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An Analysis of the Box and Trapezoidal 
Schemes for Linear Singularly Perturbed 

Boundary Value Problems 
By Richard Weiss* 

Abstract. Stability and convergence results are derived for the box and trapezoidal schemes 
applied to boundary value problems for linear singularly perturbed first order systems of 
o.d.e.'s without turning points. 

1. Introduction. Most numerical methods for singularly perturbed boundary value 
problems in ordinary differential equations analyzed to date utilize some upwinding 
procedure. So they are applicable only if the underlying problem exhibits some 
special form or can be transformed to such a form by analytic techniques; see 
Abrahamsson, Keller and Kreiss [2], Kreiss and Nichols [6], Ringhofer [9]. 

Frequently, however, such explicit transformations are not available. Then one has 
to resort to some standard difference scheme combined with an adaptive mesh 
selection procedure. Successful computations of this kind have been reported with 
the trapezoidal scheme by Abrahamsson [1] and by Ascher, Christiansen and Russell 
[3] and Maier [7], who have used collocation methods. 

Recently, Ascher and Weiss [4] have set out to investigate the applicability of a 
particular class of difference schemes, i.e. collocation with piecewise polynomials, to 
singular perturbation problems. They gave a detailed analysis of these schemes when 
applied to singularly perturbed first order systems with constant coefficients. 

The present paper provides the basis for the extension of these results to more 
general problems. We provide an analysis of the box and trapezoidal schemes 
applied to boundary value problems for linear first order systems with variable 
coefficients (without turning points). The box and trapezoidal schemes are the 
simplest members of the families of collocation methods based on Gauss and 
Lobatto points, respectively. 

We consider the system of n + m equations, with n equations singularly per- 
turbed, 

(1.1) cy' = A11(t, e)y + A12(t, 0)Z + f1(t, E), 

(1.2) z' = A21(t, e)y + A22(t, E)Z + f2(t, ) 0 < t < 1, - > 0, 

plus the boundary conditions 

(1.3) Bo(Y)(O) + B1(i)(1) = /. 
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42 RICHARD WEISS 

The matrices Aij(t, E) and the right-hand sides fi(t, E) are assumed to be smooth on 
[0, 1] x [0, eo], for some Eo > 0. 

A key assumption for our analysis is the existence of a smooth matrix-valued 
function E(t) such that 

(1.4) E-'(t)A11(t,0)E(t) = diag{XI(t), ..., Xn(t)}, 0 < t < 1, 

i.e. that A I I (t, 0) can be diagonalized by a smooth transformation, and that 

(1.5) ReXi(t) <0, i = 1.,n_ n, 

ReXi(t) > 0, i = n+ 1. .n, n+ n+= n. 

Our analysis shows that the box and trapezoidal schemes perform well provided 
that 

(i) the conditions (1.4) and (1.5) are satisfied, 
(ii) (1.1), (1.2) and (1.3) represent a well-posed boundary value problem, uniformly 

lIn E, 

(iii) the n x n matrix 

is nonsingular, where E '(0) stands for the first n rows of E -'(0) and E+1( 1) denotes 
the last n+ rows of E-(l), and 

(iv) a sufficiently fine grid with gridspacings of size comparable to - is used in the 
layer regions (and a "coarse" grid, just fine enough to resolve the reduced solution, is 
used on the remaining part of the interval). 

While condition (1.4) can be relaxed, all other assumptions are essential. In 
particular, the methods do not work without the fine grids in the layer regions since 
the errors in the layers otherwise pollute the solution on the whole interval. The 
structure of grids suitable for the layer regions depends on the desired accuracy in 
the layers, on the eigenvalues of A, I(0,0) with negative real parts and on the 
eigenvalues of A I I (1, 0) with positive real parts, respectively. For instance, equidistri- 
bution of the local truncation error leads to the following grid generation rule at 
t = 0: The local truncation errors all have approximate size 8 provided that 

h= (8/C)1"2E, hj = hj1, exp{ - 2 hj I/E) 

where c is a constant, ,u = maxi= .(Re Xi(0)) and hj denotes the jth gridspacing, 
counting from t = 0. This strategy is employed until the contribution of layer has 
decayed to 8, i.e. until t = - la ln 8. The number of gridpoints on the interval 
[0, -,u E ln 8] generated by the above procedure can be shown to be proportional to 
8- 1/2. Note that it is independent of e. 

When these grids for the layer regions are combined with an appropriate coarse 
grid in the interior of the interval, the local truncation error of a suitable general 
solution of (1.1), (1.2) is kept below some threshold for all meshpoints on [0, 1], 
uniformly in e. Still the schemes do not perform satisfactorily unless condition (iii) 
holds. This is in contrast to the common opinion that meshes based on the 
equidistribution of the local truncation error are always safe to use. 

We conclude this section with an outline of the paper. In Section 2 we collect a 
number of basic analytic results on linear singularly perturbed boundary value 
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problems which will be required in the analysis of the difference schemes. The 
schemes are defined in Section 3. Section 4 contains a stability result for scalar 
variable coefficient problems. In Sections 5 and 6 we present the analysis for the box 
and trapezoidal schemes, respectively, and some numerical results illustrating our 
theory are given in Section 7. 

2. Analytic Preliminaries. Here we collect a number of well-known results for 
linear singularly perturbed first order systems; for details see O'Malley [8], Kreiss 
and Nichols [6]. 

We consider the first order system 

(2.1a) Ey'= Ally'+ A12Z +fig 

(2.1b) z= A21y + A22z +f2, 0 t f29 

where y, z are vectors with n and m components, respectively, and where A j 
(ak(t, E)), fi = fi(t, E), i, j = 1, 2. For simplicity of presentation we assume that 
A ij, f'i E C ([O, 1 ] X [0, E0 ]) for some positive Eo. 

We assume that 

(2.2) All(t,O) = E(t)A(t)E-'(t) 

with E E C?[0, I] and 

(2.3) A(t) = diag(X,(t), ..., (t)} 

where 

(2.4) Re X1(t) I 0 ,.,n 

>0, i n + l,..,n,n + n= n, t E [0, I]. 

Given an m x n matrix-valued function L E C' [0, 1], the linear transformation 

(2.5) r =y, s = z-ELy 

applied to (2.1) yields 

(2.6a) Er' = (Al I + EA,2L)r + A12s + f , 

(2.6b) t= (-EL' - LA,I + e(A22L - LA2L) + A,,)r 

+ (A22 - LA2)S - Lfl + 12- 

If L is chosen so that 

(2.7) EL' = -LA,, + EtA22L - LA,2L) + A21, 

then (2.6b) is uncoupled from (2.6a). It is a consequence of (2.2), (2.3), (2.4) that for 
any k > 0 and E sufficiently small, say E < El, there is a solution L E Ck[O, I] of 
(2.7) which satisfies 

? d'L 
E ||-| < const, O < E < E . 

(JJ is the maximum norm.) This L has an asymptotic expansion in powers of e, 
k 

L = L(t, j) = ? L1(t)cI + O(E 
j=O 

which can be determined by equating powers of e in (2.7). 
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With L chosen in this way, (2.6a, b) become 

Er' = (All + CA12L)r + A12s + fl, 

s = (A22 - LA12)s - Lfl + f2, 

This system can be simplified further by the linear transformation 

(2.8) u = E-1r, v = s 

which yields 

(2.9a) EU' = (A + CB1l)u + B12V + gl, 

(2.9b) v' = B22v + g2, 

where 

BI,(t, C) = E-'(t)[(A11(t, E)A- (t,O))E(t),-1 

+A12(t, C)L(t, -)E(t) -E(t)]. 

B12(t, C) = E'(t)A12(t, C), 

B22(t, C) = A22(t, C) - L(t, C)A12(t, C), 

g1(t, ) = E -'(t)f1(t, C), 

g2(t, C) = f2(t, C) - L(t, C)f1(t, C). 

The system (2.9) is a very convenient basis for further analysis since the equations 
for u in (2.9a) are a diagonal system, up to a matrix of size e. In particular, using a 
contraction mapping argument as in Kreiss and Nichols [61, it is easy to obtain a 
representation of the general solution of (2.9) which completely reveals the structure 
inherent in such systems. 

In order to state these results we introduce some notation. Let P_E R" - '" and 
p+ E R n+ n be the linear maps defined by 

Px =( |i, P+x =( J x=(iiJ. 

Also, let 

(2.10) Hw =g 

be a shorthand notation for (2.9), with 

wt /u(t) \ 
t_ 

( 1 (t) 
w v( v(t) gt) g2(t)J 

Then we have the key result 

THEOREM 2.1. The system (2.9) subject to the boundary conditions 

P u(O) = 7?1E Rn-, P+u(1) = ?+1E R + v(O) = E Rm 

has a unique solution provided e is sufficiently small, say C < C2. This solution satisfies 

(2.12) ||w|| < const(||g|| + jj7q-1j + 11j[+11 + IJJn01j), 0 < C < E2- 



BOX AND TRAPEZOIDAL SCHEMES FOR SINGULARLY PERTURBED PROBLEMS 45 

An asymptotic expansion argument combined with this theorem yields 

THEOREM 2.2. For any k > 0 there is a (particular) solution wp(t) of (2.9) (or 
(2.10)) which satisfies 

(2.13) E < const, 0 < e2. 
j=O0 dtJ 

Using Theorem 2.1 we can define matrix solutions W, W+ and W0 of (2.10) with 
g = 0 in the following way: 

(i) 

( O ) U E RnXn- 

eU'= (A + eB1)U; P U (0) = I, PU (i)=I 0, 

(ii) 

W?= (U+) U E Rnxn+ 

eU+= (A + eB11)U+; P U+(0) = 0, P+U+(1) = I, 

(iii) 

WO= () E R(n+m)Xm; 

HIWO = 0; VO(O) = I, P_U0(0) = S(E), P+U0(1) = S+(09 

where (according to Theorem 2.2) the matrices S, S+ e R(n Xm can be chosen such 
that 

(2.14) E dW 0 < const, 0 < e<2. 
j=O0 dti 

With the aid of these matrix solutions and the particular solution defined in 
Theorem 2.2 we obtain the desired representation of the general solution of (2.9). 

THEOREM 2.3. Any solution w of (2.9) can be written as 

(2.15) w = Wy-+ W+y++ W0yQ + WP 

with yE Rn-, y+E Rn+ and Yo E Rm. 

The standard method yields the existence of the asymptotic expansions 

k 

U (t) = E U J(t/c)ej + O(Eck+ ) 

J=O 

k 

(2.16) U+(t) = u 
U+j((t - 1)1/c)cj + O(ek+ 1), 

J=O 
k 

|WI(t) = W 
Woj(t)E1 + O(k+ 1). 

j=O 
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It is clear that 

(2.17) UO(exP(A-(O)t/c)) U+0= (exp(A+(l)(t- 1)/?)) 

where 

(2.18) A-(t) = diag(X1(t), ..., X(t)), A+= diag(xn -+(t),.**, An(t)). 

Now we return to (2.1) and assume that boundary conditions 

(2.19) BO()( Y )(0) + Bl(E)(Z)(1) A(E) 

are given, where BO, B, and ,B depend smoothly on E. By the transformations (2.5) 
and (2.8) these boundary conditions are changed to 

(2.20) CO(E)w(O) + Cl(c)w(1) = D() 

Substituting (2.15) into (2.20), we obtain a linear system 

(2.21) M (E)Y -y {(E) 

for y = (y, y+, yo). The matrix M has an expansion 
k 

M(E) = E MjcJ + O(Ek). 
J =0 

For the sequel we assume that MO is nonsingular. This is equivalent to assuming that 
the boundary value problem (2.1), (2.19) be well posed, uniformly in E, i.e. that 

(2.22) ||<., const( , +jj/J), <c c3, 

with a constant independent of E. 
In the analysis of the numerical methods we shall require certain representations 

of the general solution of (2.9) not only on the interval [0, 1] but on any interval 
[t t with 0 < t < t < 1. This is achieved by defining W, , W+, W0 as previously, 
but with t = 0 and t = I replaced by t = t and t = t. W, W+ and W0 so defined 
have asymptotic expansions analogous to (2.16). Of course, t and t now enter into 
the coefficients of these expansions. For instance, corresponding to (2.17) we have 

(2.23) UQ = (exp(A(t)(t - t)/e)) U+O (exp(A+(tj(t-t 

Denoting by (L), and (U+), the lth column of U and U+, respectively, we obtain 
from (2.23) and (2.9) the following estimates: 

(2.24) d'(U)| < const E&'(exp{Re X( t)( -t )/) + 0(c)), 
dt' 

t t < t, I = I , . .. ,n-, i = 0, I , . .. , k, 

|(dU)|| < const e-'(exp(ReA (n t-))(t - t)/e) + + O(e) 
dt' 
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3. The Difference Schemes. On [0, 1] we introduce the partition 

(3.1) A=(O=t, <t2 <'. < tN < tN+l 1) 

and define h,=it+ I- tiI ti +/2 = (ti + ti +)/2, i = 0,. . ., N. 
The box scheme for (2.1), (2.19) is 

(3.2) eY'+ 
I Y =A I I(ti+ 1/2) yi 2 

i + A12 (ti+ 1/2)zi z2 +fl (ti+ 12)9 
(3.2) I = Y+1 (t Zi + Z1+1 

+ = A21 (ti+ 1/2 ) Y +Yi+I + A22 (ti+ 1/2) + +2 + 1/2 

(3.3) Bo(Y') +B,(ZN+I) =1. 

(For reasons of brevity we do not indicate the potential dependence of A,j, f , Bi and 
f8 on E.) 

In the trapezoidal scheme, (3.2) is replaced by 

Yi+ I - y, = A11(ti)yj + A+1(t,)yiI A12(ti)zi + A12(t+ 1)zi+ I 
(3.4) hi 2 +2 

+f,(t,) +f,(t,+ ,) 

2 

z -+ Iz1 A21(t,)y, + A21(t,+ )Yi+ I A22(ti)zi + A22(t,+ I)Zi+ 
=~~~ +2 hi 2 2* 

+ f2(t)+f2(ti+1) N. + 2 

An important step in the analysis of the difference schemes is a transformation of 
the discrete variables (xi, yi) analogous to the transformation of (2.1) to the form 
(2.9). Introducing the new variables 

(3.5) = ( -E'(t) 0 (YiZ,), i= 1, ,N+ 1 

we obtain, after some straightforward algebra for the box scheme (3.2), 

EU,+ I ui U, + Ui+ I 
hC 2 

(3.6) - B(t,,1/2)D + i + Rilu,, U+,I,,1V+J 

+ (9 = 1...,9 N, + 
Lj t E1 f(ti+112) ,t+f,2) tiiI2N 

where 

(3.7) B(t) A(At) +eB11(t) B12(t)J 

and where the Ri are linear maps from R2(n+m) in Rn+m with 

(3.8) I1R111 < Kh,, i = 1 ..., N; K = const. 
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The corresponding equations for the trapezoidal scheme (3.4) are 

u,+I - u, 

(3.9) V - V 2-(+ V +l)) iR[ u,, u,+ , V Vi+II 

2 

I[E-1(ti++,,2) 0 i f1(t1) + f, (ti+) 1 
2 L (t+12) 'I Mf2(tO) +f2(ti+I)41 N 

where the R, are maps analogous to the Ri and they satisfy an analogous estimate. 
Part of the analysis of the difference schemes will be based on (3.6) and (3.9) 

rather than on (3.2) and (3.4). Note that due to the occurrence of the R,, RI, (3.6) 
and (3.9) are not precisely the box and trapezoidal schemes for (2.9). This would be 
the case only when E and L are constant matrices. 

For the analysis of these schemes we assume that the partition A has the following 
structure: The meshspacings h, are comparable to e for i = 1,. . ., N(?) and i = N - 

N(') + 1,., N, where N(?), N(') are given. In between, i.e. for i - N(?) + 1,., N 
- N('), no such restriction is posed on the size of the gridspacings and we will show 

that the choice h, >> e is feasible. 

index of meshpoint 1 N (0)+1 N-N M+1 N+1 
\ > ~~~~~~~~~~~t 

t=ot A '' 

index of meshspacing h1 N(0)+ N(1)N N 

FIGURE 3.1. The grid 

4. A Stability Result and Notation. Here we establish an estimate for the solution 
of the difference equation arising from the discretization of linear scalar singularly 
perturbed differential equations. In the subsequent sections this result will be used 
for the treatment of vector systems. Also, we introduce some shorthand notation. 

To state our estimate we shall employ a grid 

(4.1) {O < 1 < T2 < ... < T < ,+ l<1), 

which in later sections will be identified with different portions of the grid (3.1). As 
before, let 

h, = T, - T,, +1/2 = (T, + T,+1)/2, i =1. I, 

and in addition, let 

(4.2) h= max(h, i = 1,..., I), X(t) = a(t) + i4(t), T1 < t -< + 

with a, /3 E C[I, r1+ ], a(t) < 0, < s t < T+ I, and define 

a = min((t) IT, < t < p) a-= max( ) (t) + T < t < 2+1), 

Y2 =max((#(t)/Ci(t))2 1T <- t < T,+ I) 

a = -h/2e, p (I + a)2 + a2y2 
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Then we have 

LEMMA 4. 1. The solution (y i'... y1 + I) of the recursion 

(4.3) h 1 - A(T l /2)- 2 f= f 1 

satisfies 

jyj < jy1jexp{a(T, -Tl)/P) + max{fj1,j = 1..., i - 1 = 1,..., I + 1. 
aII 

Proof. Let w be a complex number with ( = Re o < 0 and ij = Im w/l. Then 

-+ 
2 (1+ )2 + 422 4_ 

= ~~~~= I + 
I - @ (I _ )2 + 42n2 (1_ )2 + 42,q2 

< exp(4,/((1 + 

whence 

(4.4) ( < exp(2W/((1 _ {)2 + 2,2)). 

Rewriting (4.3) as 

Yi? I ( IY ) ( 

where 

(4.5) =i = A + 1/2 h 1/2 , 

we obtain the solution 

(4.6) y, = j + (l Y]. 

By (4.4) and (4.5) 

(4.7) 1 < exp({ h/pE). 

Hence, by (4.6) 

I Yi I < e max{lfjl j =I,...,i-I}) hjexp{a( T - Tj )/pE} 

The lemma follows since 

E h h1exp((iT - Tj+l)/pE) <, Ef exp{((Ti, - s)/pE) ds < p/llj. E 

j-I 

Note that Lemma 4.1 is mainly useful when h < KOE, where Ko is a constant, and 
when the ratio of imaginary to real parts of X(t) is of reasonable size (i.e. the 
problem is not highly oscillatory). 
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Now we introduce some notation. Given a grid (4.1) and vectors or matrices 
Si e RI for = 1. I + I (or = 1. I) and some integer l, we set s, =(s,,..., 
sI+ ) (or s= (s,,..., sI)). We define 

lIsall = max(1ls111, i = 1,..., I + 1) 

and analogously for the other case, where ljsill is the maximum norm of si. Given a 
function s E C [ T, T, + ., we define the restriction of s to the grid, 

As = (S(T,),,..., s(T,+,)). 

By c, C2,. .. we shall denote positive constants. 

5. The Analysis of the Box Scheme. The analysis proceeds in two main steps: First 
representations of the general solution of the difference equations (3.2) viz (3.6) are 
derived separately for each of the intervals [t,, ItN(O)+ I [tN(O)+ P tN-N(I)+ I1 
[tN N')+ +1 11, and these representations are related to the general solution of the 
differential system (2.1) viz. (2.9). Then the three representations are combined to 
yield the general solution of the difference equations on the whole interval [0, 1], and 
the remaining free constants in this general solution are determined through the 
boundary conditions (3.3). 

5.1. The InterVal [t1, tNo)+ j. Here it is convenient to use the transformed 
difference equations (3.6). We write these equations for i = 1,..., N(?) + I in 
compact form as 

(5.1 ) L4 | va ] = [|1 4L 211 [ v,J] + [ 2 J' 

where 

UA = (U,..., UN(O)+ 1) VA = (VI... VN(()+ ) 

( , b__ h 2_ 

VA 2 
V Vi+ I-Vi D V1+ V,i i= 

The LA} stand for the remaining parts of the difference operator, and g:,, g2 contain 
the inhomogeneous terms. From (3.7) it is clear that 

(5.2) iiL,"1,IiL2'l ,IIL2211 <- c,(&h+ e), h= max{h1il = I,..., N(0)), 

and IIL2ii C2. 
Now we impose boundary conditions 

(5.3) PuI = r (E Rn-, P+UN, = ri+e R+ v = e E Rm 

and proceed to show that (5.1) subject to these boundary conditions has a unique 
solution provided that 

(5.4) hi N KOE, i = ,..., () 

with a suitable constant Ko. 
We begin with a discussion of the structure of the difference operator LX\. The first 

n components, L'a , are scalar recursions which can be analyzed with the aid of 
Lemma 4.1 in the following way: When treating the first n of these recursions, 
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which belong to the eigenvalues of A with negative real parts (see (2.4)), the grid 
(4.1) is identified with the grid (O = tI < t2 < ... < t]o )+,) i.e. with the fine left 
end portion of the grid (3.1). And the function X(t) of (4.2) is replaced by X,(t) of 
(2.3) when considering the ith recursion; i = 1,..., n -. When dealing with the 
remaining n+ recursions, the grid (4.1) is again identified with the fine left end 
portion of the grid (3.1), but now according to the labeling Tj = tN(o,+1 - tN(O)+2_j, 

j = 1,..., N(?) + 1. And for X(t) of (4.2) we take Xi(tv(o)+I - t), i = n-+ 1,..., n. 
Then it follows from Lemma 4.1 that the problem 

LIXUA = gA, PuI = r-, P+UN?()+I = r+ 

has a unique solution for all g, 71, +, and this solution satisfies 

(5.5) 11u411 < 1lv_-1 + 11X+11 + dIIg4II, 

where the quantity d is the largest of the constants p/li obtained from Lemma 4.1. 
When h = K0e, then d = d(KO) in (5.5) is 

(5.6) d = ((1 - K0a/2)2 + Kj2a292/4)/Ial. 

The last m components of LA are easily analyzed as well. It is clear that the 
problem L&v' = g&, vI = 71, has a unique solution for all g, m1q provided that 

(5.7) hJ < 1B221/4, 

and this solution satisfies 

(5.8) 11pv41 < e(IIiioI + IIgAll), e = const. 

Applying the estimates (5.5) and (5.8) to (5.1), (5.3) and using (5.2), we obtain 

^luA < I[q11 + 11X1+11 + d{c(h(+ E)llII"l + C211VAII + lI1Al}) 

IIv,&II < e(lli10ll + cj(I + e)(lluAll + IlvAll) + llg2ll). 

When 

(5.9) cj(h + e)(d + e + C2de) < (2- )12, 

this yields the final stability result for (5.1): 

(luj < 2(IIh-II + I-+Ij + dIIg,lI + dc2e(I[q011 + IIg2II)), 

llVll < 2e(llinoll + ci(k+ E)(ll4l + 11q+11 + ligAll) + lIg2II). 

Next we state a representation of the general solution of (5.1) which is the discrete 
counterpart of the representation (2.15) and is a simple consequence of (5.10). For 
reasons of brevity we write (5.1) as 

HwA = g. 

THEOREM 5.1. The general solution of(5. 1) on [to, tN(o)?+ can be written as 

(5.11) WA =W , + W>i+1W4%i0 +IWpa, 

where 

,S- + ?= (1W -.+,o } N + I 
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with 

I( 1L ) e 
R(n+m)Xn-, IWJ - ( RL+ ) R("tnl)X D1, 

,wo?=j (E= R(n+m)Xm 

are matrix solutions defined by 

H, ,IW,, = O, P ,U,1 = I, P+ iUko)+ I = 0, ,vi- = 0, 

HIW+ = O, P,U,=O, P I 1UNo)+1 = I, IVI = O, 

H,, W, = 0, P- UI? = IS, P+ wUN(o)+ I Is ,+, ,V, =1, 

and 

I U"p, 
IWPA = 

1V P,, J 
is a particular solution defined by 

H,,IwP,, = g,, PIup=Pup(). P+ Iup,N(()+I = P+UP(tN(+ I), 

,VP = vp(O). 

Here the matrices IS and ,S + are defined by 

I$- = P- UO (0), IS+ = P+ UO(tN(())+1)1 

where UoL(t) is the "upper part " of Wo(t) (see Theorem 2.3), and wp(t) = (up(t), vp(t)) 
is defined in Theorem 2.2. (The subscript "1" in W W + ? and so forth indicates that the 
representation (5.1 1) is valid for the first portion of the grid (3.1).) 

It is clear that IWO and IwpPA are approximations to Wm(t) and wp(t). Because of 
the estimates (2.13), (2.14) and of (5.10), the standard consistency plus stability 
argument yields 

(5.12) IIIWA - AWOII < c3hk, 
(5.13) Illwp., - Awpll < c3hk. 

Also, IW^- and 1WJ+ are approximations to W(t), W+(t) on [0, tN(o)+ J. However, 
since negative powers of e occur in the estimates (2.24), the derivation of bounds 
analogous to (5.12), (5.13) is more delicate. First we consider the local truncation 
error HA[AW]: From (5.2) and (2.24) it follows that the local truncation error of.the 
Ith column of W is 

H A(1 I= 1= 

with ri =(ri ... I rin3 ' T 

with~ ~~~i 

Irikl < C4(e) + h,) (exp{Re AI(0) tic) Sk I + e, k I ,-, n, 

and 

IIsill < c4hi(exp(ReA,(0)ti/e) + e), 
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for i = 1.., N(?). Here 0kl is the Kronecker delta. If the grid is such that 

(5.14) ||(')|<- 
, i = 1 .N (0), 

for a given " tolerance" 8, then, using (5.10), 

(5.15) I11Wa - AWIJ < C58. 

An efficient way to achieve (5.14) is to equidistribute the principal part of the 
local error, i.e., to determine the grid such that 

(5.16) c4( e')exp(ReXI(0)ti/e}= C4(L I) = S. 

Taking the (an) I for which Re XA(O) is smallest in absolute value, this leads to the 
strategy already developed in Ascher and Weiss [4], 

(5.17) h =hi exp{-Re ()/2}, i = 2... N() 

h= (8/c4) / C. 

This generates an increasing sequence (h, I i = 1,.. ., N?0)). Of course, now the 
question arises whether h = hN,o) obtained in this way is not too large for the 
previous existence theory to be meaningful. An estimate of the magnitude of hN(N0 

can be obtained in the following way: It is natural to terminate the strategy (5.17) 
once a value tN(O is obtained such that 

exp{Re XI(O)tN(o0/e} 8 8, 

i.e. when the contribution of the layer has decreased to the magnitude of S. Then, 
using (5.16), 

( hNo?' )8 8; hNo / 

So the constant Ko in (5.4) has the magnitude of Cl/2, essentially independent of c. 
Equation (5.15) expresses the fact that 1W,j is an approximation to Wlt) on the 

fine grid, provided the grid is selected according to (5.14). Given such a grid,we now 
analyze ,WA,. The reason for determining the grid on the basis of W,- and not on 
the basis of ,W,+ is that ,W,- will contribute significantly to the general solution of 
the difference equation (3.2) on the whole interval [0, 11. The contribution of IWA' on 
the other hand will turn out to be insignificant, once the representations of the 
solution on the three subintervals are combined to one representation valid on [0, 11. 
Note that there is no analytic counterpart to W,+ in (2.15). 

We write 

(5.18) WA+ IV,+ 

and consider P+U,+. This is a set of N(?) + 1 matrices of size n+X n+. For 
= I., N() + I we denote the /th column of the corresponding matrix by ul, so 

that 

P + 
I n{( 1) N_01+ I 
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Then we decompose u' in the form 

(5.19) u/ = t,el + n/, i-=.. N(?) + 1, i/ e R'1, 

where el = (0. 0, 1, 0..., O)T is the lth unit vector, the scalars (, are defined by 

(5.20) k h -AX(ti+1/2) 2' =+ 0, iN= 1 .=n + 

(N(() + I ' 

and where the vectors q will turn out to be small. From (5.20) it follows that 
N?0) (, _ 

where j= k (tj + 1/2 )hJ/2c. By (4.4) 

1 + < exp{-ah1/pE), 

where a = min0<t< ) { (Re Xk(t)), and p =(l + a)2 + 02y2 witha =ahu/2c, 

a= max (ReXk(t)), y2= max 
M 
mk(t) ). 

0 < . < t<,, ok<t(,+ eA ( t 
ma 

Thus 

(5.21) < exp(-a(tN(o)+ - t1)/pE), i = 1. N() + 1. 

On substitution of (5.19) into the equations defining IWA+, we obtain a system of 
difference equations for the l and the lth columns of P IUA+ and VA+. This system 
has homogeneous boundary conditions and an inhomogeneity of size E + h_. Hence, 
the stability result (5.10) applied to this system for each 1, I n +, yields 

(5.22) In1AII IIPIUA ||, II'A || < C60(+ E)- 

This completes the analysis of ,WA. 
5.2. The Interval [tN-N()+ 1 tN+ I1. The analysis proceeds in the same way as on 

the first interval. So we only state the results. 

THEOREM 5.2. If hi < h+ < KIE, i = N - N (N) + 1, N, with a suitable constant 
K1, then the general solution of(5.1) on [tN- N+ 1, tN+ 1 can be written as 

(5.23) WA =3WA~-7+3WA ?1++3WA 01o +3Wp A, 

where the 3Wv- + ? are structured like the 1W^+' ?, and 

HA 3WA = 0, P 3U4-N(I)+ I = P+ 3UN+I 0 ?, 3VN-N()?+ I = 0, 

HA 3WA = 0, P 3UN-N()+I = P+ 3UN+I , 3VN+I , 

HA3WA =--0 P 3UN-N(I)+I =3S, P+ 3UN+I =3S+, 3V2 N(I? =30, 

and 

HA 3Wp A g9, P.3Up,N-N()+ I = P UP(tN-N")+ 1), 

p+ 3Up.N+ I P+UP(tN+ 9), 3Vp,N-N()+?l = Vp(tN-N()+ 1). 
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Here the matrices 35+O are defined by 

3S= P-UO(tN-N'+), 3S+= P+Uo(tN+I), 3SO = VO(tN-N(N)+l 

where U0(t), VO(t) are the lower and upper parts of WO(t) defined in Section 2. 

For 3 W-'+'0 we have the following estimates corresponding to (5.12), (5.13), (5.15), 
(5.21) and (5.22): 

(5.24) 1l3 W10- AW011 < C7h+, 

(5.25) l23wP -Awpll < c8h, 

(5.26) ll3WA+ - AW+ll < Cgs; 

3 3Vi )U Pi3UA = )i=N-N(')+l 

with u' = (,e, + il, =-N- N(') + 1,..., N + 1,q I E R"-, 

(5.27) J, s < exp{a(t, - tN_(N)+ 1)/p), i = N - N( ) + 1,..., N + 1, 

(5.28) l1',AII' iP+ 3A-11, 113V-ll V < C1o(e + h+) 
5.3. The Interval (tN(oI+ I, tN- N()?+ -. For brevity of notation we set i = N(?) + 1, 

= N - N( ) + 1. Here it is convenient to work with the difference scheme in its 
original form (3.2). First we consider the "reduced" problem 

(5.29a) 0.=A 21(t,?+12)0 ' 2 +A12(ti+122) 2 +fiI 

(5.29b) +h 'A21 (ti +1/2) 2iY -++A 22 (ti +1/2) Z2 +' 
f 

with f,' Ee Rn,ifi2 e Rm. Substitution of 

(5.30) Y, ~2Yl+I = _A,2(ti+1/2)(A12(t,+1/2)Z 2 +Z ) 

into (5.29b) yields 

(5.31) h1 = (A22 - A2,A71A12)(t,+172) 2 

+ - (A2 A')(t,,112)LiI i- i,..., i-. 

Let Z' e Rm>'m satisfy 

Zy, - Zli Zl + Zlj 
h = (A22 -A21 A11 A12)(t,+1/2) 2 '+ ' J =j,..., i, 

Z4 = I; j > 

Then the general solution of (5.3 1) can be written as 

(5.32) z, = Z,z + h1Z!+ '(I-h1(A22 -A A A 
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The general solution of (5.30) is 

= -l1 yl- -l) }c(+/2 2 + A,,(t+ )t) J-I (5.33) y _ .t()i!Y1(.l)i+ J(-()+ 2) +zJ2 
+ ( J 12) 

= (- 1 ty-C 1,/2)Zi + (- 1)i 1C(ti+172)Zi 

+ ( -1)E- ' 
-'(C(tJI1/2 ) -C(ti+ 1/2 ))zi 

i=i+ I i - I 

i-i -2 , (- 1)' ''AII(t1+ 172)f1', 
1=J 

where C = AA11A2. The last sum in this expression can be written as 
i- I 

(5.34) ( )i ' jA- 1(tj+,12)fiI 
=i? 

( i - i)/2 - 1 
- E Aj,'(t,+2j+3/2)(fi+2j+ L-f+2j) 

j=O 

(i-i)/2- 1 

+ E -A'(A-1(ti+2i+312)-Al(t,+2j+ 1/2))f+I 11 -1 
- 

-+2 
j=0 

in the case when i - iis even, and in a similar way when i - i is odd. 
From (5.32), (5.33) and (5.34) we obtain 

LEMMA 5. 1. Provided h = max(h i = i, . . -, i-1) is sufficiently small, say h 0 h0. 
then (5.29) subject to initial conditions specifying y,. z, has a unique solution, and this 
solution satisfies 

I-i 

(5.35) IIYAII < IIYJI + ci iiz,ii + itfi + 1a V + j j 

IIZ&II < CIl(IIlII + l(fJ'll + ll11f2l) 

Now we turn to the " unreduced" problem, with E(y, + I - yi)/h, replacing 0 on the 
left-hand side of (5.29a). We decompose the solution of the problem in the form 

(5.36) =i y1 + T ) = . r + ,J 

where y,r, z[ stand for the solution of the reduced problem using the starting values 
y,, z, such that 1i = 0, , = 0. Substitution of (5.36) into the unreduced equations 
yields 

(5.37) AI(ti+112) i A12(ti+1/2) 2 A(t+2) 2 

=e (+I -m)- (Yir+I -Yif)' 

=A21 (ti+ /2J 2 + A22(ti+1/2) ' + 
. -1, 

0i = ?, 'i = ? 
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Applying Lemma 5.1 to (5.37), we obtain 

c,, (h + 4E hT'' (llfAll + llYA1l), 
min j 

(h nmin 

where hmin = min{hf i =i..., [-1). Hence if 

2 I- 

(5.38) EC2, + 4 E h- < K < 1, 

which we will assume from now on, then, by the contraction principle, (5.37) has a 
unique solution which satisfies 

I-K K (5.3) 11A 1 1 - KllAI Al ri 11 1 - KIIYA II. 

We now derive a representation of the general solution of (3.2) for i = i,..., i-1. 
For ease of presentation we abbreviate (3.2) as 

HAxA = fA. 

A particular solution 2X, is defined by 

(5.40) H2, =, Xp,= Xp(t7 ) 

where xp(t) is the particular solution obtained from wp(t) by inverting the transfor- 
mations (2.8) and (2.5). Let e =2Xp - Axp. Then eA satisfies HAeA = 'A e, = 0 
where t, = 

Jig 17 ) represents the local truncation error of xp(t). It is well 
known that 

I = m(ti+/+112)h2 + O(h) 

for some smooth function p(t). Hence it follows from Lemma 5.1 and (5.39) that 

(5.41) 11e,&11 <, C12k- 
If the grid is locally almost uniform, i.e. 

(5.42) hi+, = hi(1 + 0(hi)), 

then 'i+ - 1i = O(h), and from Lemma 5.1 plus (5.39) we obtain 

(5.43) 11e,II -<- C13k2. 

Both estimates, (5.41) and (5.43), are sharp, as will be shown by a numerical example 
in Section 6. 

The general solution of the homogeneous discrete problem can be written as 

(5.44) XA = X0yo + XAy, YO E R", y ER- R 

where 
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and 

Ha X0 = 0, Y,? = Yo(t,), Z? = Zo(t.), 

H4X4 = 0, Y-=I, Z, = 0. 

Here Yo(t), ZO(t) are obtained from UO(t), VO(t) by inverting (2.8) and (2.5). The 
same argument as used for the particular solution yields 

(5.45) IIX?- AX0I < C14h 

and 

(5.46) iiXT - AXOII < CI5h2 

if (5.42) is satisfied. 
Applying the same arguments as in the derivation of (5.39) we obtain 

(5.47) Y. -i- ' + *i i = i, ............. 

with 

(5.48a) 11'A11 < K/(l - K) 

and 

(5.48b) IIZ,II < K/( -K). 

So up to a perturbation of size K/( I - K) we have 

(5.49) XT, ( ((-i-iI) = 

REMARK. A key assumption for the analysis of this subsection was (5.38). If a 
quasiuniform family of grids is used on [t,, t-l, then (5.38) is equivalent to requiring 
that e < const h with an appropriate constant of size one. For such a quasiuni- 
form family the analysis of this subsection can be extended to the case e > 
const hni 

5.4. Combining the Representations of the General Solution. Here we consider the 
discrete boundary value problem consisting of Eqs. (3.9) for i = 1,..., N and the 
boundary conditions 

(5.50) Pu1 = _, P+UN = A [, VI =O 

This is the counterpart of problem (2.9) subject to the boundary conditions (2.11), 
which is well posed, according to Theorem 2.1. We shall show that the discrete 
problem has a unique solution and that this solution approximates the solution of 
(2.9), (2.11) provided 8, h and K are sufficiently small. 

On each of the three subintervals we have a different representation of the general 
solution of the difference scheme: 

(5.51) wal IWX-71I + I W,&+ + + I W2 10 + I wp, 

on [t1, t,], with ' cE R% q +e Rn, ' E I e Rm, 

(5.52) w W = 2W1q2 +2WOq2 +2w,,z 

on [t,, t7-, with 12 E Rn, 2 e R", and 

(5.53) W3 = W +W-+3 + 3+ +3Wp a 
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on [t,, tN+ 1, with Ee Rn-, i+E Rn+ and 3 e R'. Here 1W^-+?,3W^'+'0 are as 
Theorems 5.1, 5.2 and 2W,, 2W,? are obtained from X,1, X,? via the transformation 
(3.5). 

We now determine the parameter vectors q1 -,+,o , i2, I O1,+,o such that 

(5.54a) Pul= 

(5.54b) VI-=lo, 

(5.54c) w.l = w.2 

2 3 (5.54d) W = W3, 

(5.54e) P U =3 

Equations (5.54) are a system of 3 x (n + m) linear equations for the 3 x (n + m) 
components of the unknown vectors. We shall show that this system has a uniformly 
bounded inverse if 8, h and K are sufficiently small. Written out explicitly, Eqs. 
(5.54) become 

(5.55a) P 1U'-'q+ PI U'+'q+ P 1U?l4o = q - P up I 

(5.55b) IVI-U1 + I vl++ mI vo = -I 1, 

(5.55c) q 2'i1 2W? 2w,- (S.SSc) lW, 'q' + IW,+q'++ IW?O'qo- W,A AO,?0 = 2Wp,i- lWp ,, 

(S5.55d) 2W,T12 +2W, n1o -3W,? 3W + AO3W 0 = 3Wp, - 2Wp,, 

(5.55e) P+ 3U4+ 1i-+ P+ 3UN+ 17++ +3UN+I 1+ -P+ 3uP,N+ 
. 

Most of the matrices in (5.55) have some special structure which is now discussed for 
each equation. 

Structure in (5.55a). By definition, 

P UI-=I, P 1U+ =O, 'P_ lU' = IS 

Structure in (5.55b). By definition, 

iV,- = O, VI+ = , iV,?=I. 

Structure in (5.55c). By (2.17) and (5.15), 

<- (exp(A())tj/e)) + 0(8) = (8). 

By (5.22), 

on xn+ 

Iwi 'n+Xn+ + O(E + , 

?mx n + 

and by (5.12) 

1Wio = W0(t,) +0( 

By (5.47), (5.48), on using (3.5), 

2w, = ( t(')) + O(K). 
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By (5.45), (5.46), on using (3.5), 

2AO= WO(t)?+O(h), I= lor2. 

Structure in (5.55d). By (5.47), (5.48), on using (3.5), 

2 W>(( )Y0 (tr)) + O(K). 

By (5.45), (5.46), on using (3.5), 

2W,?= WO(ti,) + (0), I = lor 2. 

By (5.28), 

in Xn_ 

3W (n+Xn + 0(E+h+) 

?mxn- 

By (2.23) and (5.26), 

O 
3W+ = exp(A+(l)(t- i)/,) +) 0(8)= (). 

By (5.24), 

3WT? = WO(t) + 0(h-2) 

Structure in (5.55e). By definition, 

PU +1=0, 1 0 P+ 3U3+ I I, P+ 3UN+ I =3+ 

Hence, up to a small perturbation, the matrix of the linear system (5.55) has the 
form indicated in Figure 5.1, where R stands for different nonsingular matrices, 
rectangular matrices are indicated by 5, and where the vector of unknowns is 
(nl,1 77 1 ?l n2 q2 2 3 3 , 3 

n_ n m n_ n m n_ n m 
n_ S (5_55a) 
m - , _ (5'55b) 

(5.56) m R R __ 

n_(-YE(tr, s -I - 555d) 
m R_ 

n ___ _ __ I 2)S (5-55e) 
FIGURE 5.1. The essentialpart of the matrix in (5.55) 
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In the matrix (5.56) blocks which are not indicated explicitly are zero. The size of 
each block in (5.56) is determined by the corresponding entry in the first row and 
column of Figure 5.1. The correspondence between (5.56) and the splitting (5.55a -e) 
is indicated in the last column of Figure 5.1. 

Using elementary row and column operations it is easy to see that the matrix 
(5.56) is nonsingular if and only if the n x n matrix 

P E-'(t) ) 

is nonsingular. As t1 = O(e In 8), I- t,- = O( e In 8), this matrix has a uniformly 
bounded inverse for all relevant values of t,, t-if and only if 

(5.57) det ; I * 0. 

In this case. the full problem (5.55) also has a uniformly bounded inverse when 6, h- 
and K are sufficiently small. 

We shall now show that the solution of (5.55) generates an 0(6 + h) approxima- 
tion to the solution of the corresponding continuous problem, uniformly on the 
interval [0, 1]. According to Theorem 2.3 the solution of the continuous problem is 

(5.58) w= Wy + W.y.+ W(y-(+ H,,,. 

where y, y, and y0 are uniquely determined through 

I P U (0)7 + P U (0)y t + P U((O)y() = -&P u (0). 

(5.59) V (0)y + V. (0)y + J' v )= 71( -P (), 

' P. U I)y.+ P. U.(l)y,+ P. U0(l)y( = 7v,- P. up(l). 

With the aid of y, y and y, determined in this way we define a vector 

(5.60) p = (y, 0, y(, 0, y(, 0, y+, )E R(+m) 

It is easily verified with the aid of (5.59) and the approximation results for the 
A, " and the particular solution that the vector p satisfies (5.55) up to a residual 
vector of size O(6) + O(hl). where I = I or 2 depending on the coarse grid. Hence, 
denoting the solution vector of (5.55) by iq, it follows that 

(5.61) IIP - l71 = 0() + O(/'). 

Combining the estimate (5.61) with the various approximation results for the 'V,'0 
and for the particular solution, we obtain on comparing (5.58) with (5.51), (5.52) and 
(5.53): 

LEMMA 5.2. The problem (3.9) subject to the boundary conditions (5.50) has a unique 
solution wX provided 8, h and K are sufficiently small and (5.57) holds. This solution 
satisfies 

11}K' - Aw11 1< C16(0 + P'), 

where I = I or 2, depending on the coarse grid. 
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Using the inverse transformation of (3.5) and the standard procedure of extending 
convergence results valid for a special set of linear boundary conditions to the case 
of general linear boundary conditions, as outlined for the continuous problem in 
Section 2, we obtain the principal result of this section. 

THEOREM 5.3. Assume that the boundary value problem (2.1), (2.19) is well posed 
uniformly in E, for 0 < - < Eo, and let x be its solution. Choose a grid as described in 
subsections 5.1, 5.2 and 5.3, and let the quantities 3, h and K characterizing this grid be 
small enough, i.e. 

O < 8 < 803 o<), O < h(o 0 < K < Ko, 

for suitable constants 80, ho, Ko. Also assume that (5.57) holds. Then the box scheme 
(3.2), (3.3) has a unique solution x, = (y^, zA) which satisfies 

(5.62) IIXA - AXII - CI7(C + A'), 

where / = 2 if the coarse grid belongs to a family of locally almost uniform grids, and 
l = 1 otherwise. 

6. The Trapezoidal Scheme. The trapezoidal scheme (3.4) (or (3.9)) is analyzed in 
very much the same way as the box scheme: separate treatment of the fine grids and 
the coarse grid, and patching of the different representations of the general solution 
of the difference equations. There are only minor technical differences on the fine 
grids which we shall not dwell upon. Essentially all results of subsections 5.1 and 5.2 
carry over to the trapezoidal scheme. 

On the coarse grid however the global truncation error of the trapezoidal scheme 
differs substantially from that of the box scheme, as will be borne out by the 
subsequent analysis. We consider the problem 

6.) 
y,+ Il-y, A,,(t,)y, + A,,(ti+ ,)Y,+ I 

(6.1) hi 2 

A12(t,)z, + A12(t,i+)Z,+ I fS(t,) +f,(t'+,) + 2 + 2 

Z - z, A21 (t.)Y, + A21 (t.+ I)Y+ I 

hi 2 

A22(ti)Z, + A22(ti+I)Z+,I f2(ti) + f2(ti+ I) 
2 2 ' i= .i 1 

with y,, z, given. By a slight variation of the analysis of the box scheme we obtain 
analogs to all results from Lemma 5.1 up to (5.39). We write (6.1) as 

HAxA = fA 

and define a particular solution 2xP,, of this problem by 

HA 2XP,A = fA 2Xp, = Xp(t,)l 

as we did for the box scheme. The global truncation error eA = 2xp, , - Axp satisfies 

HAe = 1A, e, =O, 
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where 1, = (1,,..., I> } is the local truncation error of xp(t). Now this local 
truncation error differs markedly from that of the box scheme. It has the structure 

11 = I Z , + (eO(h) 

Hence, as e << h, it follows that 

(6.2) IleA I1 ' c19h. 

This estimate is to be compared with the estimates (5.41), (5.43) for the box scheme. 
Note that when there is no unperturbed component z in (2.1), then (6.2) can be 
replaced by 

(6.3) Ile,ll 1< C2Osh7 

where I = 2 if the grid is locally almost uniform, and I = I otherwise. 
There are corresponding results regarding the approximation of X0(t). 
The remaining analysis of the trapezoidal scheme proceeds as for the box scheme 

leading to the counterpart of Theorem 5.3, with the estimate (5.62) replaced by 

(6.4) 11X4, - zxll = c22(8 + h2) 

or 

(6.5) 11X4, - AXII < C22(8 + 1h) I=1 or 2, 

in case (6.3) applies. 

7. Nwnerical Results. To provide numerical evidence for the theory of Sections 5 
and 6 we present some results for the problem. 

(7.1) ey' = A(t; X)y +f(t, e; A), 0 < t < 1, 
(7.2) Boy(O) + Bly(1) = -, 

wherey(t) = (y,(t), y2(t))T, X is a real parameter, 

(7-3) A(t; X) = E(t; X)[ I 0}E-1(t, X), 

with 

E(t, X)= E-'(t, X)= [sinXt cos Xt 1 
I.cos Xt -sin Xtj 

and 

( P E - O;A))=(? O) l=(p E-l( l; AX) ) (cos X - sin S 

Equation (7.1) can be solved explicitly. Introducing the new variable u(t)= 
E'- (t)y, the homogeneous problem ey' - A(t, X)y = 0 becomes 
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A fundamental solution matrix of this system is 

eexp((t- 1)(2 + ea)/e) --exp(-t(l + ea)/e,) 
- ~~~~~~~a 
-- exp((t - 1)(2 + ea)/,) eexp(-t(l + ea)/,) 

where 

2X2 I X2 --eX + O(E5), 
a = ?[3 + r9- 4e2A- =_ A _ E3A ( 

so the general solution of (7.1) is 

(7.4) y(t) = E(t)'t'(t)s + yp(t), 

where yp(t) is a particular solution of (7.1), and s = (sI, s,)T. Substitution of (7.4) 
into (7.2) leads to a linear system for s, which is well conditioned provided that 

Ai ?> 

Note that the matrix 

P E 
-(?; X)= ? 1 ) 

( P+E-1(1; X) cos X -sin ) 

is singular when X = Tr(k + 1/2), k = 0, ?1,..., so that condition (5.57) is not 

satisfied for these values of X, and hence Theorem 5.3 and the estimates (6.4), (6.5) 
for the trapezoidal scheme do not apply. 

We now report computational results for the values X = Tr/4 and X = Tr/2. 
7.1. The Case X = 7/4. The fine grids were constructed according to (5.17) with (C4 

set equal to 1. The fine grid at the left endpoint ends once exp( - tN() + je) < 8, and 
that at the right endpoint ends when exp(2(tN-N,,,+ I - 1)/e) < 3. The coarse grids 
were either chosen to be uniform or of the form hi = h, i = N(() + 1, N(() + 3,.... 

hi= h/2, i = N(?) + 2, N(?) + 4,..., which is not locally almost uniform. 
We take 8 = 10-6, which, for all values of e considered, leads to fine grids with a 

total number of 1164 points. The coarse grids are then obtained by inserting 
I = 9, 19, 39,... points between the two endpoints of the fine grids. 8 was taken so 
small in order to be able to verify the rates of convergence of the schemes when I is 
increased. 

The forcing term f(t, e; X) in (7.1) is chosen such that yp(t) = (e', e6') is a 
particular solution of (7.1), i.e. f(t, e; X) = eyp(t) - A(t, X)yp. The vector ,B was 
taken to be 

f3I = 3, 2 = cos(X) exp(l) - sin(X) exp( - 1) + 1, 

so that y has layers at both ends. 
In the following tables the values of 

e= max y, (t)tj yl., 1 = 1,2, 
I<j <N + I 

i.e. the absolute values of the maximal error in the two components, are given for 

specific values of e and I. The maximum is always obtained on the coarse grid. Away 
from the coarse grid towards the left and the right endpoints, the errors decrease 
rapidly and after a fairly small number of gridpoints they become of size 3. 
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Table 7.1 contains the errors obtained by the box scheme for e = 10-6 using 
uniform coarse grids. The results for the same - and nonuniform coarse grids are 
given in Table 7.2. 

TABLE 7.1 
I 9 19 39 

e f 7.25 E-3 1.85 E-3 4.67 E-4 
e2 2.38 E-3 6.09 -E-4 1.54 E-4 

TABLE 7.2 
I 9 19 39 

el 1.55 E-2 8.39 E-3 4.36 E-3 
e2 1.16 E-2 5.54 E-3 2.70 E-3 

We observe convergence of order 2 for the uniform grids and convergence of order 1 
for the others. This agrees with Theorem 5.3. 

In Table 7.3 we list the values of e2 obtained by the trapezoidal scheme for 
different E using uniform coarse grids. The analogous entries for the nonuniform 
grids are given in Table 7.4. 

TABLE 7.3 
I 9 19 39 

C 

1. E-2 9.22 E-6 2.11 E-6 1.96 E-6 
5. E-3 7.45 -E-6 1.96 E-6 1.96 E-6 

2.5 E-3 4.64 E-6 1.96 E-6 1.96 E-6 
1.25 E-3 2.60 E-6 1.96 E-6 1.96 E-6 
6.25 E-4 1.96 E-6 1.96 E-6 1.96 E-6 

TABLE 7.4 
I 9 19 39 

1. E-2 1.18 E-5 2.80 E-6 1.96 E-6 
5. E-3 1.72 E-5 2.85 E-6 1.96 E-6 

2.5 E-3 1.51 E-5 3.12 E-6 1.96 E-6 
1.25 E-3 1.11 E-5 2.93 E-6 1.96 E-6 
6.25 E-4 6.81 E-6 2.26 E-6 1.96 E-6 

The entry 1.96 E-6 in Table 7.3 is the maximal error in the right layer, and it 
pollutes the whole interval [0, 1]. Whenever this entry occurs in Table 7.3, it means 
that the error due to the discretization on the coarse grid lies below 1.96 E-6. The 
entries in the first row and column support the estimate (6.4). The values of e, 
behave like those of e2, and are therefore not given. 
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The entry 1.96 in Table 7.4 occurs for the same reason as above. In the first 
column of the table we observe an error proportional to E, while not much can be 
inferred about the dependence on I. In our computer environment we cannot 
decrease 8 further. 

7.2. The Case X = 17/2. We have analyzed the performance of the two schemes in 
the situation when the matrix 

| E E-'(O)| 
LP E-1(1,J 

is singular, for systems having no z-component and for meshes having a uniformly 
spaced coarse part. Assuming that all conditions of Theorem 5.3, except for (5.57), 
are satisfied, we obtained the bounds for the global truncation error 

(7.5) IIYA - AYII < c23(8 + h2)(1 + E ) 

for the box scheme, and 

(7.6) 1YA- AYII < C24(8 + eh 2)( + 

for the trapezoidal scheme, respectively. 
Table 7.5 contains the results for the box scheme applied to the previous problem 

with 8 = 10-6 and I = 9 for different values of E. 

TABLE 7.5 

10-2 10- 10-4 i0-5 10-6 10-7 

e, 1.73 E-3 5.54 E-3 3.68 E-2 3.49 E-1 3.47 E 0 3.47 E + 1 
e2 8.39 E-2 2.12 E-3 2.26 E-3 2.28 E-3 2.28 E-3 2.27 E-3 

The behavior of e, supports the validity of (7.5). rhat of e, can be explained by 
looking at the particular structure of the problem (7.1), (7.2). 

Table 7.6 contains the analogous entries for the trapezoidal scheme. 

TABLE 7.6 

e 1. E-2 5. E-3 2.5 E-3 1.12 E-3 6.25 E-4 3.125 E-4 

e, 1.04 E-5 7.76 E-6 5.26 E-6 3.85 E-6 3.14 E-6 2.79 E-6 
e2 6.53 E-6 4.49 E-6 2.87 E-6 2.32 E-6 2.03 E-6 1.96 E-6 

In this table the errors do not behave linearly in e, as they did for A = ?T/4. 
Further agreement with (7.6) is not apparent, and there is a need for more analysis. 

The computations were done on the CDC Cyber 174 of the Technical University 
of Vienna, using single precision (14 digits). The code SOLVEBLOK of de Boor and 
Weiss [5] was used in the implementation of the schemes. Due to the implicit scaling 
feature of SOLVEBLOK, no conditioning problems were encountered even when E 
was very small. 
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