
MATHEMATICS OF COMPUTATION 
VOLUME 42, NUMBER 165 
JANUARY 1984, PAGES 165-171 

A Termination Criterion for Iterative Methods 
Used to Find the Zeros of Polynomials 

By Masao Igarashi 

Abstract. A new criterion for terminating iterations when searching for polynomial zeros is 
described. This method does not depend on the number of digits in the mantissa; moreover, it 
can be used to determine the accuracy of the resulting zeros. Examples are included. 

1. Introduction. This section discusses some of the better known termination 
criteria as applied to Newton-Raphson's method. This method iterates according to 
the following procedure: 

(1) Xk+I = Xk -f(Xk)/f'(Xk), 

where f(x) is a polynomial of the form 

(2) f(x) = aoxn + a,xn-' + .. + anIx + an (aoan * 0.0). 

Several well-known criteria for terminating the calculations are ([1], [2], [3], [4]): 

1) IXk+I - XkI < EPSIXk+ II, 

2) |fx+l|<E S;lajxk n-i, 

3) Ifx+l) Ptmaxlajxn il ( j =01,2...,n), 

where EPS is a constant which depends on the number of digits. For a computer 
performing floating-point arithmetic with a 24-bit mantissa, the value of EPS is 
nearly equal to 2- 24. Criterion 1) is simple and effective if Xk approaches a 
sufficiently isolated zero, while ineffective if Xk approaches multiple or clusters of 
zeros. 

When calculating f(xk) by floating-point arithmetic, the number of significant 
digits decreases as Xk approaches a zero. Hence, procedure (1) should terminate if 
f(xk+ 1) has no significant digits. Criteria 2) and 3) are based on this principle. 
That is, the right side of these relations sets an upper bound on the calculation error 
off(xk+1). When using criteria 2) and 3), it is difficult to determine the value of 
EPS adequately. For example, assigning EPS a value of 224, when using criterion 
2) on a floating-point binary arithmetic machine with a 24-bit mantissa, results in an 
over-estimation [4]. Using the same value on a floating-point hexadecimal arithmetic 
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machine with a 24-bit mantissa results in an under-estimation, because a few leading 
bits of the mantissa are sometimes lost in the calculation on a hexadecimai 
arithmetic machine. 

2. Termination Criterion. In this section we evaluate f(x) using two different 
procedures, and describe a termination criterion that uses the difference in the 
resulting values. 

Procedure I. We evaluate f(x) by one of the usual methods, such as Horner's, and 
let that value be A(x). 

Procedure II. Next, we evaluate G(x) as given by 

G(x) = (n - I)aoXn + (n - 2)a,xn-' + *. + an-2x2 -an 

(= xf'(x) -f(x)) 

followed by xf'(x), and finally xf'(x) - G(x), whose value we represent as B(x). 
If x lies near a zero of (2), then the computed value A(x) has more significant 

digits than the computed B(x), because the relation Ixf'(x)I > lf(x)l always holds 
true near a zero of (2). Therefore, the value for f(x) obtained by Procedure I is 
somewhat more accurate than that obtained by Procedure II. However, since the 
exponent of A(x) agrees with that of B(x), we may conclude that as x comes 
sufficiently close to a zero of (2), both A(x) and B(x) cease to have any accurate 
digits, and the two values differ. 

We now present the following termination criterion based on the above discus- 
sion: 

(3) IA(xk)- B(xk)I> min(IA(xk)I, IB(xk)l). 

Next, some detailed characteristics of the criterion will be considered. 
C-1) If A(xk) = 0.0 or B(xk) = 0.0, then the iteration terminates. 
C-2) If A(Xk)B(Xk) < 0.0, then the iteration terminates. 
C-3) If A(xk)B(xk)> 0.0, then (3) is replaced by 

(4) IA(xk)-B(Xk)l > 1 
min(IA(xk)I. IB(Xk)I) 

This means that the iteration will terminate if 21A(xk)l ' IB(xk)l or 21B(xk)J < 

IA(Xk)[ 

3. Application and Comparison. The above criterion is easily applied to other 
methods, such as Durand-Kerner's method [5] and Aberth's [6] method. Further- 
more it is possible to estimate the accuracy of the result by using the values A(x) 
and B(x) [4]. That is, if Xk+, satisfies criterion (3), then the number of leading digits 
of Xk - A(xk)/f'(xk) and Xk - B(xk)/f'(xk) which are in agreement is nearly 
equal to the number of accurate digits. In Example 4 (Table 1), for instance, if we 
take xo = 1.277 as an initial approximation, then we have the following approxima- 
tions. 

xo- A(xo)/f'(xo) = 0.127172646983610D + 01, 

xo- B(xo)/f'(xo) = 0.127172697536861D + 01, 
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where the value for the left side of (4) is 0.13D - 02. The leading digits which are in 
agreement (0.1271726D + 01) are accurate digits, and the leading digits up to the 
second decimal place (0.12D + 01) agree with the solution. As the iteration con- 
tinues, the number of accurate digits decreases, and after five iterations the following 
approximations are obtained: 

x5- A(x5)/f'(x5) = 0.126008718707480D + 01, 

x5- B(x5)/f'(x5) = 0.126015476865675D + 01, 

where the left side of (4) evaluates to 0.38D + 01. This shows that the number of 
leading digits which are in agreement (= 0.1260D + 01) is nearly equal to the 
number of significant digits in the true zero. 

TABLE 1 

3 3 2 1. (x-12.5) =x -37.5x +468.75x-1953.125 

2. (x-1.20)(x-1.21) (x-1.22)(x-1.23)=x 4_4.86x 3+8.85701x -7.173846x+2.178812 

3. (x-1)(x-2)... (x-6)=x 6-21x 5+175x -735x3+1624x -1764x+720 

4. (x-1.20)(x-1.21) ... (x-1.26)=x7-8.61x6+31.7695x5-65.121735x4+80.08914424x3 
2 -59.0953690404x +24.2237621x-4.2553354536 

S. (x+1.5)(x2+3x+4)(x 2+2x+2)(x 2+x+l)=x7 -3.5x 6+5x 5_2x4+4. x3_15x2+17x-12 

6. (x-8-9i) 4(x-8+9i) 4=x -64x7 +2116x6-44224x5+637126x4-6412480x3 
+44488900x 2-195112000x+442050625 

7. x1 +2x9 +6x8+8x7+121046x 6+242076x5 +484144x4 +484136x3 +3662549361x2 
+7324130450x+7324130450 

8. x10-206x9+10800x8-21500x7+1060x6-21. 1x5+0.211x4-0.00106x3+0.00000217x2 

-O.000000000155x-0.000000000000000114 

127811 10- 9 O81487+ 6 5 4 9. x 78xl+10OlX 5005x+1287 -9448x+8564x -11628x +4845x -133Ox3 

+231x2-23x+1 

10. x .086309523x +0.249627956 0.02754667202x 

+0.001130581327x2-0.0001025063224 

11. x20200x18+6600x16-84480x14+549120x12-2050048x1o+46592OOx8-65536oOx6 

+5570560x4-2621440x2+524288 

12. x29+X28+X27+... +X2+X+1 
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TABLE 2 

Comparison of 2) with (3) about the iteration times 

No. 1 2 3 4 5 6 7 8 9 10 11 12 
2) -52 34 30 30 55 25 56 18 106 95 31 57 108 

D-K. 2)-56 45 31 30 58 25 59 24 107 96 * 58 ** 

(3) 35 30 31 58 29 58 18 110 96 31 57 108 

2)-52 20 18 17 29 14 31 12 58 51 16 30 54 
At. 2)-56 26 18 29 34 15 35 19 59 52 * 31 * 

((3) 21 18 18 31 12 32 12 60 52 16 31 54 

The symbol '**' means the iteration was not terminated, and 

2)-52 means EPS = 2 52; 2)-56, EPS = 2-56. 

Next, we will compare the number of iterations necessary for termination when 
using criteria 2) and 3). Table 1 gives the polynomials used in this comparison, and 
Table 2 lists the results. If EPS is 2-56 in criterion 2), some iterations do not 
terminate. If EPS is assigned a value of 2- 52, all iterations terminate, and the 
number of iterations required is nearly the same as for criterion (3). Thus, with an 
EPS value of 2-52, criterion 2) yields accuracy similar to criterion (3); however, 
with criterion (3) we are not burdened with the task of finding an appropriate EPS 
value. 

Smith's error estimation (= S(I)) [7] is sometimes used to investigate the accuracy 
of approximated zeros. However, this method sometimes displays instability, due to 
the fact that round-off errors occurring near zeros may cause If(xk)l to take on a 
smaller than true value (see Table 5, No. 2). 

4. Numerical Examples and Remarks. We now present the results of some 
numerical experiments to illustrate the efficiency of criterion (3). Newton-Raphson's, 
Durand-Kerner's and Aberth's methods are employed. The machine used is a 
HITAC L340, floating-point hexadecimal arithmetic using a 56-digit mantissa. 

TABLE 3-1 

R ( I) and N for Durand-Kerner 's method 

NO. 1 2 3 4 5 6 7 8 9 10 11 12 Total 

R(lC I <2 3 2 0 1 1 4 0 0 2 0 6 3 22 

2E IR(I) <4 0 0 1 4 1 2 2 3 2 3 3 1 22 

I4AS R(I) 0 2 5 2 5 2 8 7 8 11 11 25 86 

N 35 30 31 58 29 58 18 110 96 31 57 108 661 

TABLE 3-2 

R (I) and Nfor Aberth 's method 

No. I1 2 3 4 5 6 7 8 9 10 11 121 Total1 

1JR(I) < 2 1 0 0 0 0 2 1 1 1 3 2 0 11 

21 R(I)<4 1 0 1 6 0 4 0 3 3 0 2 1 21 

4-R(I) 1 4 5 1 7 2 9 6 8 11 16 28 98 

N 21 18 18 31 12 32 12 60 52 1A f 1 RA IqO I 
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TABLE 4 

Numerical solutions obtained by Durand-Kerner 's method 

Approximal.ions 
No. Real part Imaginary part S(I) R(I) 

4 0.126002253057117D+01 -0.161448610114241D-05 0.33D-04 0.25D+01 
0.126004493578726D+01 -0.173739449368469D-05 

0.124015432815692D+01 0.141869211731388D-03 0.14D-02 0.14D+01 
0.123971348621881D+01 0.231535790471918D-03 

0.122026142817432D+01 0.290475473912133D-05 0.17D-03 0.82D+01 
0.121999543294664D+01 0.507746249261375D-05 

0.120001327505341D+01 -0.116280271027772D-05 0.38D-04 0.27D+01 
0.120001832390272D+01 -0.116643564166874D-05 

0.120997590132129D+01 0.177938570470326D-04 0.13D-03 0.53D+01 
0.121005443136218D+01 0.155796570015701D-05 

0.122956622901893D+01 0.165007368735400D-04 0.63D-03 0.28D+01 
0.122991616096711D+01 0.249230062104850D-04 

0.124980042353348D+01 0.123948865112464D-04 0.10D-02 0.28D+0O 
0.124983170585586D+01 0.199767649929021D-04 

10 0.949136366576219D+00 -0.546700880998977D-14 0. 11D-12 0.43D+01 
0.949136366576207D+00 -0.546671513097082D-14 

0.760489880828673D+00 0.625088489166552D-01 0.38D-13 0. 11D+02 
0.760489880828684D+00 0.6250884891664360-02 

0.496971875530099D+00 0.150608360648135D+00 0.18D-14 0.180+02 
0.496971875530098D+00 0.150608360648136D+00 

0.185435167382210D+00 0.183171482227800D+00 0.170-15 0.57D+OL 
0.185435167382211D+00 0.183171482227800D+00 

-0.185435167382210D+00 0.1831714822278000+00 0.170-15 0.57D+OL 
-0.185435167382210D+00 0.183171482227800D+00 

-0.496971875530099D+00 0.150608360648135D+00 0.18D-14 0.18D+02 
-0.496971875530097D+00 0.1506083606481340+00 

-0.760489880828673D+00 0.625088489166553D-01 0.590-13 0.31D+01 
-0.760489880828685D+00 0.625088489166335D-01 

-0.949136366576213D+00 0.546700049298597D-14 0.110-12 0.29D+01 
-0.949136366576175D+00 0.546500629691435D-14 

Tables 3-1 and 3-2 show the values (= R(I)) for the left side of (4) and the number 
of iterations (= N) required to obtain the approximations. The differences in these 
tables depend on the convergence rates of the methods used. The order of conver- 
gence is quadratic for Durand-Kerner's method, and cubic for Aberth's method. 
Some of the numerical results obtained by these methods are given in Tables 4, 5 
and 6, where the underlined digits represent the incorrect digits, the upper values are 
derived from A(xk) and the lower values from B(xk). These results indicate that 
criterion (3) is effective in solving for complex zeros, and also applicable to 
polynomials with complex coefficients. 
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TABLE 5 
Numerical solutions obtained by A berth 's method 

ApproximaLions 
No. Real part Imaginary part S(t) R(I) 

1 0.125000428141468D+02 0.738120954825039D-04 0.58D-04 0.48D+01 
0.125000474329118D+02 0.887248783831348D-04 

0.1249991996102320+02 0.184431153368532D-05 0.12D-03 0.30D+01 
0.124998998732016D+02 -0.346720959265907D-05 

0.125000398896275D+02 -0.713530004484597D-04 0.67D-04 0.10D+01 
0.125000544867897D+02 -0.866900913659040D-04 

2 0.122999999999219D+01 0.279324998809806D-20 0.15D-09 0.12D+02 
0.123000000000814D+01 0.690664145973954D-20 

0.121000000002556D+01 -0.257050809038937D-16 0.1OD-15 0.54D+08 
0.120999999991999D+01 0.258927384063799D-17 

0.119999999995365D+01 0.825241907992357D-20 0.15D-09 0.12D+02 
0.119999999997039D+01 0.199093843141447D-19 

0.121999999987617D+01 0.249328383189040D-16 0.44D-09 0.12D+02 
0.121999999987573D+01 0.226648149584020D-16 

5 0.150000000000000D+01 0.155096364853693D-24 0.16D-14 O.15D+10 
0.150000000000000D+01 -0.361891517991950D-24 

0.150000000000000D+01 0.132287565553230D+01 0.78D-16 0.45D+02 
0.150000000000000D+01 0.132287565553230D+01 

0.500000000000000D+00 0.866025403784439D+00 0.14D-15 0.83D+01 
0.500000000000000D+00 0.866025403784439D+00 

-O.lOOOOOOOOOOOOOOD+01 0.100000000000000D+01 O.OOD+00 0.10D+51 
-0.100000000000000D+01 0.100000000000000D+01 

-0.IOOOOCOCOCOOOOOD+01 -0. OOOOQOOOOOOOOOD+01 O.OOD+00 0.1OD+51 
-0.100000000000000D+O1 -0. OOOOOOOOOOOOOOD+O1 

0.500000000000000D+OO -O.866025403784439D+OO O.OOD+OO 0.1OD+51 
0.500000000000000D+00 -0.866025403784439D+OO 

0.150000000000000D+01 -0.132287565553230D+01 0.78D-16 0.45D+02 
0.150000000000000D.01 -0.132287565553230D+01 

7 0.1104536101718720+02 0.110905365064094D+02 0.13D-12 0.16D+02 
0.110453610171868D402 0.110905365064090D+02 

0.1109053650640950+02 0.111355287256601D+02 0.78D-12 0.13D+01 
0.11090536506410YD+02 0.111355287256606D+02 

-0.100000000000000D+01 0.100000000000000D+O1 0.GOD+OO 0.1OD+51 
-0.100000000000000D+O1 0.100000000000000D+O1 
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TABLE 6 

Numerical solutions for complex coefficients ( Aberth 's method) 

f(x)=x 3-(9.424777961+8.154845485L)x2+(7.441644906+51.23840534L)x 

+38.63393639-60.39956197 L 

Approximations 

Real part Imaginary part S(I) R(I) 

0.314439322215066D+01 0.271795529310170D+01 0.45D-09 0.19D+02 

0.314439322214661D+01 0.271795529293159D+01 

0.314047421908468D+01 0.272086953055222D+01 0.13D-08 0.55D+01 

0.314047421913650D+01 0.272086953050768D+O1 

0.313991052022448D+01 0.271602066176841D+01 0.13D-08 0.58D+01 

0.313991052021273D+01 0. 271602066186826D+01 

Generally, it is not a good idea to separate (3) into its real and imaginary parts, 
since if Xk approaches a real zero, then underflow frequently occurs in the imaginary 
part. 
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