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The Lanczos Algorithm With Partial 
Reorthogonalization 

By Horst D. Simon* 

Abstract. The Lanczos algorithm is becoming accepted as a powerful tool for finding the 
cigenvalues and for solving linear systems of equations. Any practical implementation of the 
algorithm suffers however from roundoff errors, which usually cause the Lanczos vectors to 
lose their mutual orthogonality. In order to maintain some level of orthogonality, full 
reorthogonalization (FRO) and selective orthogonalization (SO) have been used in the past as 
a remedy. Here partial reorthogonalization (PRO) is proposed as a new method for maintain- 
ing semiorthogonality among the Lanczos vectors. PRO is based on a simple recurrence, 
which allows us to monitor the loss of orthogonality among the Lanczos vectors directly 
wvithout computing the inner products. Based on the information from the recurrence, 
reorthogonalizations occur only when necessary. Thus substantial savings are made as 
compared to FRO. In some numerical examples we apply the Lanczos algorithm with PRO to 
the solution of large symmetric systems of linear equations and show that it is a robust and 
efficient algorithm for maintaining semiorthogonality among the Lanczos vectors. The results 
obtained compare favorably with the conjugate gradient method. 

1. Introduction. In recent years there has been considerable interest in the Lanczos 
algorithm and its applications [1]-[4], [8]-[20], stimulated by the unusual behavior of 
the algorithm in finite precision arithmetic and by its great potential for sparse 
matrix problems. After Paige [10], [11] gave a thorough analysis of the algorithm, 
research among numerical analysts was stimulated along two directions. In one 
direction of research the simple ("Paige-style") Lanczos algorithm was considered 
without further modifications [1], [2], [14], [17]. A tridiagonal matrix is obtained 
which may be up to six times larger than the original matrix [17], yet contains 
approximations to all of the original matrix's eigenvalues. As of today there is no 
proof that all the eigenvalues will be found by this procedure. 

On the other hand because of its so-called "instability" it was traditionally 
recommended to use the Lanczos algorithm only with full reorthogonalization [3], 
[22]. This was considered too expensive for large matrices. A second line of research 
attempts to cut down the number of orthogonalizations, yet obtain results from the 
practical Lanczos algorithm that are close to the ideal, roundoff-free algorithm (e.g. 
no appearance of duplicate copies of eigenvalues and termination after at most n 
steps). In order to achieve this goal Parlett and Scott [18] introduced selective 
orthogonalization (SO), which utilizes Paige's [10] theoretical explanation of the 
behavior of the algorithm, and performs reorthogonalizations only when necessary. 
Recently Grcar [4] presented a forward error analysis of the Lanczos algorithm and 
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in the light of his results proposed periodic reorthogonalization. Here we will follow 
this second line of research and propose a new orthogonalization method called 
partial reorthogonalization (PRO). 

In order to present this new method we first introduce the Lanczos algorithm in 
Section 2, and then in Section 3 we discuss its behavior in the presence of roundoff. 
The loss of orthogonality among the Lanczos vectors is governed by a simple 
recurrence. This recurrence is the basis for PRO, which will be introduced in Section 
4. Sections 5 to 8 deal with the computational details of PRO. In Section 9 we briefly 
compare PRO to the other reorthogonalization methods mentioned above. In 
Section 10 we present some numerical results. 

In this paper we will follow the Householder convention and denote column 
vectors by small Roman letters, matrices by capital Roman letters, and scalars by 
small Greek letters. Symmetric matrices are indicated by symmetric letters (A, T), 
and 1111 denotes the Euclidean norm for vectors, or the associated matrix norm. The 
conjugate transpose of v is denoted by v*. 

2. The Lanczos Algorithm in Exact Arithmetic. The simple Lanczos algorithm for a 
symmetric n X n matrix A computes a sequence of Lanczos vectors q, and scalars a,, 

Pi as follows: 
1: choose a starting vector rl, r1 * O, set q0O, /3 -I-r1II, 
2: forj 1,2,... do 

qj r= r/ pj 
ua =Aq,-/3,q,_ 

r.= u- a.q 
Pi+1 =Iu,+-III. 

One pass through step 2 is a Lanczos step. One Lanczos step is commonly derived 
from 

(2.1) Pi+ ,q,+ = Aq1 - a,q - ql. 

These equations can be condensed in matrix form as 

(2.2) A Q, - QJT = +q, + e,*, 

where Qj= (ql,..., q), e* = (0,0,..., 1) and 

a, /2 0 

/2 a /3 

TI . 

* /3 a.- /3, 
0 1Pi a. 

The Lanczos vectors q, are orthonormal, i.e. 

(2.3) Q,Q,-Ij, 

where I. is the j X j identity matrix. 
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Paige [11] has shown that the above implementation is the best among several 
other possible ones. 

The algorithm terminates if 3, + = 0, and this will happen for somej < n in exact 
arithmetic. The eigenvalues of the tridiagonal matrix T. are called the Ritz values. If 
s,, i = 1,. .. , j, are the eigenvectors of Tj, the vectors y, = Qjsi are called the Ritz 
vectors. Ritz values and vectors are the Rayleigh-Ritz approximations to the 
eigenvalues and vectors of A from span(Qj), the subspace spanned by the vectors 

ql,..., qJ. More details on the Lanczos algorithm for computing eigenvalues can be 
found in [15]. 

The algorithm can also be used for solving linear systems of equations Ax = b. 
Then b is chosen as starting vector, and at the jth step an approximate solution is 
given by x- QjT,- 'fle1. This is explained in detail in [16] and [20]. 

3. The Loss of Orthogonality. If the Lanczos algorithm is carried out in finite 
precision arithmetic, it behaves quite differently. The inevitable rounding errors in 
the computation affect the algorithm in a special way. Equation (2.1) becomes now 

(3.1) Pi+ 31q+I = Aq,-a1q1-131q1 -fj, 

where the n-vectorf1 accounts for the rounding errors at theith step, and aj, /j, and 

qj denote from now on the corresponding computed quantities. Usually lIfjil is small, 
so (2.1) still holds in an approximate sense. In contrast relation (2.3) fails completely 
after a while, i.e. the computed Lanczos vectors are no longer orthogonal, not even 
up to roundoff. This infamous loss of orthogonality is illustrated in Figure 3.1, 
where we have plotted loglolq, qk/el rounded to the next integer for a sample run. 
Here e denotes the roundoff unit. The integers in Figure 3.1 indicate by what power 
of 10 the inner products q7qk have risen over the roundoff level. 

Figure 3.1 shows that the orthogonality relation (2.3) starts failing already at an 
early stage during the algorithm. However a careful look at the numbers in Figure 
3.1 also reveals that the growth of lqj)qkl is by no means irregular or jumpy, but 
appears to follow a certain rule. Indeed we have the following 

THEOREM 1. Let 
w.k 

= q*qk* Then the wik satisfy the following recurrence: 

(3.2) 
Wkk = I for k 

2 ,..,,J 
Wkk- 1=q*qk- I for k = 2,,. . .,J 

PiJ+ IWj+ Ik Pk+ IWjk+ I + (ak - 
aj)Wjk + k(4k- jWj-Ik + qJfk- qkfj, 

for 1 < k <j, and jk+I = Wk+Ij. Here WkO0* 

Proof. Write (3.1) forj and for k: 

(3.3) =>+ Iq+ -AqJ - ajqj - f3q -fj, 

(3.4) 3k+ Iqk+ = Aqk - akqk - 8kqk-I fI k 

Form qk(3-3) - q(3.4) and simplify to obtain the result. 0 
Theorem I was already known by Paige [10] and by Takahasi and Natori [21]. But 

here it is used for the first time as a computational tool. It is also of central 
importance for the understanding of the loss of orthogonality. Its statement can be 
visualized by considering Figure 3.2. 
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q*ql 

q k ~~~~qkq qk+jq 

+?13 (ak a,) + k + I 

a, qkql,I ~ ~ ~ ~ q7k kf 

FIGURE 3.2 

The statement of Theorem 1. 

Theorem I says that the inner product q+ Iqk is a weighted combination of inner 
products from the previous two Lanczos steps, where the weights are the coefficients 
from the Lanczos recurrence. In addition the roundoff term q1*fk- q*fj enters the 
picture. The loss of orthogonality follows a second order inhomogeneous difference 
equation (3.2) with variable coefficients. In the ideal algorithm the roundoff terms f. 
and the qk qk_ are all zero. We then obtain a homogeneous difference equation with 
zero initial conditions. Hence all the kwill be zero, i.e. the Lanczos vectors are 
orthogonal. So the loss of orthogonality can also be explained by the instability of 
the difference equation. An attempt to analyze (3.2) further [20] yields Paige's 
well-known theorem [10], [15, p. 264]. 

4. Partial Reorthogonalization. The goal of all reorthogonalization methods men- 
tioned in Section 1 is to prevent the loss of orthogonality, i.e. to maintain a certain 
level of orthogonality among the Lanczos vectors. We define the level of orthogonal- 
ity Kj among the Lanczos vectors at thejth step as: 

(4.1) K, max q, qkl 

Clearly full reorthogonalization, i.e. the explicit reorthogonalization of q, +, against 
all previous Lanczos vectors, aims at keeping the level of orthogonality at roundoff 
level. However all that effort is not necessary. Numerical results (Scott [19]) and 
theoretical considerations in connection with the various reorthogonalization meth- 
ods (Parlett and Scott [18], Parlett [15], Grcar [4]) have shown that semiorthogonal- 
ity, i.e. K,-VE, among the Lanczos vectors is sufficient to permit the computation 
of eigenvalues without the appearance of spurious duplicate copies. The analysis of 
all these methods can be unified and we have the following theorem [20]: 

THEOREM 2. Let T, be the tridiagonal matrix computed by the Lanczos algorithm, 
where by some means the Lanczos vectors are kept semiorthogonal. Then Tj is, up to 
roundoff, the orthogonal projection of A onto span(Q,). 
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Proof. See [20, Theorem 2.5]. 
Theorem 2 implies that the eigenvalues of T1 are (up to roundoff) Rayleigh-Ritz 

approximations to the eigenvalues of A, although from a slightly different subspace 
than the ideal one. Similarly it can be shown that if an approximate solution x; to 
Ax = b is computed by xj = QjTj- 'Q b, then llxj - Jjll < , where xy is the best 
approximate solution from span(Q,) [20]. 

Semiorthogonality therefore appears to be all that is needed for the finite 
precision Lanczos algorithm in order to preserve most of the properties of the ideal 
algorithm. The method of partial reorthogonalization can now be described at an 
abstract level as follows: Using the recurrence (3.2), we compute estimates o,+ I k for 
the inner products of the Lanczos vectors, and then judiciously perform reortho- 
gonalizations based on the information from the recurrence in order to maintain 
semiorthogonality. In a more formal way the algorithm for PRO can be written as 
follows: 

(1) Perform a regular Lanczos step: 

(4.2a) ri + A-Aqj - ajq1 - f1q - fj 

(2) Update the estimates W+jlk for q'* lqk, for k = 1...,j using the recurrence 
(3.2). 

(3) Based on the information from the (;+ I k' determine a set of indices L(j)= 

(k I I < k S j) and compute 

(4.2b) r+ = - E qk (r* Iqk) -fIA 
k e 1. ( j) 

PRO has some obvious advantages. The computation of the estimates involves 
only a simple updating procedure for two vectors of length j. No inner products of 
Lanczos vectors have to be formed, and yet the loss of orthogonality can be 
monitored except for the roundoff term. For many Lanczos steps no orthogonaliza- 
tion at all may be necessary, and this information can be gained quite cheaply. 

But even when some IWOjk I> V4 indicate that semiorthogonality has been lost, then 
orthogonalizations against some, but not all previous Lanczos vectors are necessary. 
Against which Lanczos vectors one should orthogonalize, and how the recurrence 
(3.2) is evaluated computationally, is discussed in the following sections. 

5. Computing the Level of Orthogonality. An accurate evaluation of (3.2) would be 
advantageous in two respects: the loss of orthogonality (given by @'k = qj qk) could 
be monitored directly and these inner products would be on hand in the event of a 
reorthogonalization. However (3.2) involves the local error vectors fj, which are 
unknown unless one wants to compute them using double precision. But even this 
may be impossible if the matrix vector product is inaccessible and truly in black box 
form. The lack of fj appears to make (3.2) useless, but there is a way to utilize (3.2) 
without computing f1. 

Once the Xj*'s have risen to a level close to 4/ the qJ1fk - q*fj-terms, which are at 
roundoff level, do not contribute significantly to the value of wXII k. These terms are 
only important as long as the ijk are small like ellAll. We propose that the 
computation of the inner products qJ+ Iqk can be simulated by replacing the 
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unknown quantities by random values from appropriate ranges as follows: 

(5.1) W4)kk-l k fork =1,...,, 
Wk k-I = 4k fork = 2, ...,]j, 

?)j+I k A [k+ 1jk+I + (ak - 
aj)tojk + fk0k- I 

- 
Ijj- I k] + k 

for 1 k < j, and WIj k + I =0 k + I j Here tk0O0, and 4jkand Pk are certain random 
numbers, which have to be chosen appropriately. From now on we will refer to the 

I'ks computed with (5.1) as the computed or estimated orthogonality components, in 
contrast to the true components which are given by the inner products qJ*qk. 

10-_ I I , 

10 40 60 80 102 

Oo- Tru leefothgnlt 

C! 

qQ 

20 40 s0 80 100 
Lanczos Steps 

FIGuRE~ 5.1 
True and estimated level of orthogonality for various choices of Ojk. 

0-True level of orthogonality 
1 -Estimated level of orthogonality, K = 1.0 
2-Estimated level of orthogonality, K = 10.0 
3-Extimated level of orthogonality, K = 100.0 
4-Estimated level of orthogonality, Kc = 1000.0 
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Formula (5.1) can be regarded as a simulation of how the loss of orthogonality 
would occur on a different machine which generated numbers 4 and 4'k as actual 
roundoff errors. From Theorem I we can conclude that the loss of orthogonality 
mainly depends on the a, and Pi, and from Theorem 2 we know that the computed 
aj and 139 are exact up to roundoff. Therefore the computed loss of orthogonality 
from formula (5.1) will behave like the true loss of orthogonality as soon as the ,,'s 
exceed ne. 

This is illustrated by the following example, where we examined the dependence 
of formula (5.1) on the choice of 4jk and {A. For a matrix of order n = 128, which 
is part of the matrix in Example 1.2, Section 10, and with starting vector q* = 

(1,. ..,1)/ 128, we determined first the true loss of orthogonality. It turns out that 
for this matrix the Lanczos vectors remain semiorthogonal for 71 steps. Then we 
computed in two series of experiments the values for w,k with (5.1). First we chose 
{k E N(O, c) (i.e., we chose for the AA's a sequence of normally distributed random 
numbers with mean 0 and standard deviation E), and E N(0,IKE), with ic = 1.0, 
10.0, 100.0, 1000.0. Then we kept i,, fixed and varied {A. The true and the estimated 
loss of orthogonality are plotted in Figures 5.1 and 5.2. 

1o-SI I 

0 

10-15~~~~~~~~~~~~~~~~~ 

10-16~~~~~~~~~~~~~~~~ 

20 40 60 B0 100 

Lanczos Steps 

FIGURE 5.2 
True and estimated level of orthogonality for various choices of 4'A* 

(Graphs labeled as in Figure 5.1) 
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Figures 5.1 and 5.2 show that the estimated level of orthogonality with formula 
(5.1) reflects quite well the qualitative behavior of the true level of orthogonality. It 
is important to see that although, due to an overestimate of the error terms the 
computed level of orthogonality lies initially above the true level of orthogonality, 
the curves move very close together when they reach the critical 6t region. Even the 
curve with the largest overestimate reaches the x'- threshold only three steps too 
early, at step 68. In spite of the dependence on the random terms, (5.1) appears to 
produce an accurate estimate for the step at which orthogonality is lost. 

These tests were repeated with different examples in [20] and similar results were 
obtained. In all the cases (5.1) signals at about the right Lanczos step that the 
4', -level has been reached. These tests also show that the recurrence is relatively 
insensitive to moderate overestimates in the error terms. For example, as Figure 5.1 
shows, an increase in the estimate for the q,fk - q*f,-term by a factor 1000, resulted 
in Wk'S which reached the threshold only 3 step-s too early. For a practical 
computation of the level of orthogonality with (5.1) in connection with PRO it is 
therefore advisable to overestimate these terms somewhat. 

At this point we could content ourselves with the analysis of these error terms, 
since their direct influence on the loss of orthogonality is not too strong. However, 
there is one incentive, which may make a further study of these terms rewarding. It 
may be possible to compute (5.1) so accurately that the direct computation of qJ*+ Iqk 

can be saved and the values c - I k can be used instead in the usual reorthogonaliza- 
tion process. 

In order to obtain more information about the behavior of the q*fk - q*fj-terms 
and q7 lqk, a detailed statistical study of the roundoff quantities has been per- 
formed**. The results of this study are reported in [20]. Based on this study we 
decided to choose 

(5.2) = e(fik+ ? 

where 0 E N(0,0.3), and 

(5.3) En fl2 1 , 

where \I' E N(0, 0.6). 
There is one more error term to be considered. After a reorthogonalization has 

been performed, the terms q+ Iqk have to be reset. Ideally, of course, these inner 
products should be zero, but here we expect them to be at roundoff level. Again we 
performed a statistical study and decided to choose Wj+ k E N(O, l.5)e after a 
reorthogonalization has been performed. 

6. The Behavior of the Computed Level of Orthogonality. After the roundoff 
quantities were chosen as described in the previous section, we tested (5.1) with 
several examples where a full reorthogonalization was performed whenever one Xjk 

became larger than the threshold of V. In Figures 6.1 and 6.2 the true level of 
orthogonality and the computed estimate are plotted for two of the sample runs. 

**AII computations were carried out on the VAX 11/780 of the EECS Department, Computer Science 
Division at the University of California. Berkeley. For single-precision computations the roundoff unit 
E = 2 '4, for double precision E = 2-56 



124 HORST D. SIMON 
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10-tl 1 t 
50 100 150 

ILanczos Steps 

FIGURE 6.1 

True and computed level of orthogonality for A = diag( 12, 22..., 10002) 

and q -=(1,. 1)/l1000. 
(For the effect of having A diagonal see next section) 

lo-8I 

1O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C 

0 

0-161;t estimtedjY 0 

10-13~~~~~~~~~~~~~~ 

50 Lranczos Steps 100 150 

FIGURE 6.2 

True and computed level of orthogonality for the matrix 
used in Figures 5.1 and 5.2. 

These figures show that the computed level of orthogonality behaves as expected. 
The overestimates for the error terms cause an overestimate for the computed level 
of orthogonality as long as it is about e3/4. If the level of orthogonality increases 
further the error terms are relatively unimportant and the computed level of 
orthogonality approximates the true level of orthogonality quite closely. 

In Figure 6.1 we used a diagonal matrix for test purposes. This seems to be 
artificial and a trivial example. The Lanczos algorithm is however invariant (in exact 
arithmetic) under similarity transformations and a diagonal matrix as good as any 
other for a theoretical study of the Lanczos algorithm. Since it is not obvious that 
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this is also true in a finite precision environment, we repeated the sample run from 
Figure 6.1 with a similarity transformation of the diagonal matrix A. The starting 
vector was changed accordingly. We obtained: 

/ ~~4 

10-Em, 

estimated 

10-16 '- '-' '' 

50 100 150 
Lanczos Steps 

FIGuRE 6.3 
True and computed level of orthogonality for a matrix 

similar to A from Figure 6.1. 

The level of orthogonality is different from Figure 6.1. Here the threshold is 
reached about 10 steps earlier. This different behavior is due to the fact that the 
tridiagonal matrix is changed slightly, and the change in aj and /8j in turn produces 
different orthogonality components. This is not surprising, and consistent with the 
results from Section 3. However what is more important for our analysis here is the 
fact that in both cases computed and true level of orthogonality agree well with each 
other in the sense that the reaching of the threshold is signalized at about the right 
time. Their mutual relation is not affected by whether a diagonal matrix is used or 
not. So although diagonal matrices are of course trivial examples for solving linear 
systems, it is quite legitimate (and cheaper) to use them for the purpose of studying 
the loss of orthogonality and related questions. In the following sections we will 
therefore repeatedly use diagonal matrices as test examples. 

The properties of (5.1) discussed above turn the formula into a useful tool for 
predicting the level of orthogonality. It would be even more convenient if the WIk 

would be so accurate that the inner products qJ*qk would not have to be recomputed. 
Let us recall that by Paige's Theorem ([10], cf. [15, p. 264]) the vector Uj =QJqj 

(qrqJ+ 1, q*qj+ 1,..., qJ*qj+ )* tilts towards an eigenvector of Tj, when the corre- 
sponding Ritz value is about to converge to an eigenvalue of A. Let us consider now 
the vector Wj - (+ I l wj + l 2 w,j + IjJ)* computed by (5.1). Earlier we expressed 
the view that the computation of (5.1) can be considered as a simulation of the level 
of orthogonality that would occur on a different machine, where the random 
numbers chosen for ijk and 4k would be equal to the corresponding actual roundoff 
error terms. Therefore Paige's Theorem will also hold for wj, i.e., wj will have large 
components in direction of those eigenvectors of Tj for which the corresponding Ritz 
values are about to converge. 
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In numerical tests (20] we observed a behavior of u; and w, consistent with Paige's 
Theorem. However we only know that u, and w, will form a small angle with the 
subspace spanned by the eigenvectors corresponding to converging Ritz values, but 
we do not know how u, and WJ will behave in relation to the individual eigenvectors 
of T,. Since in general at a given Lanczos step we do not even know how many Ritz 
values are about to converge (unless we want to do a spectral analysis of T, 
comparable to selective orthogonalization), there seems to be no easy way to relate u, 
and WJ either in terms of eigenvectors of Tor directly. 

Nevertheless we tried to use the computed w,; instead of the exact inner products 

qq, , when performing a reorthogofalization. It turned out that the level of 
orthogonality is indeed reduced to a value below the threshold level, however not to 
roundoff level. This had the negative effect that the next reorthogonalization 
occurred much earlier. So although we saved the computation of the inner products, 
reorthogonalizations were needed more frequently, and no overall savings in compu- 
tations were made. Therefore the w, + l I are used in PRO only for estimating the level 
of orthogonality, but not for the computation of the q+ ,qk. 

7. Choosing Reorthogonalizations. In Sections 5 and 6 we saw how to compute the 
level of orthogonality from (5.1), and what information from the computed level of 
orthogonality can be inferred. In this section we will discuss how this information is 
used in order to decide when and against which past Lanczos vectors the current 
Lanczos vector has to be orthogonalized. 

From the remarks in Section 4 it follows that it is always necessary to orthogonal- 
ize qj+ against some previous Lanczos vectors, if Iq7 qk. > i/ for some k. V is 
the optimal threshold here, since it is the largest loss of orthogonality among the 
Lanczos vectors which we can tolerate and still obtain accurate a,'s and 13,'s. A 
smaller threshold would result only in more orthogonalizations without any gain in 
accuracy. This is confirmed by numerical tests (Scott [19, p. 82]) in relation with the 
analysis of selective orthogonalization. 

There is another important idea concerning reorthogonalization, which we can 
borrow from the method of selective orthogonalization [181. Suppose at step j we 
decided to reorthogonalize q, + i against all previous qk, then we will also reortho- 
gonalize at step j + 1 the new Lanczos vector qJ + 2 against all previous qk, no matter 
what the q*+ lq are. There is a direct justification of this additional reorthogonaliza- 
tion through formula (3.2). By reorthogonalizing at step j we make q> 1qk = 0(E) 
for all k S j. Then 

(7.1) #+I,2q7J+2qk = + 0(E). 

But if for some k, Jq*+ lqkql> x14 before the reorthogonalization, then also qj*qk must 
have been comparatively large, i.e. almost as big as r/-. One reorthogonalization by 
itself therefore does not help very much to reduce the size of qj+2qk. If,however,two 
reorthogonalizations are performed in a row, then formula (3.2) yields 

(7.2) f3+2qj+2qk = O(E), 
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and we can be sure that at least for the next couple of steps the level of orthogonality 
will remain small. 

So far we have assumed that during one reorthogonalization the current Lanczos 
vector was orthogonalized against all previous Lanczos vectors. But this is not 
necessary if our aim is to maintain only semiorthogonality. An important observa- 
tion concerning the loss of orthogonality can be drawn from Figure 7.1. Here we 
plotted on a logarithmic scale q4*3qk, k = 1. 42 for a run of the Lanczos 
algorithm with A = diag(1,4,9,..., 1002) and q* = (1, 1. 1)/10. 

10-12 - -q4lq- 

10-126 

0 20 40 

k 

FIGuRE 7. 1 

Iq>+ Iqklforfixedj and k s j. 

Figure 7.1 shows the typical pattern in the loss of orthogonality. Usually only 
some neighboring qJ+ Ik have grown to about the V level, whereas most other inner 
products remain quite small. In order to maintain semiorthogonality it is therefore 
only necessary to orthogonalize against selected Lanczos vectors. In the example 
given in the table it could be the first ten. Since (5.1) gives a reliable prediction of 
the loss of orthogonality it can indicate the old Lanczos vectors against which qj +I 
has to be orthogonalized. It is clear that an orthogonalization against only those qk 

with Jq*+lqkl > V, alone is not sensible. The same argument which was used to 
introduce two successive orthogonalizations at consecutive Lanczos steps can be 
applied again. Formula (7.1) says that q>, Iqk depends on qJ qk+ I qJ*qkI qjqk - , and 

qj;K lqk. Therefore it does not help to make only qj*qk and qJ+ Iqk small. The 
neighboring qJ qk I and q qk -I have to be reduced in order to make the ortho- 
gonalization useful, i.e., not to allow q> 2qk to become large again. However, in 
order to keep these small for some more Lanczos steps their neighbors in turn have 
to be small. 
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This situation can be expressed best in the following figure (similar to the domain 
of dependence/domain of influence argument in numerical PDE): 

k-3 El El 0l 0 El 
k - 2 U El El E El U-small k 

k-1I U U E 0 El 0-largeWk. 

k U E El 0 
k U U 0 El El 
k+2 U El El E E 
k+3 El El El 0 E E 

j j+ l j+2 j+3 j+4 

FIGURE 7.2 

Propagation of the loss of orthogonality. 

Figure 7.2 shows that reorthogonalizations against single Lanczos vectors are 
useless, since their effect is immediately wiped out by the neighboring large terms. 
The best strategy for choosing Lanczos vectors to reorthogonalize against therefore 
seems to be to group them into "batches". One batch contains all the offending 
Lanczos vectors, i.e., all the qk with Iq,+ IqkI > . and in addition to that a certain 
number of neighboring vectors. The next obvious question is then: how many 
neighboring vectors should be included in those batches? 

A first approach to this problem could be as follows: Suppose q,7qk has grown in 1 

steps from the roundoff level to 6/. Then we should not only orthogonalize against 

qk, but also against all vectors from qk 1 to qk + , in order to assure that qJ ,qk stays 
small for another I steps (m < 1). But some thought indicates that this is too much 
work. The terms q, qk p for p < 1, p "far" away from k, may be already quite small 

(cf. Figure 7.1) by themselves and their influence is only felt in q7+Pqk, i.e., after p 
more steps. But then q,+pqk may have grown already by the dynamics of formula 
(3.2) to a magnitude where the q, qk+p because of its small size plays no role any 
more. 

The question of how many neighboring Lanczos vectors should be used for 
orthogonalizing apparently cannot be answered a priori. Therefore the following 
numerical experiment was carried out. At each Lanczos step the recurrence (5.1) was 
updated. If any of the 1w1+1kl was larger than , then the neighboring +w k-I 

j+ k-2'*.. and ,?+ I k + I + I k+2 *.*. were checked until 'J+ I k-s and ' +1 k+ 
were found with I Wj +I k-si < n and Ij1+1 k+rI < q. Then q+ was orthogonalized 
against all q's from qk -s to qk + r inclusive. At the following Lanczos step qi + 2 was 
orthogonalized against qk -s+ I I - - . , qk + r- 1 Orthogonalizations against qk -s and qk + r 

are not necessary any more at the j + I st step (except for k - s = 1), because the 
inner products q7+ 2k_- and qJ+2qk+r will deteriorate anyway due to the influence 
of unorthogonalized neighbors (cf. Figure 7.2). These runs were repeated for 
different values of iq. Table 7.1 summarizes the results for two examples. For each 
example we list in the first column the number of orthogonalizations (one ortho- 
gonalization = two inner products) and in the second column the number of recalls, 
i.e., the number of steps at which reorthogonalizations occurred. 



THE LANCZOS ALGORITHM WITH PARTIAL REORTHOGONALIZATION 129 

TABLE 7.1 

Influence of the lower bound q on the reorthogonalizations. 

Example I Example 11 

7 | Orthogonalizations Recalls j Orthogonalizations Recalls 

qv | 624 26 ff 1518 40 

10-v'r 520 21 1178 29 

10-2Vi 526 17 781 22 

I -3 507 15 675 15 

10-4-VC 478 g 47 12 617 11 

10ov'E 504 10 672 9 

10-vr 576 10 705 8 

10-7-vrJ 620 10 jf 843 8 

10-'-i/ 756 10 925 8 

Here Example I is the matrix A = 104 diag(l, 1/2, 1/3,..., 1/1000) and 
Example II is the matrix A = diag(100, 49.5, 48.5,..., - 49.5) both with q* = 
(1, 1,..., 1)/10 as starting vector. Although the figures in the table look rather 
similar, the two examples are quite different. Example II has a uniform and equally 
spaced eigenvalue distribution, whereas the eigenvalues in Example I have a large 
relative separation at one end of the spectrum and are clustered at the other. The 
minimum number of orthogonalizations occurs in both cases for v = 10-4E. 

There is however a second cost factor which we have ignored so far. For large 
examples it will not be possible to keep the Lanczos vectors in fast storage. They 
have to be written into secondary storage, and every time some of them are needed 
one has to scan through all the Lanczos vectors. The cost of the recall operation will 
depend strongly on the system which is used and it is therefore difficult to compare 
it to savings in the orthogonalizations. The numbers in Table 7.1 suggest that the, 
number of recall operations or rewinds of the tape with the Lanczos vectors is 
constant as long as 7 < 10-5'V and then increases only slowly. Therefore the 
optimal choice for q regarding both cost factors lies somewhere between 10 -5 and 
10- 4V_, regardless of the precise relation between both cost factors. In order to 
determine an q independent from the machine used, we suggest 7q = E3/4. On the 
VAX 11/780 this choice yields q = 0.2274*10-12, which is slightly smaller than 
10-4V E 0.3725*10- 12. This also seems to be a satisfactory choice in the sense that 
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71 = E-3/4 is "halfway" between Vc (semiorthogonality) and E (orthogonality to 
working precision) on a Logarithmic scale. The examples from Table 7.1 were run 
again with this 71. and the following results were obtained. 

TABLE 7.2 

Results with j = 

No. of Orthogonalizations No. of Recalls 

Example I 501 11 

Example II 607 10 

The figures in Table 7.2 indicate that r1= - 3/4 yields almost the minimum number of 
both orthogonalizations and recalls. However these data have been gathered only for 
one fixed value of e. Thus n = E3/4 and 71 = 1000e have about the same numerical 
value but a totally different dependence of E. The numerical test described above was 
therefore repeated on the UNIVAC 1100 of the Computing Center of SUNY, Stony 
Brook using single and double precision. Here the values for the roundoff unit are 
E 0.2980*10 -- and r = 0.3469*10 -7. For these different values of E and the 
matrix of Example I the following table was obtained. 

TABLE 7.3 

Influence of the lower bound q on the reorthogonaliZations. 

( Different Roundoff Units) 

Example I Excample I 

tested with e 0. O2980 X 10 t tcsted with c _ 0.3469 x10l7 
3 3 

E % 0.2268 x 10-5 er 0.8039 X 10-13 

Orthogor.alizattions Recalls Orthogonalizations Recalls 

7 4783 26 6o4 25 

10-1 /7 668 24 462 21 

1O-2 / 622 20 421 16 

10-' / *E 755 17 410 12 

10- / 86? 16 383 10 

io- I 7 412 9 

io0 1 /7C 4o8 8 

10-7 / 430 8 

lo-,, ,/7 516 8 

io-9 /T 554 8 

E T . 668 18 429 9 
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The results reported in this table confirm that also in a different computing 
environment q = E3/4 is optimal in the sense discussed above. This choice of q finally 
determines against which previous Lanczos vectors the current Lanczos vector has to 
be orthogonalized, and thus completes the definition of partial reorthogonalization. 

A good insight into the mechanism of PRO can be gained from Figures 7.3 and 
7.4. Horizontal bars indicate the "batches" of Lanczos vectors against which the 
current Lanczos vector is orthogonalized. The double appearance of the bars 
corresponds to the fact that orthogonalizations are always carried out for two 
consecutive steps. 

20- 

40 = 
s 

100 
20 40 60 s0 100 

FIGURE 7.3 
Range of reorthogonalizations for Example I, -= 34 

80_ - 

20 _ X - 

400 

too i I J 

20 40 60 50 100 

FIGURE 7.4 
Range of reorthogonalizations for Example II, = E314. 
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Let us finally summarize the results of the discussion of PRO in the form of the 
following algorithm: 

TABLE 7.4 

Algorithm for partial reorthogonalization. 

Parameters: 

rt= index, which indicates the flrst vector in batch i 
st= index, which indicates the last vector in batch i 

Inifialize: 

first step 4- true 
ri 4- 0 

St4- 0 

Subroutine PRO at the j -th Lanczos step: 

1.) forkl=. 1 j do 
update the recurrence for ,+1, 

2.) if (first step) then 
begin for k = 1. * j do 

if(1 +1 I Vic) then 
determine rt and s,, such that I ,+ I > m 
where I =rt,r + 1, k- l,k,k + 1,' * S-1.s 

if (all ri and st are 0) then return 
end 

3.) for l =r1,r1+ 1, sj1-,sj1.r2r2+1 ,s2-1.s2,rs,.... do 
orthogonalize P,'j+lq'+l against q1 

4.) if (firststep) then 
first step 4- f alse; rt 4-- r+1; St 4 St-l 
else first step - true: rt 0 O; s *.- 0 

8. Some More Details on PRO. There are two more topics to be discussed in 
relation with PRO. One concerns the question of the effect of PRO on tiw inner 
products of qj+, with those previous Lanczos vectors against which the current 
Lanczos vector is not orthogonalized. Let q,+, be the current Lanczos vector before 
reorthogonalization and (compare 4.2) 

(8.1) q =+ I = qv+ X- (qj* Iqk)qk. 
kE L(j) 

Then for q,,IZ L(j) 

(8.2) qj+ Iq, = q -+ lql ( qv+ jqk)(qkq,). 
keL(j) 

Since semiorthogonality is maintained, we know that IqZql <V4, and also that 

Iq;+IqkI Vi.Hence 

(8.3) q,+ lql = qj; 1ql + O(IL(j)IeIIAII), 

and we do not have to worry that the level of orthogonality between the Lanczos 
vectors unaffected by PRO may deteriorate. A similar argument was used for SO 
and the corresponding Ritz vectors (Parlett [ 15, p. 281]). 
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Finally we want to mention that there is an easy way of avoiding the second of the 
two consecutive recalls of the Lanczos vectors by utilizing (7.1). Suppose at the jth 
step we orthogonalized q1 ? against qk. Then at the (j + 1)st step by (7.1) 

(8.4) #,+2qj+2qk= f]?+Iqj*qk + O(elIAII). 
Since we orthogonalize in batches the inner products qj*qk + X and qJ*qk - are also at 
roundoff level, and we obtain (8.4) for all vectors in the interior of the batches. We 
do not have to be concerned about the two vectors, which border the batch, because 
we do not orthogonalize against them at the (j + I)st step anyway. Therefore it is 
possible to compute at the jth step the vector 

(8.5) YJ= - +IE(qjqk)qkl 
k 

where we sum over all k E L( j) which are not on the edge of the batch. Then at the 
(j + 1)st step the second orthogonalization simply becomes 

(8.6) Pi+ 2qj+2 
= 

f31+'2qj+2 -Yj 

Thus at the cost of one extra n-vector the second recall of the Lanczos vectors is 
saved. There are however no savings in terms of arithmetic operations. This device is 
therefore only useful if the recall of the Lanczos vectors is expensive. 

9. Comparison with Other Orthogonalization Methods. 
9.1. Periodic Reorthogonalization. Grcar's [4] periodic reorthogonalization and 

PRO are quite closely related, however there are two main differences: in periodic 
reorthogonalization a full N-vector has to be updated versus only aj-vector for PRO, 
and whenever the threshold x1- is reached the current Lanczos vector is made 
orthogonal to all previous q's versus only some previous ones in PRO. PRO is 
therefore more economical than partial reorthogonalization. On average PRO needs 
about 2 of the number of orthogonalizations of periodic reorthogonalization (see 
Figures 7.3 and 7.4). For a comparison of PRO with FRO see Section 10. 

9.2. Selective Orthogonalization. Selective orthogonalization (SO) was briefly dis- 
cussed in the introduction as an alternative method for maintaining semiorthogonal- 
ity. We assume here that the reader is familiar with the method of selective 
orthogonalization ([18], for an exposition see [15]). Practical numerical experience 
with SO for eigenvalue problems (Nour-Omid, Parlett. and Taylor [9]) and for the 
solution of linear systems (Nour-Omid [8]) shows that SO works very efficiently. 
Since SO maintains orthogonality with respect to the Ritz vectors rather than with 
respect to the Lanczos vectors a direct theoretical comparison of how both methods 
go about maintaining semiorthogonality is difficult. Numerical tests reported in [20] 
show that PRO cannot be easily explained in terms of the Ritz vectors. Reortho- 
gonalizations in PRO mainly occurred in the direction of the dominant Ritz vector, 
but there was also a not insignificant component in direction of the other Ritz 
vectors. PRO reduces these relatively small components together with the needed 
orthogonalization in direction of the dominant Ritz vector. It therefore prevents the 
growth of the level of orthogonality in the direction of those Ritz vectors already at 
an early stage, and orthogonalizations against the second or third Ritz vector (as one 
would expect in SO) occur only in a hidden way in PRO. 

The cost of PRO and SO are in general comparable, and it appears that neither 
method has a clear edge over the other one. There are however examples [20] where 
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PRO is much more efficient than SO and vice versa. These examples seem to 
indicate that PRO is more advantageous for solving linear systems of equations, 
whereas SO is more appropriate for the eigenvalue problem. This conclusion is 
preliminary and has to be fortified by more numerical evidence. 

10. Numerical Examples. The Lanczos algorithm with partial reorthogonalization 
(LANPRO) as described in the previous sections was used for solving several large 
sparse symmetric systems of linear equations. The solution algorithm is mentioned in 
Section 2 and discussed in detail in [16] and [20]. The first three examples arise from 
finite element approximations to problems in structural engineering. The corre- 
sponding stiffness matrices were computed using the finite element approximation 
program FEAP [24, Chapter 23]. The other two examples are derived from finite 
difference approximations to elliptic partial differential equations. The examples and 
the characteristics of the resulting matrix problems are described in more detail in 
the following tables. 

TABLE 10. 1. Examples. 

Example No. Problem/Right Hand Side 

1.1 Biharmonic operator on a beam with one end free 

and one end fixed. Finite element approximation 

using 80 elements with 3 degrees of freedom per node. 

Unit load at about the middle of the beam. 

1.2 Same as 1.1. but using 240 elements. 

2 Biharmonic operator on a rectangular plate with one side 

fixed and the others free. 

Unit load at one of the free corners. 

3 Building modelled by the structure in Figure 

10.1; each beam is approximated as in Example 1. 

Unit load vector. 

4 Poisson's equation in an L-shaped region with 

mixed boundary conditions.The same problem as Example 4 

in [5],only using less grid points. 

5 -V(aVu) f in the unit cube in R3 

with Dirichlet boundary conditions. a is varying from 

10-2 to 106. Finite difference 

discretization using 7-point difference star and 

9x9x9 grid points. Random rigbt hand side. 
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TABLE 10.2. Properties of the Test Matrices. 

Example Order Nonzeros Half Bandwidth Fill-In Cond.Number 

1.1 237 627 4 1175 2.0*107 

1.2 957 2547 4 477 1.3*10g 

2 960 8402 43 86612 3.50103 

3 468 2820 178 38232 1.1*104 

4 675 1965 30 9929 7.1*106 

5 729 2673 B1 40961 1.8*109 

FIGURE 10.1. Building. 

In the second column of Table 10.2 we list the number of nonzeros in the upper 
triangular part of the matrices, and in the third column the half bandwidth, where 
no attempt was made to reduce the bandwidth by reordering the matrix. In the 
fourth column we list the number of nonzeros in the Choleski factor obtained after a 
minimum degree ordering of the original matrix. All matrices are positive definite. 

In a first series of tests we applied our algorithm to the six systems of linear 
equations as specified above, and compared its cost to the Lanczos algorithm with 
full reorthogonalization (FRO). The results are listed in the following Table 10.3, 
where we indicate the number of inner products used for the different parts of the 
algorithm. In each case the algorithm was stopped when the initial residual was 
reduced by a factor of 10-8. 
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TABLE 10.3. Cost of PRO versus FRO. 

PRO 
Example Number of inner products for R 

Lanczos Step Matrix Mult. PRO FRO tot. PRO tot. FRO 

1.1 959 420 7354 25172 5735 25502 0.33 

1.2 3839 2762 205113 407682 211715 414283 0.51 

2 1487 2170 4949 81256 8807 84913 0.13 

3 2082 2084 13746 119370 17914 123537 0.15 

4 1253 1007 17004 43472 19266 445733 0.24 

5 2608 2748 124246 187922 129603 193279 0.67 

The figures in Table 10.3 show that there are considerable savings in applying 
PRO as compared to FRO. There is apparently a direct correlation between the 
condition number of the matrix and the number of orthooonalizations which are 
necessary in order to maintain semiorthogonality, as a comparison of the corre- 
sponding columns in Tables 10.2 and 10.3 shows. Since several of our examples are 
very ill-conditioned the numbers in Table 10.3 can be considered as a worst case. In 
general for moderately well-conditioned matrices as in Examples 2, 3, and 4 we can 
expect that total cost of LANPRO is only about 20% of the cost of the Lanczos 
algorithm with full reorthogonalization. 

In order to appreciate LANPRO it is also important to note that in spite of the 
ill-conditioned matrices, LANPRO showed a very robust behavior in all test cases. 
This is best illustrated in Figure 10.2. where we compared the residual norms for 
runs of LANPRO and conjugate gradients for Example 1.2. According to [23] this is 
one of the most difficult problems for an iterative solver. LANPRO terminates here 
after 638 steps, whereas the conjugate gradient algorithm needs 14,169 steps. 

The maintenance of semiorthogonality among the Lanczos vectors yields, as 
expected, a large reduction in the number of necessary steps. It also guarantees 
termination of the Lanczos algorithm after at most n steps. In contrast to that the 
finite precision CG algorithm may not terminate at all. 

Another advantage of the Lanczos algorithm is that it can be applied equally well 
to indefinite problems. We ran LANPRO with the matrix from Example 1.1, and 
introduced a shift of - 2000 in order to make the system indefinite. Because CG in 
general is not applicable to indefinite problems, we compared our algorithm here 
with the algorithm SYMMLQ (cf. [14]). The indefiniteness caused no problem for 
LANPRO, and it compared very favorably in cost with SYMMLQ which is more 
expensive per step than conjugate gradients and in this case needed 2003 steps for 
convergence. The reduction in residual norm for this test run is shown in Figure 
10.3. 
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FIGURE 10.3 

Residual Norms for Example 1. 1 shifted by - 2000. 
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These comparisons of LANPRO and other iterative methods stress the robustness 
and range of applications of LANPRO. In order to discuss the cost effectiveness of 
LANPRO we have to compare it to one of the most effective methods now in use: 
the preconditioned conjugate gradient algorithm. Since on an ideal level both 
conjugate gradients and Lanczos algorithm are identical, we can apply the same type 
of preconditioning to both and then compare their behavior. Here we choose as 
preconditioning the incomplete Choleski factorization routine MA3 1 from the 
Harwell Library by Munksgaard [7]. For our set of test matrices we obtained the 
following results: 

TABLE 10.4 

Comparison of Preconditioned LANPRO with Preconditioned CG. 

CG LANPRO 

Example NZL Steps Cost Steps Cost Cost of Orth. Ratio of Cost 

1.1 1175 13 195 13 289 46 0.67 

1.2 4775 32 468 32 670 114 0.70 

2 23976 24 1204 22 1546 146 0.78 

3 7610 42 1410 29 1517 260 0.93 

4 3817 7 119 7 177 22 0.67 

5 7407 14 339 13 420 40 0.81 

The first column in Table 10.4 lists the number of nonzeros in the incomplete 
Choleski factor. We set the parameter C in MA31 to 10 -2, i.e. during the factoriza- 
tion all fill-in which was less than a hundredth of the corresponding diagonal 
elements was dropped. Since the cost of the incomplete factorization is the same for 
both algorithms it is not included in Table 10.4. For both LANPRO and CG we 
listed the number of steps which were necessary to reduce the residual norm by a 
factor of 108, and the total cost given by the number of inner products. Note that 
the number of nonzeros in the incomplete Choleski factor strongly affects the total 
cost of both algorithms, as Example 2 shows. For LANPRO we also listed the part 
of the total number of operations that was spent for orthogonalizations. LANPRO 
performed orthogonalizations in all examples, however these orthogonalizations did 
not lead to a significantly faster convergence of the method. Hence LANPRO turned 
out to be slightly more expensive in all examples considered. The ratio of costs is 
best for LANPRO in the two- and three-dimensional examples. One can expect that 
for larger and more structured examples, the incomplete Choleski factor will have a 
larger number of nonzeros. For these cases LANPRO will be more advantageous 
than CG. 

In order to illustrate the behavior of both algorithms we show below plots of the 
residual norm versus the number of steps and versus the number of operations for 
Examples 2 and 3. 
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Residual norms for Example 2 with preconditioning. 
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FIGURE 10.5 

Residual norms for Example 3 with preconditioning. 

In many applications the same problem has to be solved for several right-hand 
sides. Since LANPRO keeps the semiorthogonal Lanczos vectors, they can be easily 
used to compute first approximations to the solution for consecutive right-hand 
sides. CG on the other hand does not have this information directly available, and 
thus has to start anew with each problem. We consider here two common situations. 
As a typical structural engineering problem we solved the equations from Example 
1.2 for 20 consecutive right-hand sides, which were just unit loads applied to 20 

neighboring elements. In LANPRO we computed an initial approximation from the 

subspace spanned by the Lanczos vectors from the first run and used it as a starting 
guess. It then took only four iterations to obtain a reduction of the residual norm by 
10-8, and no more orthogonalizations were necessary. For CG we used the solution 
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from the previous right-hand side as a starting guess. Here it took between 1 1 and 13 
iterations to obtain the same reduction in the residual norm. If the number of 
operations is plotted against the number of right-hand sides for both methods the 
following graph is obtained. 

I I -1 

8*106 C 
/CG 

4010 LANPRO 

5 10 15 20 

Number of Right Hand Sides 

FIGURE 10.6 

Compatrison for consecutive right-hand sides, Example 1.2. 

Figure 10.6 shows the clear advantage of LANPRO if the system has to be solved 
for consecutive right-hand sides. When two right-hand sides are present, the perfor- 
mances of LANPRO and CG are roughly equal. Since the cost for all further 
right-hand sides is constant in both algorithms, LANPRO's relative efficiency 
increases with the number of right-hand sides to be treated. 

A similar situation occurs if parabolic partial differential equations are solved for 
several time steps using an implicit method in time direction. We modeled this by 
solving the linear system arising in Example 5 with the identity matrix added for 20 
consecutive right-hand sides. The new right-hand side was chosen as the solution 
from the previous run. We proceed as above for Example 1.2. In this case, LANPRO 
has the additional advantage that the projection of the new right-hand side on the 
subspace spanned by the Lanczos vectors does not have to be computed, since it is 
already known from the previous run. 

This numerical experiment showed results similar to those above. For all consecu- 
tive right-hand sides, LANPRO needed 5 iteration steps, whereas CG needed 8. The 
corresponding graph is given in Figure 10.7. 
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FIGURE 10.7 

Comparison for consecutive right-hand sides, Example 5. 

Figure 10.7 shows qualitatively the same behavior of LANPRO as Figure 10.6. 
Again, for two consecutive right-hand sides the cost of LANPRO and CG are about 
the same. The nice feature about LANPRO now becomes very clear. For a little 
extra cost we are able to produce a semiorthogonal basis for the Krylov subspace, 
which can be exploited for consecutive right-hand sides. The updating and monitor- 
ing of the recurrence and the occurrence of a few reorthogonalizations are a small 
price to pay for it and, yet, LANPRO compares favorably with CG in terms of cost. 

Let us draw some conclusions from the observed behavior of the Lanczos 
algorithm with partial reorthogonalization. The above examples show that LANPRO 

ol finds a solution in K n steps, 
O is very economical for the treatment of several right-hand sides, 
Ol can handle definite and indefinite problems equally well. 
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