (4) again, we obtain 

xi = x2 = 56440, X3 = X4 =35640, X5 32187, x6 38884, 

y1 =y2= 91085, jy3 =y4= 101165, y5= 102316, y6 99963. 

Change of sign of x2 and X4 and a third application of (4) gives the solution 

303 99288 95652, 320 53666 06047, 334 13500 01384, 
352 04352 90636, 499 66347 59436, 542 92638 80052. 

4. n = 4 Reconsidered. Tebay [9] gives the simple solution 

x = (S2 - )(S2- 9)(S2 + 3), x3 4s(s + 1)(s - 3)(S2 + 3), 

X2= 4s(s - 1)(s + 3)(S2 + 3), x4 2s(s2 - )(S2- 9). 

With changes of sign and sequence, s = 2 gives the solution 60, 105, 168, 280. He 
obtains this parametric solution by imposing special conditions, the first being 

xi x2 + x2 X3 + X3 x1 = 0 (with change of sign of x3). 
Martin [6] examines Tebay's method and corrects some mistakes. He remarks that 

Euler had given an equivalent solution without derivation [1, p. 503]. We now give a 
method for constructing numerous solutions for n = 4, the foregoing parametric 
solution appearing as a special case. Consider the equation 

u4 + U4 + U3 + U4 2(U 2u2 + U2U2 + U2U2 + U2U2 + U2U2 + U2U2 

which we abbreviate as 

(5) Iu 4= 2E u2 J. 

Numerical solutions of this equation are easily found by computer search. The 
following equations are equivalent: 

(6) 4( U2U42 + U42U2 + U22U2) = (U22 + U32 + U42- U2)2 

(7) 4(ul2u22 + u32u = (U2U + UU2) =(U + 2u 2- u2)2 

(8) (ui2)2 = 4E 2 
u2u 

(9) (U12 + U2 -U32- U2)(U12 + U32 
- U2- U22)(U12 + u 2 - U2 -U2) 

=8E 2 u2u 2u. 

Set 
Xi = U2U3U4, X2 = U1U3U4, X3 = UIU2U4, X4 = UIU2U3. 

Then Eq. (6) shows that we have a solution of the equations (1). This solution has 
some interesting properties. 

Setting 

A2 = X2X2 + X2X2 B2 = X2X2 + X2X2 C2 = x2x2 + X2X2 

we see from (7) that A, B, C are integers. Setting E2= A2 + B2 + C2, we see from 
(8) that E is an integer. Finally, Eq. (9) shows that 

S = X42 + X2 + X2 + X2 = ABC/xlx2x3x4. 
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These relations are homogeneous and so are valid whether or not the solution 

Xi, X2, X3, X4 is primitive. The following result is valid only for a primitive solution. 
Set 

D = GCD(x1x2x3, x1x2x4, x1x3x4, X2X3X4), 

A = GCD(A, B, C). 

Then we have 

xlx2x3x4= D2/A, 

as is easily verified by calculating the p-adic values of D, A, xx2x3X4. For p prime 

we may suppose that 

Vp(UI) = ?, Vp(U2) = a, Vp(U3) = #I Vp(U4) = 7, 

with 0 < a p /,< -y. For the corresponding primitive solution we then have 

Vp(XI) = 7, Vp(X2) = 7-y , Vp(X3) = 7-Y , Vp(X4) = o, 

and we easily obtain 

vp(D) = 2-y - a- VpW^ = -Y- a-, 

Vp(X1X2X3X4) = 3Y- a - /3 

from which the result follows. 
A parametric solution to Eq. (5) is obtained by the following method. The identity 

(p + q + r)(p - q - r)(q - r - p)(r - p - q) 

- p4 + q4 + r 4- 2(q2r2 + r2p2 + p2q2) 

shows that 

(10) p + q + r = 0 implies p4 + q4 + r4 = 2(q2r2 + r2p2 + p2q2) 

We rewrite (5) in the form 
4 2 U2(U2 + U2 + u2) + U4 + U4 + U4 - 2(U2U2 + U2U2 + UU 2) 

Setting u, + U2 + U3 = O, we have from (10) 

U2 - 2(U2 + U2 + U2). 

To make U4 rational, we set 

u 2 - 2 2 - z V2 - 2 w t vI 
u1 v2-v3, U2 = V3-v, U3 v 2-v + V2 + V3 =0. 

In effect we have from (10) 

2(U2 + U2 + U2) - (v2 + v2 + v2 
2 

whence U4 = vi2 + V2 + V2. We thus obtain 

X 
= 

(V2 V2)(V2 --V2)( V2 + v2 + v2) 

X2 (V2 V2 )(V2 -V2)( + V2 + v2) 

X = (V2 - V2)(V2-V2)(V2 + V2 + V2) 

X4 = (V2 - V2)(V2- V2)( 2-v2) 

with v1 + V2 + V3 = 0. This is equivalent to Tebay's solution, which is obtained by 

setting V2 = 2 (abandoning homogeneity) and v 1 = s - 1, whence V3 = -(S + 1). 
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We note that Euler made several studies of (5) [1, p. 661]; however, there is no 
mention of the relation between Eqs. (1) and (5). 

5. Tables. In Table 1 we give the smallest solution (that with minimum S) for 
3 < n < 8, and in Tables 2-4 we give all solutions for 3 < n < 5 having S < 109. 
For n = 3 tables have been given by Lal and Blundon [3], Leech [5] and Spohn [8]. 
The present computations were done on the IBM 370 computer at C.I.R.C.E. Each S 
is expressed as the sum of two squares x2 + y72 in all possible ways by the method of 
Nicolas [7]. We retain only those S which are expressible in at least n ways; we then 
have to test whether any n of these satisfy 

E 2 =S. 

It may be remarked that it is never necessary to test whether an integer is a perfect 
square. 

TABLE 1 

The smallest solutions 
X xi x2 X3 X4 X5 x6 X7 X8 S 

3 44 117 240 73225 
4 60 105 168 280 121249 
5 28 64 259 392 680 688025 
6 1332 1539 1756 3012 6348 7104 107062345 
7 936 3840 5904 7332 7683 10400 11160 395971225 
8 79 112 404 632 896 916 1828 2092 9941345 

TABLE 2 

n 3 

xi X2 x3 S = X X2 x3 S 

1 44 117 240 73225 18 495 4888 8160 90723169 
2 240 252 275 196729 19 2925 3536 11220 146947321 
3 85 132 720 543049 20 1008 1100 12075 148031689 
4 160 231 792 706225 21 2964 9152 9405 180998425 
5 140 480 693 730249 22 1080 1881 14560 216698161 
6 1008 1100 1155 3560089 23 4368 4901 13860 235198825 
7 187 1020 1584 3584425 24 7840 9828 10725 273080809 
8 429 880 2340 6434041 25 7579 8820 17472 440504425 
9 832 855 2640 8392849 26 8789 10560 17748 503751625 

10 828 2035 3120 14561209 27 10296 11753 16800 526380625 
11 780 2475 2992 15686089 28 6072 16929 18560 667933825 
12 195 748 6336 40742425 29 5643 14160 21476 693567625 
13 1560 2295 5984 43508881 30 14112 15400 19305 808991569 
14 1755 4576 6732 69339625 31 4900 17157 23760 882910249 
15 528 5796 6325 73878025 32 4599 18368 23760 923071825 
16 1155 6300 6688 85753369 33 935 17472 25704 966840625 
17 1575 1672 9120 88450609 
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TABLE 3 

n 4 

XI x2 X3 X4 S Ul U2 U3 U4 

1 60 105 168 280 121249 3 5 8 14 
2 420 728 1365 1560 5003209 7 8 15 26 
3 385 792 840 1980 5401489 14 33 35 72 
4 672 1120 1980 3465 17632609 32 56 99 165 
5 585 1008 1456 5460 33289825 12 45 65 112 
6 840 1520 1995 6384 47751481 5 16 21 38 
7 880 1155 5040 5544 58245961 10 11 48 63 
8 624 2625 3220 6432 59019025 
9 1848 3575 4620 7800 98380129 77 130 168 325 

10 2508 5544 5985 8360 142735825 63 88 95 210 
11 2295 3808 7344 10080 175308625 51 70 135 224 
12 1232 8316 9141 10368 261726985 
13 3276 5005 11880 16632 453540025 65 91 216 330 
14 2040 2520 11781 26180 834696361 18 40 187 231 
15 4620 8184 11935 26040 908848081 11 24 35 62 

Where a solution can be obtained by the method of Section 4, the values of u1 are 
given. 

TABLE 4 
n = 5 

XI X2 X3 X4 X5 S 

1 28 64 259 392 680 688025 
2 1112 1225 1876 3184 5768 49664225 
3 2105 2648 2980 3736 4720 56559425 
4 203 2240 3920 4240 6104 75661625 
5 696 1200 3475 4980 6360 79250041 
6 56 208 1400 4060 9065 100664225 
7 557 1747 4141 5219 8285 116389325 
8 427 3164 3980 6220 7420 119778425 
9 1183 1300 2240 7280 8080 126391889 

10 1095 3063 4119 5527 10329 164783125 
11 1952 2360 5020 6089 10520 182326625 
12 595 3549 5235 9555 10893 250310125 
13 2328 5824 7368 9975 14196 394653025 
14 2207 4417 5215 12479 14161 407836325 
15 483 5328 6356 15000 17304 593448025 
16 49 2152 5600 16076 18088 621607025 
17 3799 9560 11384 13732 16112 683585825 
18 2425 3020 8596 19628 20020 874951025 

Remark. In the solutions 7. 10. 12 and 14. all the x; are odd. 

6. Concluding Remarks. (a) Examination of the tables suggests that there may be 
simple parametric solutions for n > 5, but we have not found them by the present 
method. 

(b) There exist values of a, ,B for which Eq. (2) has trivial solutions; these can then 
be transformed into nontrivial solutions. This is the case when we replace the sums 
of n - 1 squares by their arithmetic means. 

(c) I shall return later to the case of n = 3 with general a, ,3. Several of the systems 
of equations studied in [1, Chapter XIX], are effectively of this type. They are, 
however, treated by methods specific to each problem; we can now treat them by a 
uniform method. 
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