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Analysis of Mixed Finite Element Methods 
for the Stokes Problem: A Unified Approach 

By Rolf Stenberg 

Abstract. We develop a method for the analysis of mixed finite element methods for the 
Stokes problem in the velocity-pressure formulation. A technical "macroelement condition", 
which is sufficient for the classical Babuska-Brezzi inequality to be valid, is introduced. Using 
this condition,we are able to verify the stability, and optimal order of convergence, of several 
known mixed finite element methods. 

1. Introduction. The mixed finite element method, based on the velocity-pressure 
formulation, is being increasingly used for the numerical solution of the Navier-Stokes 
equations. In this paper we will discuss the mixed finite element method for the 
linear Stokes problem. Under suitable existence and uniqueness conditions the 
results can be extended to the nonlinear Navier-Stokes equations; cf. [11]. 

The analysis of mixed methods for the Stokes problem can be based on the 
general theory of saddle point problems developed by Babuska [1] and Brezzi [5]. 
The main difficulty in the analysis is the verification of the basic stability inequality, 
usually referred to as the Babuska-Brezzi inequality. In Crouzeix and Raviart [9] a 
rather general analysis technique, for triangular finite element subspaces, is devel- 
oped. Recently a variant of the classical stability inequality has been introduced by 
Bercovier and Pironneau [4] for the analysis of methods where the pressure is 
approximated by continuous functions. It should also be mentioned that some 
methods, which are used in practice (cf. [13], [21]), do not fulfill the classical 
Babu?ka-Brezzi stability inequality. It is, however, possible to analyze these methods 
using certain weaker stability inequalities, cf. Johnson and Pitkaranta [15] and 
Pitkaranta [19], where error estimates for some methods have been derived. 

In this paper we develop a general method for the analysis of mixed finite element 
methods for the Stokes problem. We introduce a technical "macroelement condition" 
which is easy to check and sufficient for the stability inequality (in its classical form) 
to be valid. A similar condition is used in [20] in the analysis of mixed methods for 
two-dimensional elasticity equations. Our method of analysis seems to both gener- 
alize and, above all, simplify the previous methods. 

In order to avoid unnecessary technical details we have restricted ourselves to a 
two-dimensional, polygonal domain and to straight-sided triangular, or quadrilateral, 
elements. The method can easily be generalized to more general situations. In some 
of the examples we also treat general isoparametric elements. 
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The plan of the paper is as follows: In Section 2 we state the problem and its finite 
element discretization and give some preliminary results. The next section is devoted 
to the stability inequality. We introduce the macroelement condition and show how 
it implies the stability inequality. In Section 4 we apply our method of analysis to 
four mixed methods. 

2. Preliminaries. Let 02 be a polygonal domain in R2 with boundary F. We 
consider the stationary Stokes problem: Find functions u = (u,, u2) and p defined 
on Q such that 

-vAu+vp=f in 2, 
(2.1) divu = O in 2, 

u = O onf, 

where u is the fluid velocity, p is the pressure, f is the body force and v > 0 is the 
kinematic viscosity. 

We denote by I * Is,T and 11 Li.T, respectively, the seminorm and norm of the 
Sobolev space [HS(T)]a, where s and a are integers. For noninteger s, s > 0, 
[Hs(T)JG and 11 * IIs,T are defined as usual by interpolation. Ho(T) denotes the 
subspace of H'(T) of functions vanishing on aT. We will also use the space 

Lo(T) p { L2(T)Ifpdx = O. 

By ( )T we denote the inner product in [L2(T)]a, where a is an integer. The 
subscript T is omitted if T = i2. 

Throughout the paper, C and Cj will stand for a positive constant, possibly 
different at different occurrences, which is independent of the mesh parameter h, but 
may depend on S2, v and some other parameters introduced in the text. 

Using the above notations, (2.1) allows the following weak formulation: Find 
u E [HJ(Sl)]2 andp E L2(Q) such that 

(2.2) v(vu,vv) - (divv, p) = (f, v) Vv E [H0()]2 

(div u,u) = 0 Vt E L2(g). 

In the finite element discretization of (2.2) we introduce the finite-dimensional 
subspaces Vh C [Ho'(Q)]2 and Ph C L2(i2) and formulate the approximate problem 
as: Find uh E 1h and Ph E Ph such that 

(2.3) P( VUh,VV) - (divv, Ph) =(f, V) VV E Vh, 

(div uh, ) =O VP E Ph E 

In order to define the finite element spaces we introduce a partitioning Ch of Q2 
into subdomains which are assumed to be either triangles or convex quadrilaterals 
whose diameters are bounded by h. Given an element K E CO, we denote by hK the 
diameter of K, by PK the maximum diameter of all circles contained in K and by 0iKg 
1 < i < 4, the angles of K if K is a quadrilateral. We suppose that the family eh is 
regular in the sense that there exist two constants a > 1 and 0 < y < 1 independent 
of h such that 

(2.4) hK 5PK VK E Ch, 

(2.5) 1cos iKI < Y, 1 < i < 4, for all quadrilaterals K E C-. 
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Now, for each integer m >? 0 we denote by Pm( K) the space of polynomials of 
degree < m on K and by Qm(K) the space 

(2.6) Qm(K) = (p =3o Fj|'jf E Qm(K)), 

where K is the unit sphere, Qm( K) is the space of polynomials of the form 

A(x) a E xlx, a R, 
O'<1,J<m 

and FK is a bilinear transformation which maps K onto K. Setting 

(2.7) Rm(K)= f Pm(K) if K is a triangle, 
k Qm((K) if Kis a quadrilateral, 

the space Vh is defined as 

(2.8) Vh = { V = (V1, v2) E VlK E Rk(K), i = 1,2, VK e Ch}. 

Since the pressure does not need to be continuous, we have various possibilities of 

choosing Ph. A continuous pressure is obtained by defining 

(2.9a) Ph=(p E L2(g) n C()IpIK e R,(K) VK E eh). 

We will also consider the following alternatives for a discontinuous pressure 

(2.9b) Ph = {p E LO2)IPIK E R,(K) VK E eh), 

(2.9c) Ph = (p E L20(2)jPIK e P,(K) VK E Ch). 

Remark. (2.9c) defines PIK E P(K) also for quadrilaterals. This can occasionally 
be a good choice; cf. Example 4 in Section 4. 

The spaces Vh and Ph have the following well-known (cf. [6], [7]) approximation 

properties. 

LEMMA 2.1. If u E [IH'(Q) C) H0(Q)]2, r > 1, then there exist u E Vh such that 
jju - ul, <Chq, 'IluIlqj, where q, = min{r, k + 1). 

LEMMA 2.2. If p E HS(Q2) C) Lo(S2), S ? 0, then there exist f E Ph such that 

IIP - f,t, < Chq2IIpPIq2, where q2 = min(s, / + 1). 

The Babuska-Brezzi stability condition [5], [11] for the approximate problem (2.3) 

is satisfied if there is a constant C > 0 such that 

(2.10) sup (div v, i P) v e V lv 
> Clipi0 Vp GE h 

v*O 

This condition is fundamental for the analysis of the mixed method since it, 

together with Lemmas 2.1 and 2.2, implies the following error estimates (cf. [11]). 

THEOREM 2.1. Suppose that the solution of (2.1) satisfies u E [Hr(92)]2, r > 1, and 

p e Hs(SI), s > 0, and let (uh, Ph) be the solution of (2.3). Then if the condition (2.10) 
is satisfied, we have the error estimate 

IU - UhtI + IIP - PhilO < C(hql juII|q. + hq2 tPl )q2 
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where q, = min(r, k + 1) and q2 = min(s, / + 1). Moreover, if the region Q is convex, 
we have the additional estimate 

IIU - Uhtto < C(h qIjujllqj + hq2? 11jPpq2)- 

In the next section we will show how the stability condition (2.10) can be verified 
in practice. 

3. The Stability Inequality. Let us start by introducing some additional notation. 
By a macroelement we mean the union of one or more neighboring triangles or 
quadrilaterals satisfying the regularity assumptions (2.4) and (2.5). A macroelement 
M is said to be equivalent to a reference macroelement M if there is a mapping 
FM: M -- M satisfying the conditions: 

(i) FM is continuous and one-to-one. 

(ii) FM(M) = M. 
(iii) If M = U jm Kj, where Kj, j = 1, 2,. . ., m, are the triangles or 

quadrilaterals in M, then K, = FM(Kj), j = 1,2,..., m, are the tri- 
angles or quadrilaterals in M. 

(iv) FM., = FK ?FK1 j = 1,2,..., m, where Fk and FK are the affine or 
bilinear mappings from the reference triangle (with vertices (0, 0), (0, 1) and 
( 1, 0)) or unit square onto Kj and Kj, respectiveiy. 

The family of macroelements equivalent with M will be denoted by SJM. 
For a macroelement M we define the space VO M as 

(3.1) Vo M = (V E [Ho(M)]21 VlK E Rk(K), i = 1,2, VK c M). 

Depending on which of the alternatives (2.9abc) is chosen to define Ph, we define the 
space PM respectively as 

(3.2a) PM = (p E L2(M) n C(M)|pIK E R,(K)VK c M), 

(3.2b) PM = (p E L2(M)|pIK E R,(K)VK c M) 

or 

(3.2c) PM = (p E L2(M) p1K E P,(K)VK c M). 

We will further define 

(3.3) POM PM n Lo 2(M) 

and 

(3.4) NM ={p E PM (div v, p) M = O Vv E VO M). 

Let us now prove the following 
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LEMMA 3. 1. Let S - be a class of equivalent macroelements. Suppose that for every 
M E - , the space NM is one-dimensional, consisting of functions that are constant on 
M. Then there is a positive constant ,BM = f(M, a, y) such that the condition 

(3.5) sup (div v, P) M >, 8pIIPIIoM VP E PO,M, 
VGE V() M IVI l M 

v*O 

holds for every M E 6, - 

Proof. Consider a fixed M e SM. Define the constant ,/M as 

/3M = inf sup (divv, P)M. 
p ePO M Ve VOM 

IIPIIo,M I IVII,M I 

Since NM consists of functions that are constant on M, and Po M and VO M are finite 
dimensional, it follows that AM > 0. 

Let us now prove that there is a constant f3- such that 1mM > f 3 > 0 for every 
M eM 

Let x..., be the vertices of the triangles or quadrilaterals in M. Every 
M E 8M is now uniquely defined by its vertices x' = FM(X& ), i = 1, 2 ... ., d, and so 
we may write I8M = I(x1, x2,..., xd). We will now consider the vertices as a point 
X = (x', x2,..., xd) in R2d, and 13M = ,8(X) as a function of X. Let hM = 
maxKc M(hK) KWe may assume that hM = 1 and that x' coincides with the origin in 
R2, since the general case can be handled by a scaling argument using the mapping 
G(x) = h4(x - xl). Since xl is chosen as the origin, every vertex x1, x2, . ..., xd lies 
within a given distance from the origin. Further, every K c M has a diameter less 
than or equal to unity and satisfies the regularity assumptions (2.4) and (2.5). This 
means that the point X belongs to a compact set, denoted by D, in R2d. It can now 
easily be proved that the function 13 is continuous, and since ,B(X) > 0 for every 
X E D, we conclude that there is a constant - > 0 such that ,B( X)> /,3 for every 
X E D. We have thus proved the condition 

inf sup (divv,p)M > 3-> 0 VME&= , 
P e PO.M V e VO,M 

IIPIIoM 1 IVIM M- 

which is equivalent to (3.5). El 

We are now ready to introduce a "macroelement condition" which is sufficient for 
the stability inequality (2.10) to be valid. Let us assume that there is a fixed set of 
classes S&, i = 1,. . ., n, n > 1, such that 

For each M e& i=l, 1..., n, the space NM is one-dimen- 
sional, consisting of functions that are constant on M. 

Let us further assume that for each h the triangles or quadrilaterals in Ch can be 
grouped together to form macroelements such that the so obtained macroelement 
partitioning GRh of Q satisfies the following condition: 

Each M E Y[Rh belongs to some of the classes &M - 
(3.7) 

~~~19= 12,... , n. 
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In the case when linear and bilinear elements are used for the velocities we will need 
one additional condition: 

If k = 1 in (2.8) and T is the common part of the boundaries 

(3.8) of two macroelements in 'Xh' then T is connected and 
(3.8) contains at least two edges of the triangles or quadrilaterals in 

dh- 

We can now state the main result of this section. 

THEOREM 3.1. If the above conditions are satisfied, then (2.10) holds. 

Let us postpone the proof of the theorem and first prove two lemmas. 
Below we will denote by fh the L2-projection from Ph onto the space 

(3.9) Qh = {,u E L( ) uM is constant VM E )Thh). 

LEMMA 3.2. Suppose that the conditions (3.6) and (3.7) are valid. Then there is a 
constant Cl > 0 such that for every p E Ph there is a v E Vh satisfying 

(divv. p) = (divv.(I - [Ih)p) > C1,|(I - rlh)PI|( 

and 

IvII < 11(1 - 1h)PIIO. 

Proof. For every p E Ph we have 

(I- h)P E P().M VM EM h. 

Since every M E ilTCh belongs to some of the classes . i = 1, 2. n, Lemma 3.1 
implies that for every M there exists vM E VO.M such that 

(3.10) (div vM,* (I - IJh )P)M - CL|(I - h) )PII(M 

and 

(3.11) IVMII,M < KI - Hh)PIIO,M 

where Cl = min(/34^., i = 1,..., n) and the positive constants /3M are as in Lemma 
3.1. Let us now define v through 

vIM = vM VM E -lh. 

Since v = 0 on AM for every M E IAQh we conclude that v E Vh and 

(3.12) (div v, FhP) = ? VP E Ph, 

and the assertion of the lemma now follows from (3.10) through (3.12). O 

LEMMA 3.3. Suppose that the condition (3.8) is valid. Then there is a constant C2 > 0 
such that for every p E Ph there is a g E Vh satisfying 

(div g, rh 2-117hP||o and 1g1 l C2IIFhPIIo 

Proof. Let p E Ph be arbitrary. Since f1hP E L2(S2), there exists (cf. [111]) 
z E [Ho( 2)]2 such that 

(3.13) divz =r hP 
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and 

(3.14) IzII < Cllrh P10o 

We will now combine some ideas from [8] and [9] in order to construct an operator 

Ih: [Ho(QE2)]2 -* Vh such that 

(3.15) (divIhz, ,u) = (divz, z) VY E Qh 

and 

(3.16) |IhZ|] < C|z|P 

The assertion then follows from (3.13) through (3.16). 
In order to define Ih we introduce some additional notation. As the degrees of 

freedom of a v E Vh we choose the values v, = v(x'), i = 1, 2,. . ., q, at the Lagrange 
nodes x', i = 1,2,. . ., q (cf. [6], [7]). Let wi, i = 1,2,. .., q, be the corresponding 
basis functions defined by wi(xi) = si,. The support of the basis function wi will be 
denoted by Si, and iSil will stand for the area of S,. The inter-element boundaries of 
the macroelements in 6iXh will be denoted by Ti, i = l,..., K (i.e. each T, is the 
common part of the boundaries of two neighboring macroelements). We will assume 
that "Xh consists of at least two macroelements so that 1 < K < q. 

Due to the assumption (3.8) we may assume that for i = 1. K the node x' E T, 
and that supp wi c M', U M22, where M,, and M2 are the macroelements in 6h such 
that T, = M,, n M,2 (when k > 2 in (2.8) x', i = ,..,, is taken as one of the 
interior nodes on an edge, of a triangle or quadrilateral, common to Mi, and M2). 
Since fT wi ds * 0, we can uniquely define lhz by requiring 

z dx 

(i) (Ihz)(xi) = i fori= K + 1, ..., ,m, 

and 

(ii) J lhz ds z ds fori= 1. K. 

Since Qh consists of functions that are constant on each M E O h, an integration by 
parts shows that condition (ii) implies (3.15). The estimate (3.16) is easily proved 
using a scaling argument. 

The lemma is thus proved. C 
We close this section by giving the 
Proof of Theorem 3.1. Let p E Ph be arbitrary, and let v E Vh, g E Vh, Cl and C2 

be as in Lemma 3.2 and Lemma 3.3. Set z = v + Sg, where 8 = 2C1(l + C2,)-. 
Then we have 

(3.17) (divz,p) = (divv, p) + 6(divg, p) 

> C11|(I - rlh)PIIO + 6(divg, HhP) + 6(divg, (I - nh)P) 

-,||(I h)PIO + p I2 hPI -Ig-il ( 1h)PIO 

> C1 _ 2 )II(I - h h)Plllh + r h)P110 

= c(Ip+C22)'IIPII 
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and 

(3.18) 1X1, 1 1P(I - h)IIO + 8C,fIIIpII() < CIIPIIO0 
The inequalities (3.17) and (3.18) are just an alternative way of stating the condition 
(2. 10), and the theorem is thus proved. C1 

4. Applications. In this section we apply the theory developed in Section 3 to some 
mixed methods. Let us first note that all the conforming methods discussed in [4], [9] 
and [18] can also be analyzed using the technique of Section 3. In fact, the essence of 
the analysis of [9], [18] consists of verifying the condition (3.6) for macroelements 
consisting of only one element. Using the present technique, we obtain optimal 
convergence rates for both the velocity and the pressure in the examples studied in 
[4], [9] and [18]. Thus, our analysis shows that the assumption of [4], [9] and [18] that 
the mesh is quasiuniform (i.e. hK > Ch for every K E COh) can be dropped and that 
the suboptimal estimates for the pressure proved in [4] can be improved to optimal 
ones. Improvements of some of the results of [4] are also obtained in [23], but still 
under the quasiuniformity assumption. 

The simplest method of approximation would be a piecewise linear or bilinear 
approximation for the velocities and a piecewise constant approximation for the 
pressure. It is, however, well known (cf. [15], [21]) that the corresponding mixed 
method in general does not satisfy (2.10). In particular, when the region S2 is 
rectangular and Lh consists of rectangular elements it is well known (cf. [15], 
[21]... ) that there is a nonconstant, "checkerboard" function y E P,1 such that 
(div v, tt) = 0 for every v E Vh. In our first example below we propose an alternative 
of this method, using bilinear quadrilateral approximations for the velocities and a 
piecewise constant approximation for the pressure, which satisfies the stability 
inequality (2.10). 

9 8 x9 x~~~~ 
10 

x 

K K4 /\K5 

4 x~~~~~~~~7 
\ 

X5 \ 
~~~~~~~~~~3 r 6 

x~~~~~ 

x x23 x 
m x~~~~~KK 

1 

FIGURE 1 

Example 1. Consider the reference macroelement M and an arbitrary M E 6 - as 
shown in Figure 1. Define the spaces V0 M and PM as 

'O,M{V E [Ho(M)] 1vilK e QI(K),i=1,2,VKcM}, 
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and 

PM- pE L29(M) PIKisconstant VK C M). 

Let us now check the condition (3.6). Choose v EU V'OM such that v(x') = 0, 
= 1,2,..., 10, i * 5, and v1(x5)= 1, v2(x5)= 0, respectively, vl(x5) = 0, V2(X5) 

= 1. The condition (div v, PA)M = 0 then gives the equations 

{ P1(X - x4) + P3(X - X2) +P4(X1 -_ X) = 0, 

P1(X -2 x4) + P3(X - X2 ) + P4 ( X-9 ) = 0, 

where we have written x' = (x, x), i= 1,2..., 10, and p,pK,=1,2,...,5. 
The equations are easily seen to be linearly independent with the only solution 

pI = P3 = P4. In the same way we conclude that the condition (div v, P)M = 0, 
where v is chosen such that v(x') = 0, i = 1,2,.. ., 10, i * 6, and v1(x6) = 1, 
v,(x6) = 0, respectively, v1(x6) = 0, v2(x6) = 1, implies that P2 = P3 = P5. The 
condition (3.6) is thus satisfied. Let us now define 

Vh = {V E [HO(&2)]2 V,IK E Ql(K) VK E Ch} 

and 

Ph= (PE LO(Q)1 PIK isconstant VK E (^) 

Suppose that for every h there is a macroelement partitioning 6-*h such that every 
M E (-%h belongs to S,M, where M is as in Figure 1. Since the conditions (3.6) and 
(3.8) are satisfied, Theorem 3.1 shows that the stability inequality (2.10) is valid. 
Suppose S2 is convex. We then have u E (H2(Q)]2 and p E H'(Q) if f E [L2(Q)]2 
(cf. [111), and Theorem 2.1 implies the estimates 

(4.1) IIU - UhIll + IIP Philo < Ch(11U112 + IIPIII) 

and 

(4.2) IIu - UhIlO < Ch2(11u112 + 11P111)- 

Remark. The method proposed by Le Tallec [16] can also be analyzed with the 
present technique, and the estimates (4.1) and (4.2) hold also for this method. 

In the following examples we consider three mixed methods for which we have not 
found detailed error analysis in the literature. 

Example 2. The Hood-Taylor method [12]. In this method the elements K E Gh 

are quadrilaterals and the approximating spaces are defined as 

(4.3) Vh {v E [Ho(Q)]2 VIK E Q2(K), i = 1, 2, VK e Ch} 

and 

(4.4) Ph ( ELo() C(_)IpIKEQ1(K) VKeCh). 

The method has previously been analyzed in [4] in the case of rectangular elements. 
We will now derive error estimates for the general quadrilateral case. 
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x~~~~~~~~ 

x~~~~ 

FIGURE 2 

Degree.s of freedom for VK). M (g) and PM (a) 

To check the validity of the condition (3.6). let M-=K1 U K2 be a macroelement 
consisting of two neighboring quadrilaterals (see Figure 2). The degrees of freedom 
for P1, are the values p, - p(xr') at the nodes x', i - 1, 2, . .., 6, and for VO M they are 
the values v(x') at x', i = 7. 8, 9. Let M = AT1 U A2 be the reference macroelement 
and assume that K, and k, are squares. Using the Green's formula we have 

(divv.P)M= --(VUSVp)M = - E (V, Vp)K, 
I _ I 

for v E 1/)M and p E PM. Let FM be the piecewise bilinear mapping from M to M 
and define, for v E V M and P E PM' v3 and p3 in M through v3(x) = v(FM(x)) and 

p.r)= P( FM (r)). We can then write 

( 4.5) ( t'*VQp )K, = 7 FVF ) F x j = 1, 2, 

where Jf iS the Jacobian matrix Of FM, IJ<M is the determinant Of 4F and JfUT is the 
transpose of JF '. Now, an inspection shows that 

V(X)JJFUVP( XQJFAfI E Q3( KJ), 

and the integral in (4.5) can thus be exactly evaluated using the composite Simpson's 
rule. Further, we have *J"() 0 for every x E K/. Using these facts we conclude 
that the condition ( v, VP )M = 0, where v E VO).M iS chosen such that v3(xi') = 0, 
i= 8, 9, and i31(X7 ) = 1 , V,( X7 ) = 0, respectively, t3 (X7 ) = 0, 32(i7 ) = I ( X' = 

FM'(x'), i = 7, 8, 9), gives the equations 

(4.6) / P3-P6 +r P2 -p =0, ? 
\P6-P1+P3-P2=O. 
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In the same way we get (taking vt(x') = 0, i = 7,8, and 
V,(X'9) = 1, 

C)2('9)= 
0, 

respectively, vtl( X9) = 0, v2( X 1) 

47) { f4 f 5 + fP3 P6 =0' 

(5 P- A + P4 -P3-? 0 

The equations in (4.6) and (4.7) are linearly independent with the solution 

(4.8) {PI = P3 =P5 = a, 
P2 = P4 = P6 = b, 

where a and b are arbitrary real constants. Now, choose v E VOM such that 
vi(x') = 0, i = 7,9, and v3(l8) = 1, v (x)=0, respectively, v3(i8) = 0, 32(x8) = 1. 
If p E PM satisfies (4.8), then the condition (v, Vp )M = 0 gives the equations 

( (a- b)(xj + xl - X-4 ) = 0, 

|(a -b)(x' + x24-_xI2-x22) = 0. 

Now, we cannot simultaneously have xS5 + xl -x -_ X2 = 0 and x, + x2 -_ - 
x22 = 0, since it would imply that the midpoint of the side X4 - x5 coincides with the 
midpoint of the side x' - x2. Therefore we conclude that a = b and (3.6) is thus 
valid for M. In the same way one can show that (3.6) is also satisfied for a 
macroelement consisting of more than two quadrilaterals. The quadrilaterals in Ch 
can always be grouped together to macroelements consisting of two or three 
quadrilaterals. There is only a finite number of different classes of such macroele- 
ments and (3.7) is thus satisfied. Theorem 3.1 and Theorem 2.1 then imply the 
estimates 

(4.10) IU - Uhll + IIP - PhilO < Ch2 (IlU113 + IIPI2) 
and 

(4.11) IIU - UhIlIo < Ch3(IlU13 + 11PI12), 

provided that u E [H3( 2)]2, p E H2(i2) and i2 is convex. 
Remark. If the boundary of S2 is curved, then the velocities are usually (cf. [12]) 

approximated with isoparametric biquadratic elements whereas the pressure is 
approximated with "superparametric" bilinear elements, i.e., Q, (K), i = 1, 2, in 
(4.3), (4.4) are defined as 

Q,(K) = {I. AFk'iAl E Q1(k)), 

where Q, (K) is defined in (2.6) and FK: K-- K is a regular biquadratic mapping as 
defined in [7]. For each K E Ch let a,,KS i = 1, 2,.. ., 9, be the usual Lagrange nodes 
such that a i = 1, 2, 3, 4, are the vertices of K. Let aKS i = 1,2, ..., 9, be the 
nodes for the corresponding straightsided quadrilateral K with dj_ = a, K for 
i = 1, 2, 3, 4. One can now easily show that the stability inequality (2.10) still holds if 
we have 

(4.12) Ilai,K - di,kll < ChK, i = 5,6,..., 9, VK E Ch, 

where C stands for a sufficiently small positive constant. In the definition of the 
regular mapping FK one has the condition Ila, K- a,kll = 0(h2), i = 5, 6,..., 9, 
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and (4.12) thus holds provided that thle mesh parameter h is sufficiently small. Since 
the approximation properties of VK, and P,, are as in Lemmas 2.1 and 2.2, Theorem 
2.1 holds. The estimates (4.10) and (4.11) are thus also valid for the general 
isoparametric Hood-Taylor method. 

Example 3. In this example we treat a modifaction of the previous Hood-Taylor 
method (cf. 1141). We assume that Q is a rectangle (or the union of rectangles) and 
that the elements K E Chare rectangles. The space P,1 is defined as in (4.4) and Vh as 

-xl = E [HtH(,(i2)] 2VI E Q (K), i' 1,2,VK E ' 

where Q'( K) is the reduced space of biquadratic polynomials defined in 16. p. 63]. 

3 6 9 12 
X2( K ? X50K K -K X 

1() - ( ) -- 74 )- 6 6 

2G 5 8\11 x x x x 

K1 4 K K 
3 : 

1 ~~~4- 7 1 0 x ~ ~~xx x 

FIGURE 3 
Degrees of freedom for VO Mf (o) and for PM (a) 

Let us now check the validity of the crucial condition (3.6). Consider a macroele- 
ment M consisting of six rectangles arranged as in Figure 3. Consider first the 
macroelement Ml = U 4 K,. The condition (div v, p), = 0, for every v e , Mlf 

gives a system of ten equations for the nine pressures p, = p(x'). i = 1,2,..., 9. The 
system (which we omit to write out explicitly) is easily seen to have a rank of seven 
and the nontrivial solution 

(PI 
= 

= =P = p7 = a, 

(4.13) P2 =P4 =P6 =P8= b, 

P5 = 2(a + b), 

where a and b are arbitrary real constants. Repeating this argument for the 
macroelement M2 = U 6 K,, we conclude similarly that 

(P4 P6 = PIO P12 =C, 

(4.14) P5 =P7 =P9 =P = d, 

P8 = 2(c + d). 

Now, if p satisfies (divv, P)M = 0 for every v E V(,,, then it has to satisfy both 
(4.13) and (4.14), which is possible only if a = b = c = d, i.e. p is a constant in M. 
The condition (3.6) is thus satisfied. In the same way we conclude that if a 
macroelement contains another macroelement which is equivalent to the macroele- 
ment in Figure 3, then (3.6) is satisfied. There is now a finite number of classes of 
macroelements, consisting of less than or equal to 24 rectangles, which satisfies (3.6). 
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Since for each h there is an 6Xh where each M E (%h belongs to one of the above 
classes, Theorem 3.1 holds and the error estimates (4.10) and (4.11) are valid. 

Example 4. In this method, which is being increasingly used in practice (cf. [10]), 
the space Vh is defined as in (4.3), whereas one uses a discontinuous approximation 
for the pressure, 

(4.15) h= (P E L )2IK E PI(K) VK E eh}. 

Let us now show that the condition (3.6) is valid for macroelements consisting of 
only one quadrilateral. On an arbitrary quadrilateral K E Ch, p E Ph can be written 
as 

PIK = aO,K + al,KXl + a2KX2. 

Let xo be the interior node in K, and let w0 be the corresponding basis function of 

Vh. Choose v E VO K such that vI(x0) = 1 and v2(x0) = 0. We then obtain 

(div (vP)K (V,7VP)K= -aI,KfWodx. 

Since JK wO dx > 0, the condition (div v, P)K = 0 implies that al K = 0. In the same 
way, choosing v E VO,K such that v,(x?) = 0 and v2(x0) = 1, we conclude that the 
condition (div v, P)K = 0 gives a2 K = 0. The condition (3.6) is thus satisfied for an 
arbitrary M = K E Ch. We may then choose 'Xh = eh in (3.7) and (3.8), and so we, 
once again, obtain the estimates (4.10) and (4.11). 

Remarks. (1) As in the remark following Example 2 we can conclude that the 
stated error estimates remain valid for the general isoparametric method. 

(2) Of the methods treated in Examples 2, 3 and 4 the last one seems superior, due 
to the fact that the discrete system can in this case be solved effectively using the 

penalty method, cf. [2], [10], [17]. 
(3) A method which is also often used in practice (cf. [3], [13], [17]) consists of the 

following choices for Vh and Ph: 

Vh (V E [Ho(0)]2 Vi,K E Q2(K), i = 1,2, VK eCh} E 

Ph p E PIK E Q,(K) VK E Ch). 

The method has originally been introduced in the engineering literature as a penalty 
method with "reduced selective integration", cf. [3], [13], [17]. 

The method does not satisfy the condition (3.6), so we cannot apply the theory 
developed in this paper. For rectangular elements it is, however, possible to analyze 
the method using the technique developed in [15]. The error estimates one obtains in 
this way are [22] 

IU - UhIl < Ch2(IU13 + lU14,q + IP12), 

IIU - UhIIO < Ch3(IU13 + iUI4,q + IP12) 

and 

IIP - Phllo < Ch(U1u3 + IU14,q + IP12), 
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where q > 1 and I 14,q stands for the usual seminorm in the Sobolev space W4 l(&). 
From the estimates one sees that the pressure does not converge with the optimal 
rate, a fact also observed in practical computations [21]. In [21] it is also noted that 
one can get a good approximation for the pressure by simply omitting the x1x2-com- 
ponent in each element in the computed Ph, and this can also be proved theoretically 
[22]. The resulting smoothed pressure then converges. with the optimal 0( h2 )-rate. In 
view of this analysis, the role of the x,x2-component is mainly disturbing and it is 
therefore natural to drop it from phIK This leads back to (4.10). 
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