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Explicit Estimates for the Error Term
in the Prime Number Theorem for
Arithmetic Progressions

By Kevin S. McCurley

Abstract. We give explicit numerical estimates for the Chebyshev functions y(x; &, /) and
0(x; k, I) for certain nonexceptional moduli k. For values of £ and b, a constant ¢ is tabulated
such that |y(x; k, 1) — x/@(k)| < ex/@(k), provided (k,!) =1, x > exp(clog? k), and
k > 10*. The methods are similar to those used by Rosser and Schoenfeld in the case k = 1,
but are based on explicit estimates of N(T, x) and an explicit zero-free region for Dirichlet
L-functions.

1. Introduction. Let k and / be positive integers. The Chebyshev prime counting
functions Y (x; k, /) and 8(x; k, /) are defined by

0(x;k,1)= ¥ logp, Y(x;k )= ¥ logp,
p<x pi<x
p=Il(mod k) p*=I/(mod k)

where the sums extend over all primes p and prime powers p®, respectively. The
prime number theorem for arithmetic progressions is equivalent to the statement
that

Y(x;k, 1) = x/9(k) +o(x), x— oo,

if k and [ are fixed relatively prime integers. An alternative statement is that for any
positive € there exists x, = x,(k, I, €) such that

1 (x; b, 1) —x/@(k)l <ex/@(k), x> xp.
The purpose of this paper is to give explicit numerical estimates for x,(k, /, €) for
some values of k and e.

The case k = 1 or 2 has been investigated in a series of papers by J. B. Rosser and
L. Schoenfeld. The methods used in this paper are similar to those used by Rosser
and Schoenfeld, and we shall make frequent reference to their work.

The size of the error term in the prime number theorem depends on the location
of zeros of the Riemann zeta function {(s). The estimates of Y (x; 1, 1) in [10] and
[11] are based on the computation of 3,502,500 zeros of {(s) and a zero-free region
for {(s) of the type originally proved by de la Vallée Poussin. A similar situation
exists in the case of the prime number theorem for arithmetic progressions, where
the size of xy(k, /, €) depends on the location of zeros of Dirichlet L-functions
formed with characters modulo k. In the case of a fixed modulus £ we can make use
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266 KEVIN S. MCCURLEY

of computational information concerning the zeros of L-functions modulo k in the
same way that Rosser and Schoenfeld used information concerning the zeros of {(s).
In the estimation of x,(k,/, €) as k tends to infinity, we can no longer derive
significant benefit from the mere computation of zeros, since it is no longer a finite
computational problem to compute enough zeros. In this case we can base our
estimates on the following explicit zero-free region.

Let R = 9.645908801 and £, (s) = I'l, moa & L(5, X)-

THEOREM 1.1. There exists at most a single zero of £,(s) in the region (s = ¢ + it:
o > 1 — 1/[Rlog max{k, k|t|, 10}]}. The only possible zero in this region is a simple
real zero arising from an L-function formed with a real nonprincipal character modulo
k.

If k is an integer for which there exists a real zero of £,(s) with 8> 1 —
1/(Rlog k), then we shall refer to k as an exceptional modulus. A proof of Theorem
1.1 appears in [S), as well as a further result concerning exceptional moduli.

TABLE 1
b\¢ 1! .5 .2 .1 .05 .01 .005 .001  .0001  .009D%
1 34.13  41.01  53.23  65.28 79.94 124.3 147.2 208.3  313.3  43}.5
2 20.62  23.35 27.98  32.37  37.55 52.25 59.53 78.34 109.7  146.0
3 1€.85 18.51 21.29  23.88  26.84 34.92 38.82 4B.74  64.88  83.19
4 15.08 16.28 18.26  20.05 22.08 27.48  20.u4  36.49  46.80  58.36
5 14.04  14.98 16.51 17.88  19.40 23.41  25.°8  20.97  37.34 4554
6 13.36  14.12  15.37  16.47 17.69  20.83  22.33  25.94  31.62  37.%4
7 12.86  13.52  14.58 15.50 16.49  19.09 20.28 23.23 27.81 32.78
3 12,49 13.07  13.96 14.76  15.62  17.81  18.82  21.29  25.11  29.2
9 12.20  12.73  13.52  14.21  14.94 16.86 17.72  19.85 23.09  26.58
10 11.98  12.44  13.15 13.76 14.43 16.1¢  16.87 18.71 21.54  24.57
11 11.79  12.20  12.85 13.38 13.99 15.47 16.15 17.81 20.30 22.96
12 11.66  12.03  12.60 13.09 13.62 14.99 15.58 17.03 19.31  21.47
13 11.50 11.84 12.37 12.83 13.32 14.55 15.10 16.44 18.48  20.60
14 11.39  11.72  12.19  12.62 13.08 14.20 14.71 15.93 17.76 19,72
i5 11.29  11.58  12.03 12.42 12.85 13.88 14.35 15.48 17.17 18.96
20 10.93  11.14 11,48 11.76 12.08 12.81 13.16 13.97 15.15 16.41
25 10.69 10.88 11.14 11.36 11.60 i2.20 12.45 13.07  14.00  14.95
30 10.55 10.69 10.91 11.09 11.30 11.78 11.99  12.51 13.25 14.01
35 10.44 10.55 10.74  10.90 11.08 11.4° 11.65 12.08 12.72 13.37
40 10.35 10.45 10.62 10.76 10.90 11.25 1l.%1  11.79  12.32 12.89
45 10.29  10.39 16.52 10.64 10.78 11.08 11.23 11.546 12.02  12.S)
50 10.24  10.33  10.45 10.56 19.66 10.95 11.06 11.37 11.78 12.22
60 10.15  10.21 10.32  10.43  10.52 10.74 10.84 11.08 11.42 11.78
70 10.08 10.14 10.23  10.32 10.40 10.59 10.68 10.89 11.17  1i.47
80 10.04 10.08 10.18 10.23 10.31 10.48 10.56 10.73 10.98  11.25
90 10.00 10.04 10.11 10.18 10.23 10.41 j0.45 10.61 10.85 11.08
100 9.96 10.01 10.07 10.13, 10.18 10.32 10.39 16.54 10.72 5 93
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The main result of this paper is the following:

THEOREM 1.2. Let k be a nonexceptional modulus, and let (k, 1) = 1. For various
values of € and b, Table 1 gives values of ¢ such that

ex
w(k) 0]
provided that k > 10° and x > exp(clog? k).

qo(k) Se(k)

V(x; k, 1) - and |0(x;k,l)—

For any given values of ¢ and b the methods of this paper will yield a value of c,
but the methods are limited by the requirement that ¢ > R. The methods could also
be used to calculate an explicit constant A4 with the property that

Y(x; k1) ———

) ( o(k) x log x
( k ) R exp( - R )
provided x > exp(Rlog? k) and k is not exceptional. In the interests of brevity this

will be deferred to a later paper. Later papers will also deal with the case k = 3 and
implications of the generalized Riemann hypothesis.

2. Estimates of N(T, x). Throughout this paper x will be a Dirichlet character
modulo k, and x, modulo k, will be the primitive character which induces x. We

‘write x, for the principal character, and in this case we take £, = 1 and x, = 1.
Note that
(2.1) L(s,x)=L(s,x.)l—£(1 - xi(p)p7)

Pl

Define N(T, x) = N(T, x,) as the number of zeros p = f + iy of L(s, x) with
0 < B <1 and |y| < T. The main result of this section is the following.

THEOREM 2.1. Let T > 1 and x be a primitive nonprincipal character modulo k. If
0 <7 <3, then

T kT

(2.2) N(T,x)—;log?'”—e < C,log kT + G,,
where

_1+29
(2.3) C = 7log2 ’

_ B 4log¢(1 +n) 2logg(2 + 21)
(2.4) C, = .3058 — .2687n + log 2 Tog2
log{( + 2'q)

Proof. The method of proof is essentially due to Backlund [2], with refinements
due to Rosser [9] and the author. Assuming that +7 does not coincide with the
ordinate of a zero, consider the rectangle R with vertices at o, — iT, o, + iT,
1 —0,+iT,and | — o, — iT, where o, > 1. Then we have

(2.5) N(T, x) = 3-Bearg £(s, x),
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where
kD72 (s +a
@6 to0=(z) (5 )L(s. x) a=(1-x(-1)/2
Let € denote the portion of the contour in ¢ > 3. From the functional equation of

£(s, x) and (2.6) we obtain
(2.7) Agargé(s, x) = 2Aqargé(s, x)

k (s+a)/2
=2 Aearg(—) + A@argl‘( > )+AL.argL(s X)

= 2Tlog k + 4Imlog F( +2 5+ :g) + 2A,arg L(s, x)-
We shall apply Stirling’s formula in the form
logT'(z) = (z - —)logz —z+ = log21r + 6|0|
where || < 1 and |arg z| < 7 /2. This error term is well known and appears in Olver
[6, p- 294]. Hence

T\ T, T T 2a + 1\?
(2.8) ImlogF( +2+12)—Elog2—e+zlogl+( 5T )
2a—1 [ _2T ] 0
4 V+2a] j31l+a+iT

Denote the last three terms by f\(T'), £,(T) and f5(T). If a = 0, then f, and f, are
decreasing for T > 1, so that

1
lA+hL+AI<IA+AIF W15

< max{|f,(1) + £,(1)l, |f,(o0) + f,(00)]} + .2982 < .6909.

If a=1, then f, and f, are positive, f, is decreasing, and f, is increasing. The
maximum value of f, + f, occurs between T = 1.64 and T = 1.65, so that

1
+ £, + f51 < £,(1.64) + £;(1.65) + < .642S.
|fl fZ f3| fl( ) f;( ) 3/3.—25—
It follows from (2.5), (2.7) and (2.8) that
(2.9) N(T,x) = [Tlogzit + 1.38186 + Ajarg L(s, x)]

It remains to estimate Acarg L(s, x). We divide C into 3 pieces C,, C,, and C, as
follows:

Ci:3—iT to o, —iT,

Cyi0y—iT to o, +iT,

Cyi0,+iT to 4§+ iT.
We first estimate A@3 arg L(s, x). In view of the fact that L(5, x) =f(_s,——i—), an
upper bound for the change in argument on C, will also serve as an upper bound on
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©,, provided the bound is valid for any primitive nonprincipal x modulo .
Let N be a positive integer, and define

f(s)=3[L(s +iT, )" + L(s - iT, %)"].
Note that

f(o)=ReL(o +iT, x)N

if o is real. Suppose f(o) has n real zeros in the interval § < o < o,. These zeros
partition the interval into n + 1 subintervals, and on each subinterval the quantity
arg L(o + iT, x)" can change by at most 7, since Re L(¢ + iT, x)" is nonzero on
the interior of each subinterval. It follows that

(n+1)m
—

We now estimate n from above. Let 0 <7 < 3, and define ¢, = 3 + 27 and
o, = 1 + . It follows from Jensen’s theorem that

(2.11)  nlog2 < %fsw/zlog]f(oo + (1 + 2n)e™)|d6 — log f(o,).
Td w2 ’

1
(2.10) |Ag,arg L(s, x)| = 318¢,ar8 L(5,x)"| <

In order to estimate | (s )| we appeal to a result of Rademacher [8]. He proved that if
-n < o<1+ n,then

k'S + ll)“+"_o)/2§(l + 1')

IL(s, x)I < (T

It follows that

1 3m/2 i
(2.12) ﬁj;/z log|f (o, + (1 + 2m)e®) db

k(JT>+ @ +n)* +1+ 21,)
-N 3221 (
< EL/Z 5(1 + 2n)cos€10g( : 5 )dO

+—12!10g§’(1 +1)

< (1 + 21)log(.T4685 KT) + 3 log (1 + ),

since T > land 9 < 1.
If 6 > 1 + n, then we use the trivial estimate
(<81 +m)",
and it follows from (2.11) and (2.12) that
N(1 + 29)
27

Now write L(o, + iT, x) = re’®. We choose a sequence of N ’s tending to infinity
such that N tends to 0 modulo 2. It follows that

(2.13) nlog2 < log(.74685 kT ) + Nlog ¢(1 + ) — log f(op)|-

: f(o) _
(214 ¥ Lo + T 0"
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Note that for 6 > 1 we have

._.
N ——
'

D

—_

[\S)

Q
A

IL(s.x)l=TIN - x(p)p~*I"" 2 H(l *
/4

P
Hence from (2.10), (2.13), and (2.14) we obtain

1+ 29
7082 log(.74685 kT')

(2.15) |Aq, arg L(s, x)| <

2xlog¢(l + )  wlogt(2 + 27)
+ - .
log 2 log 2

Finally we estimate the change along ,. If 6 > 1, then
larg L(s. x)I < llog L(s. x)| < log{(0).
Hence
|A¢,arg L(s.x)| < 2log$(3 + 2n).

The result then follows from (2.9) and (2.15).

Theorem 2.1 may be stated as well for imprimitive or principal characters.
Henceforth we shall abbreviate N(T, x) as N(T'). and furthermore we use
AT kT
2me’ 2me’

R(T) = C,logkT + G,, R(T)=C,logk,T+ G,.

COROLLARY 2.2. If T > 1 and C, and C, are as in Theorem 2.1, then
(2.16) IN(T) = F(T)| < R(T).

Proof. If x is nonprincipal this follow immediately from Theorem 2.1, since

N(T, x;) = N(T, x). If x = x, is the principal character, then we appeal to a result
of Rosser [9], who proved that (in our notation)

T T
F(T)= p log F(T)= . log

T T
(2.]7) IN(T, XO) - ;logz—"e'
3.75, 0<T<280
< (5.5, 0 < T < 1467
274log T + .886loglog T + 4.926, 2< T

If 6 > 1, note that

2log¢(o) —log¢(20) = Y los( po
14 P =1

Q

+

—
——

is decreasing in o. It follows that C, is decreasing in 7, and
(2.18) C, > 5.365.

If 1 £ T <280 or 280 < T < 1467, the result follows immediately from (2.17)
and (2.18). If T > 1467, then by (2.17) and (2.18) it suffices to prove that

(2.19) L _ .274)log T — .886loglog T + .439 > 0.
7 log 2

The left side of (2.19) is increasing in T for T > 1467, and is positive for T = 1467.
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3. Bounds for y/(x; k, /). Let k and / be positive integers with (k,/) = 1. Our
method of estimation for Y (x; k, /) is based on an “explicit formula” for certain
integral averages of y(x; k, /). This is the method used by Rosser [9] in the case
k = 1, and reduces the problem to that of estimating certain sums involving zeros of
Dirichlet L-functions.

Before we state the explicit formula we require some notation. If x is a Dirichlet
character modulo k, we use z(x) to represent the set of zeros p = B8 + iy of L(s, x)
with 8 > 0 and p = 0. Since x, is the associated primitive character, z(x,) is the
subset of z(x) consisting of the zeros with 8 > 0. We use b(x) for the constant term
in the Laurent expansion of L'(s, x)/L(s,x) about 0, c(x) for the constant term in
the expansion about -1, and m(x) for the order of the zero of L(s, x) at s = 0.
Note that

(3.1) 0 < m(x) < w(k) < 8K

log2’

where w(k) is the number of distinct prime factors of k. Unless otherwise indicated,
a sum over Y is to be interpreted as a sum over all characters modulo k.

LEMMA 3.1. Let ¢ (x; k, ) = [[y(¢; k, ) dt, where x > 1. Then

62 w(skD= 320 - TR T s s

oEZ(x)
+d,x + dleogx + dslog x + d,,

where

680 = - TR0 £ 2o
a=(1-x(-1)/2

(34) 4, = (k)Zx(l)[m(x) b(x)],

(35) d,= (k)Zx(l)m(x)

(3.6) d3=#,3x(_§=_l>z(1),

_ 1 =
(3.7 d,= ‘P(")x<>l:>: lx(l) (-1, x) + (k)x(_§=_lx(1)[0(x)+1].

Proof. A “smoothed” Perron inversion formula gives
-1 1 f2+i x°*!
skol)= ——) x(1)=— —_ ds.
kD = oy EXOg [ Ty T %0
The remainder of the proof involves an application of the residue theorem to express
the contour integral as a sum of residues. The details justifying this appear in
Ingham [4, pp. 68-74], and Prachar [7, pp. 224-228].
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For x > 1, define

(3.8) E(x)=y(x; k, 1)~ x/p(k),

and for m a positive integer, x + mh > 1, define
h h

(39)  E (e k)= [T [(E(x 4y 44y, dyy oo dy,
0 0

Further let

—2n+a

(3.10) f(x)= (k)ZX( )E S, tdlogx+d, +d,.
n=1\
LEMMA 3.2. If|h| < (x — 1)/m, then
E,(x, h)
- ——I——Zi(l) E l i (_l)m+j+l(”.’)(x+jh)p+m
‘p(k) X pe(x) p(P+ l) (p+m) ;=0 J
+ 0;.”_ Ohf(x i+t ) dy e dy,

Proof. We use induction on m. If m = 1, it follows from (3.8), (3.9), and Lemma
3.1 that

E,(x. h) =/0"E(x+y)dy

1l e Xt — (x + h)"

perco Plpt 1)
+d,(x + h)log(x + h) — d,xlog x + dylog(x + h)
—d;log x + g(x + h) — g(x).

The result then follows for m = 1 from (3.3), (3.4), (3.5), (3.6), and (3.10).
If m > 1, we have

Em(x, h) = fhEm_|(x + Ym» h) dym

1
(k)Zx() )y

pery PP+ 1) (p+m—1)

e L | (RS A P

=0

h
+f0 -"fof(x+y.+“-+y,..)dy. e dyy,
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the term-by-term integration being justified by the fact that ¥ . ., 1/lp(p + 1)
converges. The sum on j may be written as

j'go' (_1)m+,~+.(m; 1)(x T jR)

p+m

1
p+m

Z( l)m+1+l(l:1 - ])(x + i)

i=1

5 (o iy

p + m
and this completes the proof.

LEMMA 3.3. If0 < h < (x — 1)/m, then there exists a z such that 0 < z < mh and
E,(x,h) + mh_ z

Bt 29(k) (k)
If0 < —h < (x — 1)/m, then there exists a z such that mh < z < 0 and
E,(x,h) N mh  z

h™ 29(k)  o@(k)

Proof. Let G(t) = E(x + t) + t/p(k). If h > 0, then clearly there exists a z such
that 0 < z < mh and

G(z) < h,,,f fG(y. A V) 1 Dy

and this proves the first part. If & < 0, then there exists a z such that mh < z < 0
and

E(x+2)<

E(x+z)>

1 0

G >
(z) > )
LEMMA 34. If0 < § < (x — 1)/(mx), then

o(k)E, (x, 8x)_m8 (p(k)
B ro) 8 9031 -

o
hG(y.+~'+ym)dy. ot

<p(k)E (x,8x)
——— + .
§™x m+1 2

Proof. In Lemma 3.3 we put & = dx, and it follows that there exists a z > 0 with

V(x+ 2z k1) < X 4 E,,,(x,sx)_+ - méx

o(k) (8x)"  29(k)’

but Y(x; k,!) < ¢y(x + z; k, 1), so that this proves the upper bound. The lower
bound is proved with h = -8x.

This reduces the problem to the estimation of | E,,(x, +8x)|, for which we require a
lemma.

LemMA 3.5. If d, and d, are defined by (3.4) and (3.5), and k is not exceptional, then

|d, +d,| < % logk + Cylog?k + C,logk + Cs,
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where

(3.11) G = 11C, + 4,
(3.12) C,=11G, + 2C, - 8,
(3.13) C,=C, +2C -2.

Proof. From (3.4) and (3.5) we obtain
-1
d +dy,=——2x(1)b(x):
[ 2 ‘P(k) §X( ) (X)
hence
(3.14) |d, + d,] < max|b(x)|.
X
If x, is the principal character modulo &, then
L ¢ logp
L(—‘vXo)— g-(s)+,§kpx__ 1’
and it follows that
1
b(xo) = log27 — 5 ¥ log p.
plk
Hence we have trivially
16(xo)l < log2m + }log k < 4log? k.,

and the result follows from (2.18).
If x is nonprincipal, then from (2.1) we obtain

1 xi(p)log p
b(x)=b(x)-5 X logp+ Y “—"—+.
l 2 G plA 1 —XI(P)
xitp)=1 xi(p)=1
If x,(p) = 1, note that
2w 4
1- >l —ex > -

hence

1 k k
(3.15) 160N < 1b(x) + T log pmax{ 3. 7} <16(x) + 7 logk.
Pk
From Davenport [3, p. 85] we have

L 1 o IT"(s+a 1 1
T(s'x')—ilogk—,‘ET‘_(T) +B(x:)+pe§x|)(s_p +;).

If we subtract the same expression with s replaced by 2, we obtain

L 2
b =—(2, +a- —_—,
(XI) L XI) pE:Z(XI) p(2—p)

and it follows from (3.15) that

(3.16) Ib(x)l < %(2)|+ 1+ ¥ —=2

k
——— + — logk.
pE2(X)) |P(2 - P)| 4
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It remains to estimate the sum on p. If |y| < 1, we use the fact that
1
2 - >BR2-B8)>——,
@ =p)>B2-B)>55100%
since k is not exceptional. It follows from (2.16) that

(3.17) )%

pEz(x)) 'P(z - p)l
lyisl

< 1llogk N(1)

< “(%_*_ C,)logzk + 11((]2 —%]og}n’e)logk.

If |y| > 1, we use the estimate |p(2 — p)| > y?, integrate by parts, and use (2.16) to
obtain

2 < dN(t) N(t)
pE(x)) lp(2 - p)l 2/; 4~/
lyi>1

< (% + 2C,)logk - -3 log27 + C, + 2G,.
The lemma then follows from (3.14), (3.16), (3.17), and the fact that [{"(2) /{(2)] < .57.

THEOREM 3.6. If m is a positive integer, x > 2,0 < 8 < (x — 2)/(mx). H > 1, and
A, (8) =87 (7)1 + j8)™ " then

q>(k) X ( ) xB N mé

k [ < 4 —

‘P( ) (k) %pez%x) lel 2

lylsH

(L T -
+4,, + e,
% et P(p+ 1) (p+m)

lv|>H
where
_k|logklogx  k 2
6= g2 +7 log k + Cylog *k + (C, + 1)logk + C; + 1].

Proof. From Lemma 3.2 we obtain

m m+y+ . m+
ol 7)1 ) ™

(3.18)  |E, (x, +6x)| <
N< E U0 Y Parr s pevy paran

+8x +8x
f f f(x Ay +y)dy -y,

For the zeros with |y| > H the summand is bounded in absolute value by
x B+m m

(3.19) y (';')(1 +j8)™

lo(p+1)--- (p+ m)| 5o

For the zeros with |y| < H, we write the summand inside the absolute values as

xp+m 8 1-8
/(; /(; (T+y +--4y)dy - dy,.
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The integrand satisfies
(L +p + - +2,) 1< 1+ fﬁlly,l,
)=
so that the absolute value of the summand does not exceed

8 8 xB+m ms
o Uy 4y dyy e dyy, = 8"'(1+——).
fo fo( » ) dpy -y = >

xﬂ+m
el
If y > 1, then from (3.10) we obtain

(3.20)

0 -n

OEEE:

n=1 n

+ |dyllog y + |d, + d,],
since a = 0 for half of the characters and a = 1 for the rest. Hence for | y,| < 6x and
0 <& < (x — 2)/(mx) we have
If(x+y, + - +y,) <3log2 + |d,|log2x + |d, + d,].
From (3.1) and Lemma 3.5 we obtain
+8x +8x
@2 [T [Tt 4y by -y,
0 0
log k
log 2

The result then follows from Lemma 3.4, (3.18), (3.19), (3.20), and (3.21).
In order to simplify the statements of results, we shall use the notation L = log k
and H = k°. As in Rosser and Schoenfeld [10], we use

K,(z,y)= % °ou""exp[—%(u + ;ll-)] du
¥

< (8x)'"[—;-log2 + log2x + %logk + Cylog?k + C,log k + Ci|.

and also

x-1/Rlog k
e, (1) = T

LEMMA 3.7. If k is not an exceptional modulus, k > 10, x > exp(ARL?), and
A= (1 + a)? then

xB-!
Z — <& + €& t+ gy,

pEz(X) |P|

lylsH
where

1 ,fl+4a+ad® , 2+a R(H)
(3.22) €= 5% { P L+ ——L+—5 + 2R(1) + C,
+x NkL + aL?),
(3.23) £ =g(H)R(H),
and
2

(324) e = "z—fr{u?[r(_z, —I—%L) - T(-2, AL)]

—log21r[I‘(—l, ﬁL) - l"(—l,)\L)]}.
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Proof. Consider first the contribution from the zeros with 8 = 0. These zeros arise
from the factors 1 — x,(p)p~° in (2.1). Let N,(T) be the number of zeros of
1 — x,(p)p~7in the region |s| < T. An elementary argument yields the estimate

+ 2.

Tlog p
(3.25) NP(T) <=

Furthermore for each p there exists at most a single zero p * 0 within 7 /log p of the
origin, and for this zero we have |p| > 27 /k, log p. It follows from (3.25) that

k1 2
(326) ¥ —<% ng lng(lofrp+2)]<k—L+L—+2—L.

2
pEz{x)l l plk m 27 m m

From (3.25) we obtain

H AN, (’)
Xz )y
pPEz(x) IPI plk f
B=0 ptk,
I<ly|l<H
N (H N (¢t
<2[ b(H) [" A0 ] —(l+logH)L
H 1
plk
It follows from (3.26) that
(3.27) Y 1 2£L+—+£+—logH<kL+LlogH
pEz(X) le]
B=0
lvl<H

since k > 10.

The zeros of L(s, x) with 8 > 0 are symmetrically located with respect to the line
o = 1. Hence

xB-1 1 xB! xB
Yy =—< Y 2|73 + 3 —3 )
pEz(X)) PEZ(X))
lril lrl<1

By Theorem 1.1 and the fact that k is not exceptional we have 8 > (log x)~!, so that
x# /B is an increasing function of B. It follows that

Bl x-\/RL x-172
3.28 <=N(1 +
om0 R
lvl<1

_1 _RL -1/2
= 2N(l)(po(l) RL—1° N(1)x~'2,
For the zeros with 1 < |y| < H Theorem 1.1 yields

-1/
(3.29) Y Hx_
pEz(x1) |P|

I<|yl<H

2[ 9o(1) dN(t) + 2[ dN(t).
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In the second integral we integrate by parts and apply (2.16) to obtain

(3.30) fl”'————dNt(’) <MH) gy EHogH L2y
R(H) 1
- +R(l)+C,(l—ﬁ)
<) _ Q1)+ 5 tog? H + F(1)log B + R(1) + C,.

H
Integration by parts yields

EEDIE JRNOPO)

; “po(0) dFi(1) + 3 [ "90(1) d[N(1) — F(1)]

-3 l "u(1) dF,(1) + T (H)[N(H) ~ F(H)]
- 3%V = FO] - 3 [TNG) - F0)]ei(0) ar.
The condition A > (1 + a)? implies that j(7) > 0 for 1 < ¢ < H, and (2.16) yields
-3 [N = F(0)]oi(0) a
<3 ["R(Ow(0) e < 3RO (") e

=%R(u)[%(m - (1]

It follows from (3.28), (3,29), (3.30), and (3.31) that

xB-!
(3.32) y X

pezxpy Pl
lylsH

<l
2*

+ %j @o(1) dF(1) + 9o( H)R(H)

-1/2{ N(}f) +N(l)+ log H+F(l)lOgH+R(1)+C|}

N(l)

+ 2000 s+ F(1) - R()|-

From (2.16) and the trivial estimate F(r) < (tlog kt)/m we obtain

N(H)

(3.33) +N(l)+——log H+ F(l)log H + R(1) + C,

1 + 4a + a? 2+a R(H)
< 27 L L+ H

+2R(1) + C,.
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Furthermore we have

M4 FQ) - R(H) < FO) s + 8 (1)

RL -
RL? RL -2

<
w(RL—1) S RL-1L<%

since L > log10 and C, > 1/7log2. The lemma then follows from (3.27), (3.32),
(3.33) and the fact that

1 rH
(3.34) 5f1 @o(t) dF (1) = &,
LEMMA 3.8. Ifk > 10, x > exp(ARL?), and X < (m + 1)1 + a)?, then
B-1
Y X < g5+ g + £,
pezqp PP+ D) (p+m) 77T
lvi>H
where
x'?2 (H C 4L
(335 = {;;(1 +a)L+2R(H) +— 1} =

(336) e —k”‘L{———Kz(Z\/—L a +a)\/_)
_‘/—%-loiZﬂK,(ZML,(I + a)‘/_'—;T)
+C|k\/#K1(2\/(_m+—l))\L,(l + a)y B ! )}

and
(3.37) ¢, =R(H)o,(H).
Proof. From (3.25) and integration by parts we obtain
o dN (I)
(338) Y =y £
pEz(x) I lm+l Y’ fH tm+l
B=0 ptk,
lvI>H
(t) m+ 1 2
m+1 Sdt < lo
5(( )f z mH™ gP Hm+]

L[mtl, 2 <4_L
S H™| mm Hlog2| =~ H™'
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For the zeros with 8 > 0 we use Theorem 1.1 and the symmetric location of the
zeros with respect to the line ¢ = § to obtain

xB-!
(3.39) pEZZ(X|)|p(p+ 1)--- (p +m)
lyI>H

1 (o 1 poox!/2
< ffu @ (1) dN(1) + Ef,, AN ().

If we integrate by parts in the second integral and apply (2.16), we find that

dN(t) -N(H)
(340),[ tm+| Hm+l
1 m+ 1 m+ 1 C,
+Hm+,{ F(H)+ 25 g 4 Ry + +|}
1 m+ 1 C,
<H'"+'< F(H)+ —H+2R(H) + +1}

1
Hm+l

{—I!—long+2R(H)+ CH}

For the first integral we proceed as in (3.31) to obtain
1, 1 (o 1
3| on(t) dN(1) =5 [ “@,(1) dF\(1) + 50, (H)[F\(H) - N(H)]
2Jy 2y 2

+ 3 TR = N@)le (1) .

The condition A < (m + 1)(1 + a)? implies that ¢,,(¢) < 0 for t > H, so we apply
(2.16) and integrate by parts again to obtain

%f:"’m(’) dN(1) < %f:%(f) dF(t) + ¢, (H)R(H)
+ %fﬁwq’mﬂ(’) dt = g + ¢,.

The lemma then follows from (3.38), (3.39), and (3.40).

THEOREM 3.9. Let k be a nonexceptional modulus, (k,1)= 1,k > ko > 10, m be a
positive integer, 0 < 8 < (x — 2)/(mx), and x > exp(ARL?). Let (1 + a)> <A <
(m+ D)1 + a)? and

2 + 2a log2=w 2
(3.41) L > max{ 3= + 1o o + log27 ).

If\ > m(1 + a)?, then let

2 + log2m

3.42 > .
( ) 2WmA —-m-1 l+a
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Then

q>(k)‘ . x

V(x; k, 1

x (k)

(] + — )ko[ez(ko) +e3(ko) + £4(ko)] + = "

+e(ko) + A, (8)ko[es(ko) + &6(ko) + 37("0)]-

Proof. We may assume that x = exp(ARL?), since our upper bound from Theo-
rem 3.6 is decreasing in x. By Theorem 3.6 and Lemmas 3.7 and 3.8 it suffices to
prove that (for fixed A, n, m, and a) ¢,(k) and ke,(k), i = 2,..., 7, are decreasing in
k. Of these, the functions ¢,, ke,, and ke are easily shown to be decreasing in L.

It follows from (3.41) that Lexp[L(1 — A/(]1 + &) — )] is decreasing in L, and
this suffices to prove that ke, and ke, are decreasing in L.
From (3.24) we obtain

8

2mke, (k) =f|'+"‘f(L, u) du,
where
f(L,u)= (L% - Llong)exp[(l - %)L]
Note that for 1 < ¥ < 1 + a we have

(3.43) L"exp[(%— 1 L]diLf(L, %)

Alog2w
u

<(L+2u+ —log27 — AL

Alog 2w
1+ a

<max{(L+2)(l +a) + ,L+2+)\log27r}
—log27 — AL <0,

by (3.41). Hence ke, is decreasing in L.
From (3.36) we obtain

(3.44) 2keg(k) = ljw g (L, u)du+ c,f°° g(L,u) du,
T +a l+a :
where
g (L,u)= (L% - Llong)exp[L(m +1—mu-— %)],
g (L,u) = Lexp{L[m +2—-(m+ 1lu- %]}

The first integrand satisfies

Lg,(L u) < L{(Lu - log27r)(m +1—mu-— 2\-) + Zu}

Xexp[L(m +1—-mu-— %)] <0,
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provided

2 log2mw
AMu+mu—-m—-1 1+a’
If 1 + @ <yA/m, this condition is met by (3.42) and if 1 + & > \/A/m, then it
follows from (3.41).

The second integral in (3.44) can similarly be shown to be decreasing provided
L>A/(1+a)+(m+ Da-—1)".

L>

uzl+a.

4. Computations. In this section we describe the methods used in the preparation
of Table 1. Note that Theorem 1.2 gives estimates for (x; k, /) as well as Y (x; k, /).
By a result of Schoenfeld [11}, we have

4.1) 0<y(x; k1) —0(x: k1)< y(x;1,1) —6(x;1,1)
< 1.001093x'/2 + 3x'/3,

Hence we obtain the estimate

X

o(k)

and the extra terms are negligible for the range of x under consideration.

Estimates for the incomplete gamma function and incomplete Bessel functions
may be found in [11] and [10]. Upper bounds for K,(z, x) are provided by Lemma
4, Lemma 5, (2.30), and (2.31) of [10]. In addition, if x < 1, we can use Lemma 3
combined with Lemma 4 and the asymptotic expansions of K,(z) (9.7.2 of [1]). A
lower bound for K,(z, x) is provided by Lemma 4 or (2.22) and (2.33) of {10},
resulting in the estimate

X

0(x; k,1) - ik

< 1.001093x'2 + 3x'3 + |y (x: k. 1) —

e’* ﬁ 3 -
K,(z,x) > -Z—Z-{[l + —8—‘_}’(3 —)’2 - ‘2—;)}6 -

+(z+%— )\/ifrxe"”:dw}.

If x < 1, another method for bounding K ,(z, x) from below is to use (2.10) of [10]
and 9.7.2 of [1]. Other methods for estimating K,(z, x) are available in [10] and [12},
but in the interests of simplifying the computations these were not used in the
preparation of Table 1.

The choices of the parameters m, 0, a, and § are completely at our disposal. We
used m = 2 since it seemed to give the best results. Tables 2 and 3 give the values of
7 and « used in the preparation of Table 1. The best values of a turn out to be only
slightly less than YA — 1, and the choice @ = VA — 1 would lead to results that are
nearly as good. The major effect of 7 is to control the size of ¢; and &,. For this
reason, and the fact that the best a is near VA — 1, we chose 7 to minimize
R(kA -1y,

This leaves only 8 to be chosen. For m = 2, the optimal § is approximately that
which minimizes

3
16z

8(1 + w, + 10w,) + (4572 + 1267' + 18)w,,
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where
w, = ke, + key + ke, w, = kes + keg + ke,

We can then find 8 by elementary calculus. If 1 + w;, < 102w,, a minimum exists at
the positive real root of 8° — a8 — 2a/3, where a = 12w, /(1 + w; + 10w,). This
leads to the choice

a a 173
D= 3(14-‘“—-5) .

All computations were performed on the CDC Cyber Computer at Michigan State
University, using double precision Fortran (approximately 28 significant decimal
digits). We have listed in Table 1 only values of ¢ for which we were able to find
appropriate values of 7 and a, but Theorem 3.9 may actually yield slightly smaller
values of c.

where

TABLE 2
n
b \* 1 .5 .2 .1 .05 .01 .005 .001 .0001  .00001

1 .500 .500 .500 .500 .500 .500 .500 .436 .369 .321
2 .500 .500 .500 .500 497 .435 .413 .369 321 .285
3 .495 .476 .451 .430 410 .369 .352 .321 .285 .255
4 A1 .398 .379 .365 .351 .320 .308 .285 .255 .233
5 .352 .342 .329 .318 .307 .284 .775 .255 .233 213
6 .308 .301 .291 .283 274 .285 .249 .233 .213 .198
7 .275 .269 .261 .254 .248 .233 .226 .213 .198 .183
8 .249 244 237 .232 .226 .213 .208 .198 .183 171
9 .227 .223 .217 .212 .208 . 197 .193 .183 171 .162
10 .208 .206 .201 .197 .193 .183 . .179 171 .162 .152
11 194 191 .186 .183 179 171 .188 .162 152 L1446
12 . 180 177 174 171 .168 .lel .159 .152 144 136
13 .168 . 166 . 164 .161 .138 152 . 149 144 136 .129
14 .159 .157 .154 .152 . 149 L 144 .14} 136 .129 124
15 .150 . 148 145 .143 141 .136 134 .129 124 119
20 117 .116 .115 .113 112 .109 .108 .105 .101 .097
25 .096 .095 .094 .093 .092 .090 .089 .087 .085 .083
30 .082 .082 .081 .080 .080 .078 .077 .076 .074 .072
35 071 .071 .070 .070 .069 .0k8 .068 .067 .065 .063
40 .063 .063 .062 .062 .061 .061 .060 .059 .058 .057
45 .056 .056 .056 .055 .055 .05 .054 .053 .052 .051
50 .051 .051 .050 .050 .050 .049 .049 .048 .048 047
50 .043 .043 .042 .042 042 .042 L061  .041 .041 .041
/0 .038 .038 .038 .037 .037 .037 .037 .036 .036 .036
30 .033 .033 .033 .033 .033 .033 .033 .032 .032 .032
50 .030 .030 .030 .030 .029 .029 .029 .029 .029 .028
100 .027 .027 .027 .027 .027 .026 .026 .026 .026 .026
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TABLE 3
a

b R .5 .2 .1 .05 .01 .005 .001  .0001  .000G!
| .879  1.06  1.345 1.599 1.873 2.564 2.879 3.584 4.584  5.584
2 461 .552 .700 .829 .969  1.296  1.451 1,791 2,281 2.786
3 319 .383 .484 .564 .647 .851 953 1.187  1.524  1.858
4 . 246 . 294 .369 434 . 480 644 aw .892 1.143 1.1394
5 .202 .242 .298 .338 .391 .522 .579 .715 .915  1.114
5 .170 .207 .253 .286 .331 .431 .488 .599 .762 .932
7 . 149 177 214 .233 .287 . 380 412 .516 .653 .794
3 134 .153 .177 .207 .238 .323 .358 .445 .574 694
9 .123 129 . 160 .186 213 .281 332 .406 .512 617
i0 . 106 .118 . 146 .169 .195 .254 .281 .367 .463 557
1" .098 .116 134 L1564 .178 .232 .264 .335 421 506
12 .085 .101 124 .143 .164 L2105 .236 .288 .388 466
13 .085 .096 .115 .133 .153 .199 .219 .275 .360 .432
14 .075 .089 .108 .125 143 .186 . 204 .249 .326 402
15 .070 .083 .101 117 L1364 174 191 .232 . 302 .375
20 .048 .064 .067 .091 .089 133 L1467 177 .228 .285
25 .045 .046 .055 .063 .072 .108 119 143 .178 .228
30 .033 .039 047 .054 061 .091 .099 120 150 .185
35 .030 .033 .041 .047 .053 .072 .082 . 104 .129 154
40 .026 .030 .036 .042 047 .063 .076 .091 113 .135
45 .024 .027 .033 .037 .042 .062 .058 .081 .101 .120
50 .022 .025 .030 .034 .038 048 .058 074 .091 .109
60 .018 .021 .025 .029 .033 041 .045 .062 .077 .091
70 .016 .018 .021 .025°  .028 .035 .0139 .066 .066 .078
30 .015 .016 .020 .021 .024 .031 .03 047 .057 .069
90 .013 .015 .017 .020 .021 .028 .032 042 .052 .062
100 012 .013 .015 .018 .020 .025 .027 .033 047 .056

The conditions (3.41) and (3.42) fail to hold for several entries of Table 1, and this
required a check of all values of k up to a point where (3.41) and (3.42) were in

effect.

This paper is based on the work contained in the author’s Ph.D. thesis, written
under the direction of Professor Paul T. Bateman at the University of Illinois. The
author acknowledges with gratitude many valuable discussions with Professor Bate-

man.
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