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Irreducibility Testing and Factorization 
of Polynomials 

By Leonard M. Adleman and Andrew M. Odlyzko 

Abstract. It is shown that under certain hypotheses, irreducibility testing and factorization of 
polynomials with integer coefficients are polynomial time reducible to primality testing and 
factorization of integers, respectively. Combined with recently discovered fast primality tests, 
this yields an almost polynomial time irreducibility algorithm. The assertions of irreducibility 
produced by this algorithm are always certain and yield short proofs of irreducibility. 

1. Introduction. Irreducibility testing and factorization of polynomials with integer 
coefficients are two of the oldest computational problems in mathematics. Early 
investigations of these problems were carried out by such prominent mathematicians 
as Newton, Kronecker, and Eisenstein; see Knuth [16]. In recent years these 
problems were investigated by Cantor [10], Moenck [20], Musser [22], Risch [25], 
Weinberger [29], Zassenhaus [30], Zippel [31], and others. In particular, Cantor [10] 
has shown that the set of irreducible polynomials is in NP; i.e., there are proofs of 
irreducibility that are of polynomial length in the size of the irreducible polynomial 
being considered. (The size of a polynomial is defined below.) While this result 
shows that irreducible polynomials possess succinct certificates of irreducibility, it 
does not provide any way of finding them. If the Generalized Riemann Hypothesis 
(GRH) holds, then Weinberger [29] has shown that testing irreducibility can be done 
in polynomial time. However, if the GRH is false, then Weinberger's algorithm 
might declare some reducible polynomials to be irreducible, and some irreducible 
ones reducible. 

This paper presents new algorithms which reduce irreducibility testing and factori- 
zation of polynomials with integer coefficients to problems of integer primality 
testing and factorization, respectively. If we assume a certain unproved conjecture, 
which we call Hypothesis H+, as well as the GRH, then these reductions are 
polynomial time, and in particular this leads to an almost polynomial time test for 
irreducibility. While these hypotheses are much stronger than the GRH assumed by 
Weinberger, our irreducibility algorithm has the advantage that an assertion of 
"irreducibility" is "certain" (i.e., provable from Peano's axioms) and does not rely 
on unproven hypotheses. Hypothesis H+ and the GRH are used only to prove that 
the algorithm recognizes all irreducible polynomials rather than just a subset. If 
Hypothesis H+ or the GRH is false, then some irreducible polynomials may be 
asserted to be "reducible", but not the reverse. This situation is the opposite of the 
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one associated with Miller's primality test [19], where assertions of "composite" are 

certain, but if the GRH is false, then conceivably some composite numbers may be 

asserted to be "prime". In cases when there is a need to establish the irreducibility of 

polynomials with certainty, our algorithm may be practical. However, to use this 

algorithm, one would have to carefully analyze the arguments in order to determine 

explicitly the values of the constants ci that appear. 
Before stating our results precisely, we have to define the size of a polynomial. 

Definition. Given f E Z[x], f(x) = anxn + + +ao, the size of f, denoted by 

f l, is defined as 
n 

IfJ= 2 + 2 Ilakll, 
k=O 

where Ilakll is the length of ak when written in binary, with 110 11 = 1. 
Note that this definition does not assign a small size to polynomials such as 

xn + 1. The reason for using the above definition is that it is in many ways the 

natural one. For example, it can be shown that if g(x) I f(x), then I g I is polynomial 
in I f I . This does not hold if we define the size of a polynomial 

m 

aixki, 

i=O 

using the sparse encoding ((ao, ko),(a1, k1),.. . ,(am, km)). 

THEOREM 1. Assume Hypothesis H+ and the GRH, and let Pr {p: p E Z, p 

prime), Ir = { f: f E Z[x], f irreducible). Then 

Ir pPr. 

THEOREM 2. Assume Hypothesis H+ and the GRH, and let FI be the problem of 

factoring integers, and-let FP be the problem of factoring polynomials with integer 

coefficients. Then 

FP pFI. 

Hypothesis H+ is discussed at length in Section 2. The polynomial time reduc- 

tions used are of the Cook (Turing) type. 
Given f E Z[x], this algorithm produces < cl If C2 positive integers, each of size 

(measured by the length of their binary expansion) a} f I'3 where, as will be the case 

later on in the paper, the ci are positive effectively computable constants. If even one 

of the integers is prime, then f(x) is irreducible. If Hypothesis H+ and the GRH 

hold, and f(x) is irreducible, then at least one of these values has to be prime. A 

recently discovered deterministic algorithm tests the primality of an integer r in time 

C4(log ) c5 log log log r 

(Adleman [1], Adleman, Pomerance, and Rumely [3]). If this algorithm is combined 

with the basis reduction step, it results in an algorithm that halts in at most 

c6 If IC71og10g10 

steps when dealing with a polynomial f E Z[x]. If the output is "irreducible", then 

there is a proof from Peano's axioms that f is irreducible. If Hypothesis H+ and the 

GRH hold, then, for allf E Z[x], if f is irreducible, then "irreducible" is output. 
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The irreducibility testing algorithm is described precisely in Section 3. In Section 4 
we sketch the factoring algorithm. It proceeds by factoring the < c If flc2 integers 
produced by our basic reduction and then tries to construct polynomial divisors of f 
from those factorizations. Because of the slow running times of the best known 
integer factoring methods [13], [21], [24], this algorithm is probably of little practical 
significance. 

The basic idea behind our algorithm is the same as that of the classical algorithm 
of von Schubert [15], [16] (which was rediscovered by Kronecker and is usually 
ascribed to him), namely that the factors of the integer f(k) should provide 
information about the polynomial factorization of f(x). There are several results in 
the literature (see [7], [8], [9], and the references in those papers) which say that 
under appropriate conditions, if f(k) is prime, then f(x) is irreducible. (In [9], f(k) 
has to be prime for several values of k, actually.) In order to utilize this basic idea to 
derive an algorithm, we need to discuss some number theoretic results and conjec- 
tures, and this is what Section 2 is devoted to. 

Since this work was preformed, Lenstra, Lenstra, and Lov'asz [18] have discovered 
an algorithm that factors a primitive univariate polynomial in polynomial time. 
Their method uses lattice basic reduction and does not depend on any unproved 
hypotheses. Because of the completely different nature of our methods, we feel that 
they might still be of some interest. 

2. Almost-Prime Values of Polynomials. In order to obtain efficient algorithms, we 
need to assume a very explicit quantitative form of a conjecture about primes 
representable by polynomials, for which at present there is little hope of finding a 
proof. The heuristic reasoning behind this conjecture is derived from several well- 
known unproved conjectures of number theory. In the next few paragraphs we will 
explain these conjectures and some of the reasoning behind them. 

In order to prove the irreducibility of f E Z[x], we would like to find large values 
of k E Z such that f(k) is prime. This does not happen for all irreducible f. For 
example, x2 - x + 2 is always even, and so is a prime only for x = 0, 1. In this case, 
2 is the fixed divisor of x2 - x + 2. 

Definition. For f E Z[x], the fixed divisor df of f is the largest positive integer d 
such that dl f(a) for all a E Z. 

The fixed divisor can be computed very simply by means of the following 
well-known and easy to prove lemma. 

LEMMA 1. Iff E Z[x], and we express 

n f(x)= f b(j , 

where 

(X)=X(X-1)- (X-jX+ 1) forj lo) 

then bj E Z for O < j < n and df = GCD(bo, b1,. . .bn). 

Clearly if df > 1, then f(k) can be prime for only a finite number of k. 
Remarkably enough, V. Bouniakowsky [6] conjectured in 1857 that if f(x) e Z[x] is 
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irreducible, and df is the fixed divisor of f, then dj'f(k) is a prime for infinitely 
many k. This conjecture is only known to be true when deg f(x) = 1, in which case 
it follows from Dirichlet's theorem on primes in arithmetic progressions. However, 
this conjecture is widely believed to be true, and there is an even more general 
conjecture, the famous Hypothesis H of Schinzel [26], [27] which deals with sets of 
prime values taken on simultaneously by several polynomials. 

Bateman and Horn [4], [5] went further and conjectured a quantitative form of 
Hypothesis H which is usually referred to as Hypothesis H*. In the special case of a 
single irreducible polynomial f(x) with df = 1 (the only case covered explictly by 
Hypothesis H), if for a prime p we let 

W(p) =|{k: 0 < k < p - 1, f(k) 0(mod p)}| 

and 

7Tf( x) ={m: 1 ?m?x,f(m)isaprime}), 

where without loss of generality we may assume that the leading coefficient of f(x) is 
positive, then Hypotheis H* asserts that 

(2.1) rf (x~)4 lox {( j)l (P) (2 . 1 ) 7t ( X ) n log x tI{ p ) p ) 

as x oo, where n = deg f(x). This conjecture is supported by the available 
numerical evidence (see [4], [5] for references and some of the data). Upper bounds 
for 7rf(x) of this same general form are also known [14]. 

Before explaining the reasoning behind the Bateman-Horn conjecture, we will 
generalize it to cover the case df # 1. Suppose f(x) E Z[x], n deg f(x). It follows 
from Lemma 1 that we may write 

n 

f(x) = df 2 ak( k ak EE Z, (aO,* * *an) 
k=O 

For a prime p, we let r = rp be the least nonnegative integer such that the values of 

f(m)d-l, when reduced modulo p, are periodic in m with period pr? 1. To see that r 

exists, note that if we write 

ak? = b b, c E Z, (b, c) = 1, 
k! c 

and pSk 11 C, then the values of ak(k), when reduced modulo p, are periodic in m with 
periodpsk+l, and therefore r < max(so,. . . Sn). Since eachpskl k!,prl n!, and so 

r =r< 
n + n + n 

Also, note that r = 0 forp > n. 
Given a prime p, and the associated r = rp, let 

W(pr+?) =I |{m: 0 m< m pr - 1, f(m)df' - 0(mod p)}| 

We now apply the reasoning behind the Bateman-Horn conjecture (2.1). If m is a 
large integer, we look at the probability that f(m)dil is a prime. Now a random 
integer around y has probability (log y)-1 of being prime. However, f(m)dil is not 
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quite random, since it is divisible by a prime p with probability W( pr?+ )/pr+ 1, 

whereas a random integer is divisible by p with probability l/p. Therefore one is led 
to conjecture that f(m)dil is prime with probabilty 

(2.2) 1 {K I--)'(Il - WJ(pr?l1) 

log{dj'f(m)} p V pr+' 

which suggests that if 

C(f) u(lp W(-pr+ 1)f 

then 

qrTf(x) j{m: 0 m ?x, f(m)di' isaprime}) 

satisfies 

(2.3) 7f (x) , log C((f) 

as x -x o. It is vital to us to know how fast this asymptotic behavior is approached. 
First of all, the main term should really be a sum of terms like (2.2) for 1 - m < x, 
with f(m) # 0. Then, for x 2 exp(2 If l), the sum of these terms will be at least 

x X 
C(f). 

lOnlogx 

In addition, reasoning by analogy with the known results for other arithmetical 
functions, we might expect the presence of an oscillating term on the order of 
x'2?E. If we let 

D = absolute value of discriminant of f(x), 

then on the Generalized Riemann Hypothesis one can show [17] that sometimes 
these error terms are 

O(X x/2 log(xD n)) . 

In the present case we might then hope that at least a much weaker bound for the 
oscillating term holds, namely DC8X 3/4 for some positive constant c8. Let us define 
C'(f) = min(l, C( )). (This is done for technical reasons). Then we might hope 
that for x > exp(2 I f 1), 

(2.4) nf(X) ( 10---l C'(f) -D 

This bound will give 

(2.5) gTf(X) 
- 

Of 2On log xC(f 

for 

x > max(exp(2 1 fI), Dc9C'( f)5) 

since log D > clon [23]. 
Although (2.4) already relies on several currently unprovable assumptions, it is not 

sufficient for our purposes. We need to know in addition that there are no large gaps 
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between values of m such that f( m )df l is prime. If Pn denotes the n th prime, then 
the Prime Number Theorem shows that on average, Pn +I - Pn is on the order of 
log Pn . On the other hand, it is only known that, for every E > 0, 

p~1 - O(pQ120+E-) Pn+ I1 Pn ?( Pn) 
as n -o co. Even on the Riemann Hypothesis, it is only known that 

Pn+ 1 Pn ?( Pn )- 

On the other hand, there is an unproved conjecture of Cramer [11] which asserts that 

(2.6) Pn+ 1 Pn = O((log Pn)2). 

The reasoning behind this conjecture is roughly as follows. If the probability that k 
is in some set S is roughly a(log k)-', then the probability that none of k, 
k + 1 ... ., k + m - 1 is in S is roughly 

(1-log k) 

If m - a-'(1 + 8)(log k)2 for some 8 > 0, then this probability is roughly k' , and 
so we expect only a finite number of such gaps. In particular, in the case of prime 
numbers, a = 1, and we obtain conjecture (2.6). 

Numerical evidence in favor of a conjecture even stronger than Cramer's (2.6) is 
presented in [28]. In our case, where we consider values of a E Z for which dJlf(a) 
is prime, the above reasoning and the conjecture (2.5) lead us to expect that maximal 
gaps between such values of a, with a - x, should be no larger than 

cIIC'(f)1nlog2 x. 

Of course we have to allow for exceptions when we consider the set of all 
polynomials, but since in all known cases strange anomalies occur only for values 
bounded by powers of the discriminant D of f, we are led to make the following 
conjecture. 

HYPOTHESIS H+. There exist positive constants C12 and C13 such that for an) 
irreducible f E Z[x ], and every x with 

x > C'(f )' exp{IfIC12 + (log D) C12), 

there exists an integer a with 

x < a < x + C'(f )(log D)C'3(log x) C3 

such that di 'f(a) is prime. 

3. Irreducibility Testing. In this section we present our algorithm and use it t4 

prove Theorem 1. As we mentioned before, the basic idea is that if a polynomia 
takes on a prime value, then under appropriate conditions this implies the pol) 
nomial is irreducible. In our case we utilize the conditions given by the followin 
very simple lemma. 

LEMMA 2. Given any a E N and any b E Z, there is a unique polynomial f E Z[x 
f(x) = anXn + +a0 with -a/2 < ai < a/2, 0 < i < n, such that f(a) = b. 



IRREDUCIBILITY TESTING AND FACTORIZATION OF POLYNOMIALS 705 

This is simply the statement that base a expansion is unique. Notice that there is a 
polynomial time algorithm which on input a E N, b E Z produces the polynomial f 
described in Lemma 2. Notice also that if -a/2 < b < a/2, thenf(x) = b. 

We now state our irreducibility testing algorithm. The constants appearing in it 
can be computed explicitly, as will be seen from our analysis. 

ALGORITHM. On inputf(x) = a,x' + * - +a0 E Z[x]: 
(1) If GCD(an, a,,. . .1,a0) =# 1 output "reducible" and halt. 
(2) Express 

n x 
f(x)= - byJ) bj E- Z, 

calculate d = df = GCD(bn, bn 1, .. .,bo), and write 

d -f(x) = 2 kj(J) 

(3) Let p0, pl, . . ,p, be the least initial segment of primes such that p+, > I f IC14. 

(a) For each i, 0 < i < z, find the least yi such that pi t ky;. 
(b) Find (using effective versions of the Chinese Remainder Theorem) an 

integer m such that 
(i) m yi (mod p'i), 0 < i < z, where ei [n/(pi - 1)] + 1, 
(ii) O < m < M = t11 =oPj' 

(4) For a in the range exp(l fIc5) to exp(If Ic15) + f Ic16 calculate d -f(m + Ma) and 
test for primality. If a prime is found output "irreducible", otherwise output 
"reducible", and halt. 

It is clear that the above algorithm runs in time polynomial in the time to test 
primality. What remains is to show. 

(a) If f is irreducible then "ireducible" is output. 
(b) If "irreducible" is output then f is irreducible. 
We will need to bound certain quantities in terms of I f I . There are constants c17, 

c18 independent of f such that 
1. For all h E Z[x], if h I f, then l h l<I fIC17; [16, p. 438]. 
2. log(D) <IfIc17 where D is the absolute value of the discriminant off; [12,p. 51]. 
3. Let g(x) = f(m + Mx), where m and M are as in the algorithm. Then 

(i) I < IfIC'89 

(ii) log(D') <If Ic,8 where D' is the absolute value of the discriminant of g; 

[12,p. 51]. 
(iii) M < exp(l J I1t 8 ) 

Proof of (a). If f is irreducible, then g(x) =f(m + Mx) is irreducible. Also, 
because of the construction of m and M, g and f have the same fixed divisor d. We 
will apply Hypothesis H+ to g. However, we will first analyze 
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We have 

g(x) _ f(m + Mx) n m + Mx\ 
d d ~~- I kvV y d d 

By construction, for 0 < i < z, M = p, * n! * r for some r, so 

kj( - ki, (mod pi). 

But m y yi + pe'w for some w, and therefore 

_j ( (mod pi) 

j=0 J=O J(J)( i 

p=0 

Now by constructionpi I kj, j -_ 0, 1, ... y,y -1, and therefore 

kj j J)-ky, (y)-ky,_ 0 (mod p,). 

It follows that W(pr+l) 0 O forp <I fIc4 and since forp >I fIc4 we have pr+? p 
(for C14 sufficiently large), we have 

C(g) > In {(-I )-'(l-W(p) 

We now appeal to the following lemma: 

LEMMA 3. For all irreducible f E Z[x], if the Generalized Riemann Hypothesis holds 
for the Dedekind zeta function of the field generated by a root of f as well as for the 
ordinary Riemann zeta function, and D = absolute value of discriminant of f(x), then 
for any Z a (log D)3, 

pnZ{( -) (1 - pP))}z1 

for some positive constant c19 independent of f. 

Proof. We apply Theorem 1.1 of [17]. Since the discriminant of the field generated 
by a root of f(x) is bounded in absolute value by D, that theorem shows that if 

S(x) - 2 '(1 - W(p)), 
p<x 

where 2' means that we sum over only those primes p for which p I D, then under the 
assumptions of our lemma, 

I S(X) wI p(X/2 ,ag(DXn)). 

Now there are < 2 log D primes p with p I D. and for p > Z, 
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so 

pzz{(~ p)p n 2 
log(-Z D p(4n log D 

pID 

for all Z > 2n, say. Also, 

log - I )-'( 
I 

I W(p) )} = W(p) + 0 
( W 2(p)) 

1- W(p) + <n) 
p p2 

and, using the Riemann-Stieltjes integral, 

I I-W( pz)= J - x - + S(x) I - 
f 

dS( 
S( ) + -2dx 

p>Z 
p1 lD 

O(Z1/2 log(DZn)) 

while 

n 
p2 ?( 0 

n 
P>Z P 

The lemma now follows immediately from these estimates. 
We cannot apply Lemma 3 directly to g. However, since (M, p) = 1 for p >IfIc4, 

it follows that as x takes on the values 0, 1,... ,p - 1, m + Mx also takes on the 
values 0, 1, ... ,p - 1. Therefore Wg(p) = Wf (4p) for p >If Icf4. In addition we have 

(log(D))3 <I fKC14, and applying Lemma 3 to f we have 

II I{( - i)1( J'Vg) 1= IfI{( l - I)'(l J- p ) I 9 

and therefore C(g) c cl9. 
We now apply Hypothesis H+ and the GRH to g. It follows that there exist 

constants c20, c21 independent of f such that: 

(1) C20 > C149 

(2) exp(lfIfc20) > 2d, 

(3) g(a)/d is prime for some integer a with 

exp(i fc20) < a < exp(Ifr2o) + Ifr2. 

It follows that f(m + Ma)/d is prime and that the algorithm outputs "irreducible". 

Proof of (b). If "irreducible" is output, then d-'f(m + Ma) is prime for some a. 

Assume f is reducible, then f = hh for nonunit polynomials h, h. It follows that 

h(m + Ma)h(m + Ma) = dp for some prime p. Without loss of generality, 

h (m + Ma) I d. For c15 large enough, m + Ma exceeds twice the absolute value of 

the coefficients of h, and twice the absolute value of d. By Lemma 2, h is a constant. 

By Step I of the algorithm h = 1. Notice that the proof of (b) uses neither 

Hypothesis H+ nor GRH. 
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4. Factorization of Polynomials. Theorem 2 is based on the same ideas as Theorem 
1, and so we will provide only an outline of its proof. 

Assume f is the input. By selecting m, M as in Theorem 1, we can assume that 
g(x) =f(m + Mx) is such that for an initial segment of primes pO' p1,...,pz, 
Wg( pT?) 0 O. It follows that if h is a nontrivial irreducible divisor of f, then 
h(x) h(m + Mx) is such that Wh(pI' ) = 0 for po' pi* . . pZ If pz is large 
enough (greater than If c for an appropriate constant c), then C(h) will be greater 
than c19 (by Lemma 3). By Hypothesis H+, h(a)/dh = q for some prime q and some 
a in a suitable range (as in step 4) of the algorithm above, (but with different 
constants), where dh is the fixed divisor of h. Since dh I d and dl f(O) = a0, it follows 
that aOh(a)/dh = aoq where aOh/dh is a polynomial with integer coefficients. 
Rewriting, we have aoh(m + Ma)/dh = aoq where aoh/dh is a polynomial with 
integer coefficients. If Ma is chosen large enough (by forcing a > exp(l f Ic) for 
appropriate constant c) then it will exceed twice the absolute value of the coeffi- 
cients of aOh/dh and therefore, by Lemma 2, aoh/dh is uniquely determined by 
m + Ma and aOq. Further h = (aOh/dh)/G, where G = GCD of coefficients of 

(aoh/dh). 
Therefore the algorithm for factoring polynomials can be as follows: 
I. If GCD of coefficients of f is not 1, then output GCD and halt. 
II. For each a in the appropriate range: factor f(m + Ma) = qIq2 ... qt; for each 

q = qi, i 1, 2, .. , t, find the unique polynomial with "small" coefficients such that 
g(m + Ma) = aOq. Find the polynomial h = g/(GCD of coefficients of g). If h f 
output h and halt. 
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