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On the Convergence of Galerkin Approximation
Schemes for Second-Order Hyperbolic Equations
in Energy and Negative Norms

By Tunc Geveci

Abstract. Given certain semidiscrete and single step fully discrete Galerkin approximations to
the solution of an initial-boundary value problem for a second-order hyperbolic equation, H'
and L? error estimates are obtained. These estimates are valid simultaneously when the
approximation to the initial data is taken to be the projection onto the approximating space
with respect to the inner product which induces the energy norm that is naturally associated
with the problem. The L%-estimate is obtained as a by-product of the analysis of convergence
in certain negative norms. Estimates are also obtained for the convergence of higher-order
time derivatives in the presence of sufficiently smooth data.

1. Introduction. We consider the following initial-boundary value problem: Given
a bounded domain £ C R" with smooth boun’dary 9%, and 0 < t* < o0, a function
u is sought such that
D?u(t, x) + Lu(t,x) =0 for (z,x) €(0,*] X,
(1.1) u(t,x)=0 for(z,x) € (0,1) X 3L,
u(0,x) = uy(x), Du(0,x)=1iy(x) forxe Q.

Here, u, and #, are given functions and L denotes the second-order elliptic operator

Lu= —él ai( 4y (x) o )+a0(x)u,

with
a,;=a,€C?Q), i,j=12,...,N, a,€C®(Q), a,>0 inQ,

and
N N

Z aij(x)gigj > a Z 5:2
ij=1 i=1
for x € , all (¢, &,,..., ¢y) € RY, a being some positive constant.

As in the paper [1] by Baker and Bramble on the approximation of (1.1), and the
papers [2], [5], [6], [9] on Galerkin schemes for parabolic equations, we shall discuss
the well-posedness of (1.1) and the convergence of approximation schemes within
the framework of the spaces F°(Q) € H*(Q), s > 0, and their duals. Thus,

H(Q) = L*(9),
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and
H(Q)={ve H(R):v=0and L’v = 0 on 3R forj < 5,2}

for s > 0. For s < 0, H°(2) denotes the dual, with respect to the L?-inner product,
of H~5(). As shown in [6],

© ANV
B(Q) = {v e L*(Q): |lv|s = ( g I(D,(pj)l )\3!) < oo}

for s > 0, where 0 <A} <A, < -+ <A; < --- is the sequence of eigenvalues of

the operator L with homogeneous Dirichlet boundary conditions, with the corre-
sponding complete, orthonormal (in L?()) sequence of eigenfunctions {972, The
norm || - ||, is equlvalent to the usual Sobolev norm on A°(8), and on L*(Q) the dual
norm induced by H°(2) (s > 0) is equivalent to

1,2
ol = (Zl(v o)A ) .

(-, ) will denote the duality between H *(Q) and H*(Q) as well as the L*-inner
product, and a(-, -) denotes the bilinear form associated with L, i.e.,

du dv
a(u,v)=/ﬂ{ 'Jax P +aouv} dx.

Let T: H~'(Q) — H'(Q) denote the solution operator defined by

a(Tf,9)=(f.9), o<H(R).
For f € L*(Q), Tf € H*(2) and can be represented as

Tf = Z (f %)

One notes that, for f € L*(Q),
2
(1.2) 1A~ = (T4, ), s=0.

When T is considered to be a linear operator in L?(), it is selfadjoint and positive
definite [4], [9], so that

(1.3) (v,w)_,=(Tv,w), s=>0,

defines an inner product on L*(£2), and induces the norm || - ||_,.

The initial-boundary value problem (1.1) may be viewed as an evolution equation
for U(r) = [u(t), (1) (" denotes the transpose) in the space X = H'(Q) X L%(Q);

DU(t) + AU(¢) = 0,
(1.4) { U(O) = Uy,
where
(1.5) A= [2 ‘OI],

Uy = [ug, iy, and Ul x = MU Nlo = Qul|? + ||#|3)'/* for U = [u, &) is the ‘energy’
norm.
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Using U, = Qlull;., + 11#13Y/% ¢ >0, to denote the norm in H7"'(Q) X
H4(Q), one observes that, for U0 € HI\(Q) X HY(Q), U(r) € H"*(Q) X HY(Q),
t € R, and that
(1.6) (), = U@, t€R,q>0.

This is easily deduced from the representation

sin{ /A
(1.7) u(t)—E (u0,<pj)cos(/‘z)+(u0,%) Eﬁﬁt) 9,

For g = 0 (1.6) states the conservation of energy, for ¢ > 1 it may be viewed as a
regularity result pertaining to the solution to which we shall appeal frequently. For
future reference let us also note that

(1.8) Ul = AUl
for Ue H*'(Q) X HY(Q). This follows readily from the characterization of the

spaces H%(Q) and the spectral representation of the norms || - [|,» mentioned at the
beginning, noting that

q/2
(=17 [L ?/2} for ¢ even,
_1\(@-D/2 0 —La=-h2
(-1 [L“’* 2 0 for ¢ odd.

The Galerkin formulation of (1.1) that is relevant to the approximation schemes to
be considered in this paper results from

(D2u(1),9) +a(u(t),p) =0 allg € H'(Q),

with u(¢) € H'(2). As in the paper by Baker and Bramble [1], this may be cast as an
evolution equation for U(¢) € H'(Q) X L*(Q) with D,U(1) € L*(Q) X H~(Q);

JDU(t)+ U(t)=0, t>0,
() (ot~ 5,
where
(1.9) JE[_OI g]

One notes that J: L2(2) X H™1(Q) - H'(Q) X L*(Q), so that (1.9) certainly makes
sense. With u(z) given by (1.7), U(¢t) = [u(t), D,u(t)]’ is such a solution for
Uy € H'(Q) X L*(Q).

Parallel to the conservation of the ‘positive’ norms ||| - Ill,, ¢ > 0, as expressed by
(1.6), the negative norms defined by

. 1/2
WU, = {luli® -y +11%,) ", p

\%

so that
mUl”—p = ”IUHIfi‘(P")(Q)x]'-]*P(Q)
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are also conserved:
(1.10) WU(N-p, = NUOM-,, <R,

where U(¢) is the solution of (1.9). (1.10) easily follows from the representation (1.7).
Nevertheless, we shall derive it in a way that will indicate to the reader the spirit in
which we handle the Galerkin approximations.

We first note that X = H'(Q) X L*(R) is provided with the inner product denoted
by

((U» V))O = a(u? ‘D) + (il, i’)

for U = [u, 4], V = [v, 0], and this inner product induces the energy norm ||| - |ll,.
J, defined by (1.9"), is skew adjoint;

(1.11) ((JU,V))o = = (U, IV)),, UvVveX,

as is easily verified. In particular,

(1.12) ((JU,U))y=0, UeX.

Next, we observe that

(1.13) Wull-, = Wr2ulle,  p=1.

Indeed,

WIPUNG = ((J2U, JPU))o = (= 1) ((J2U,U)),,
by the skew-adjointness of J ((1.11)), and
P
re= (7|7 5],
so that
WIPUNG = a(TPu, u) + (T?a, i) = (T?~'u, u) + (TP, it)
= Nlull,—ny + 2,
Now, from (1.9) it follows that
JPHIDU(t) + JPU(t) = 0,
and
((v7*'DU(t), JPDU(1))), + ((J7U(2), JPD,U(1))), = O.

Due to the skew-adjointness of J ((1.12)), the first term falls away, and we obtain
1 d 2
—_ 14 =
and by (1.13)
d 2
Sz, = o,

so that the conservation statement (1.10) holds for p > 1, as well as for ||| - |l|o.

We shall now describe the semidiscrete Galerkin scheme that will be considered in
this paper. Let S;(2) c H'(R) be a finite dimensional subspace with the approxima-
tion property
(1.14) inf  {llu = @ullo + Alu — @4ll,} < Chollulls,  T<g<r,

P € S;(8)

andr > 2.
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The solution operator T,,: H~'(2) — S;(), corresponding to T, is defined by

(1.15) a(Tyf, o4) = (f,94) forallg, € 5;(Q),

with f a given element of H~'(Q). u,(¢) € S;(Q), the Galerkin approximation to the
solution u(¢) of (1.1) is sought as that function which satisfies

(thuh(t),%)+a(“h(t),%)=0’ t> 0,9, € S;(Q),
u, (0) = uy , € S;(R), D,u,, (0) = ity , € S; ().

(1.16) {

Asin [1], (1.16) is cast in the form

J.DU (1) + U(t)=0, t>0,
(117) { h™t h( ) h( )

Uh(O) = Uo,h»
where

Uy(t) = [“h(’), i‘h(t)]', Upn = [4on tho 4]’
and
0 T

1.18 J, = "],
(119 -0

parallel to (1.9), (1.9'). J,, written as in (1.18), is an operator L*(Q) x H~ () —»
S;(R) X L*(Q). Just as J is skew adjoint in X = H'(Q) X L*(2), equipped with the
inner product ((+, *)),, J, is skew adjoint in S;(2) X L*(2) equipped with the same
inner product. Indeed, for U = [u,, #], V = [v,, 0]’ in S5(R) X L*(Q),
(WU, V))o = (([Thi" —u,), [og, 0))o = a(Tyit, v,) — (y, 0)
= (i" vh) - (uh» b),
and
(U, 37))o = (([un, 4l [Ty, —v4]))o = aluy, T,0) — (i, vy)
= a(T;0, uy) — (i, v,) = (0, u,) — (&, v,),
by the definition (1.15) of T, and the symmetry of a(-, -), so that
(1.19)  ((LU.V))o=—((U, V)  U.VeESH) XLHQ),
and in particular
(1.20) (LU, U))y=0
for U € S{(R) X L*(Q).
Conservation of energy is readily obtained from (1.17) by making use of (1.20):
(DU (1), DU(1)))o + ((Un(1), DU (1)))o = O,
the first term vanishes by (1.20), and
1 d

—_— 2 =
> GO =0,

so that
(1.21) NG, ()llo = U, ()Mo, ¢ R.
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Furthermore, the discrete counterparts of the negative norms ||| - |l ,, p > 1, are also
conserved. If we adopt Thomée’s definition and notation [9], the seminorm
1/2
(122) loll_s s = (Tio, )%, s>1,
is induced by

(U’ w)——s,h = (Thsv’ W),
and we define the seminorm
2 2 1/2
(1.23) WV = {llol=p-vr +l6l =}, p>1,
which is induced by the inner product
(V. W) = (TF 'u,0) + (TPu, 0)

for V = [v, 0], W = [w, w]".
Just as in the case of ||| - [||-,, we note that

(1.24) WIpvllo =V lll-pes 2 =1,
for ¥, € S;(2) X L*(2). Indeed

WIZVlIE = (V3 TVi))o = (=D ((J27Vis Vi)
by the skew-adjointness of J, on S;(2) X L*(2) ((1.19)), and

T, 0
=T

so that
NIV = a(Tpv,, V,) + (Tpo, ) = (17~ oy, v4) + (TP0, b)
=lloulZepn + 101 =
for ¥, = [v,, ] € S;(2) X L*(2). We now go back to (1.17) and obtain
DU, (1) +JPU, (1) = 0,
so that
((92'DU (1), JpDU(2)))g + ((JRU(2), JEDU,(1)))g = O

and, making use of (1.20),

3 LI, (O =,
which, by (1.24), yields
(1.25) MU (OMl—p.p = U, (ONll-p.n, 2 E€R.
Thus the solution U,(t) of the Galerkin equation (1.17) conserves the discrete
negative seminorm ||| - Il », p > 1.

Let us note that ((-, -))_, , coincides with the inner product ((-, -)) utilized by
Baker and Bramble in [1] in order to obtain L?-estimates for u,(¢) — u(t):

T, (1) = UM 10 =y (1) = ()] + ity (1) = )] 4
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We shall carry out our convergence analysis simultaneously within the energy, i.e.,
Il - llo-framework, and within the context of the negative norms||| - |||, the relation-
ship of which to ||| - Ill-, » will be stated presently, and not only ||| - lll- . We shall
choose U,(0) to be P,U,, where P,: H'(Q) X L2(Q) — S;(2) X S;(2) denotes the
projection with respect to (-, -)),. Thus

P,V = [Plo, P2,

for ¥V = [v, 0], where P; denotes the Ritz projection onto S;(Q) with respect to
a(-, -), and P denotes the L?-projection onto S;(£), so that

(1.26) a(Pio, o) = a(v,9,), o4 € S;(9),

(127) (P,?U, q)h)=(v’ ‘ph)’ (thS,:(Q),

Baker and Bramble choose U,(0) = [Pu,, PQi) and obtain optimal L>-estimates
for u, (t) — u(¢), in [1]. In general it cannot be expected that energy estimates will be
obtained with this choice of initial data. Thus, one may view the results of our paper
as complementing those of [1], within the spirit of Thomée’s paper [9] on negative
norm estimates for Galerkin approximations to the solutions of parabolic equations.
The author is greatly indebted to the works of all three authors.

Before we state our results more explicitly, we shall state the approximation-
theoretic results that will be needed in the sequel. The background is available in the
papers already referred to.

The following results are well known:

(1.28) o — Pio||-, < Ch?*9|lo|, -1<
(129)  |lo— PY||-, < Ch?* o), O <
(1.30) (T = T)f]-p < Ch?*7**fllg, -1

From (1.28), (1.29) and the definitions of the norms [l - lll-,, Il - Ill,, one readily
obtains

(131) WV =PV, < k7" IWll,oy, O<p<r—1l1sgs<r.
From (1.30) and the definitions of J and J,, it follows that
(1.32) (s = J)Fll-p < CRP*9IFllg-2, O<p<r—1ll<gs<r.

We also need to clarify the relation between [l - [ll-, and ||| - -, ». In [9], Thomée
proved the following result (Lemma 1 in that paper): For 0 < p < rand v € L*(Q),
(1.33) loll-p.n < C{llofl-p + APll0]lo},

(1.34) loll-» < C{lloll-p.1 + A2[ollo}-

Parallel to (1.33) and (1.34), one obtains

(1.35) loll<p-n.n < C{llofl -1 + h2o]l1},

(1.36) lol-o-n < C{lloll - 1.n + A2|lo])

for v € H'(R), 0 < p < r — 1. The proof is similar to that of Thomée’s proof of
(1.33) and (1.34), making use of (1.30) and the inequality

loll -+ < C{R*lolly + AP0l o+ v}



400 TUNC GEVECI

instead of
loll-2 < C{A?[lollo + A=®~ Dol o+ 1)

both of which are easily obtained from the spectral representations. From (1.33),
(1.34), (1.35) and (1.36), it follows that

(1.37) WV Hll-p.n < CIVII-, + 221IVI0),
(1.38) IVIll-p < C{IVIN- 5.5 + A2V IO}

for Ve H(Q) X L}(Q),0<p<r—1.
In Section 2 we shall discuss the convergence of semidiscrete approximations and
prove the following:

,

THEOREM 1. If U, € H7*\(Q) X HY(Q), U,(0) = P,Up, for0 < 1 < ¢t
WU(2) = U (O, < C(e*)RP NI, O<ps<r—1,
In particular, one has the energy estimate
WU(2) = G, (o < C(e*) 7~ NGyl

I<gxr.

and the L*-estimate
() = up(2)]lo < C(*) RN,

The reader will observe that these estimates are valid for the choice U,(0) =
[PRugy, PLiy) if Sy(Q) satisfies the inverse property

lpall; < C~ ol
for all ¢, € S; ().

In Section 3 we shall give estimates for fully discrete approximations correspond-
ing to the class of rational approximations of the exponential labelled by Baker and
Bramble [1] as Class i-I. Imposing the appropriate stability condition, as in [1], the
reader may readily obtain the corresponding results for rational approximations of
Class i-II.

In Section 4 we shall give estimates for the convergence of higher-order time
derivatives of semidiscrete approximations, parallel to the results in the paper [3] by
Baker and Dougalis. In order to obtain estimates for [|D;U(t) — D;U,(2)ll-p,
0 <p<r—1, we choose U,(0)=J;"'"A**'U,, s > 1. This is one of the choices
considered by Baker and Dougalis. These authors had been aiming at L*-estimates
for (u(t) — u,(2)), and made use of estimates for || D;U(¢) — DU, (¢)lll-1,5. We do
not duplicate their effort in the direction of L®-estimates and present our results
concerning ||| D;U(t) — DU, (1), 0 < p < r — 1, as results which are of interest
in their own right. Neither do we attempt to utilize our estimates in order to obtain
other results parallel to those obtained in [5] and [9] for parabolic problems.

2. Convergence Estimates for Semidiscrete Approximations. We are comparing the
solution U(¢) of the evolution equation (1.9) and the solution U, () of the corre-
sponding equation (1.17), with U,(0) = P,U(0). We shall first establish the energy
estimate, then the estimates in the discrete negative norms, and combining these
results we obtain the principal result of this section, stated as Theorem 1 in the
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Introduction. The energy estimate is of course classical [8], but we still choose to
include the proof, which is in line with the overall approach of the paper, and which,
in our opinion, has aesthetic appeal.

PROPOSITION 1. If U(2) is the solution of (1.9), U,(t) is the solution of (1.17) with
U,(0) = PU,, and Uy € H™*'(Q) X HI(Q),
@1)  U() = U, (Dlle < C)RT T, 1<q<r,0<t<r.

(As usual, C will denote a generic constant which may have a different meaning at
different places.)

Proof. To begin with, the case ¢ = 1 is trivial, since
NT()lllo = NG, lllo,
and
U, (lllo = lIP,Lplllo < NTplllo,

by (1.6), (1.21) and the fact that P, is the projection with respect to ((-, *)),.
Therefore we need to consider 2 < g < r. Writing

U(t) - Uy(1) = (U(r) = PU(1)) + (RU(2) — Uy(1)),
and noting ((1.31)) that
WU(z) = PUo < ChI UM g=1 = CRI I Gylll -1,
< Ch Gy,

we shall have to prove
(2.2) IPU(2) — U, (Dlllo < CR NI,
2 < g < r, in order to establish (2.1). Since

JDU(t)+ U(t)=0, J,DU(t)+ U(t)=(J,—J)DU(2),
we have

J,D,PU(t) + PU(t) = (J, — J)DU(t) + J,(P,D,U(t) — DU(t))
+ (PU(2) - U(1)).
Set
(23) (1) = (J, = J)DU(2) + J,(P, — I)DU(2) + (P, — I)U(2)
= (J = ) AU(2) +J, (I — P,)AU(2) + (P, — I)U(2),
by (1.4). Thus,
S, DPU(t) + PU(t) = p,(2), PU(0) = P,
and
DU, (1) + U, (1) = 0, U, (0) = U,
so that with E¥(¢) = P,U(¢) — U, (1),
LDE;(t) + Ex(1) = py(2),  Ej(0)=0.
By forming the ((-, -)),-inner product with D, E}(¢),
((J4D,E4(1), DER(1)))o + ((Ex(2), D,EF(1)))g = ((p4(2), DEX(1)))os
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and noting that the first term on the left falls away due to the skew-adjointness of J,
((1.20)) on S,:(Q) X S;(£2), we obtain

2 dtIIIE (N5 = ((p4(2), D,EF(2))),

N dit((p"(’)’ EX(1)))o = ((Dps(1), EF(1)))os

and

IER()IIE = IE (O + 2((p4 (1), Ex(1)))o = 2((04(0), Ex(0)))
=2[((Dioa(7), Ef (r))g dr.
Since E;¥(0) =
IE (t)|||0—2((p,,(t) EX1)o = 2[ (D4 (7). B (7))o

This implies, as in the proof of Theorem 2.1 in [1], that

3 1
7 sup MEXDIG <4 sup oy (G + 5 sup IEX(NII

O<r<e* o<r<gr* o<r<e*

+ar /0 “ID,p, ()13 dr,

and finally
(2.4) sup NEF(I < € sup (e, (I + ()10, (£)IIF).

o< O<sesr*

We shall now estimate |llp, (¢)lllo and [l D,p,(¢)lllo. By (2.3) and (1.4),
D, (1) = (J, = J)ANU(2) + J,(P, — I)AN2U(¢) + (I — P,)AU(2).
Obviously, it is sufficient to estimate ||| D,p, (¢)lllo. By (1.32), (1.8) and (1.6),
N, = J) AUl < ChO~ AUl -2
= ChNIU(e)lly = CRI TNl
By (1.31)
ICZ = P,) AU(2)lllo < CRA~MIAU(2)Ill -1
= ChNMU(e)lly = Cra Gl
Now
17, (P, = ) A*U(2)lllo = (P, — I) AU(2)lll- 1.
C(l(, = 1) A2U(2)lll-1 + AII(P, — T) A2U(2)llo),
by (1.37). We have
(P, — 1) A2U(2)ll-y < CR'™M T D= NIA2U(2)lllg-2 = CRI~ T,
due to (1.31), and
(P, — I)A2U(2)lllo < CRO™ D= NA2U(2 )l g-2 = CRI2IIG, I,
again by (1.31).
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Combining the above inequalities, we obtain
1, (B, — ) A2U(2)lllo < CRA TG
Therefore
D4 (2)lllo < CRA~ MG,
and similarly,
lles (lllo < ChI NIl g-1,
so that

sup [IEF(0)lllo < C(e*) ATy lll,,

o<

and the proposition has been established.

PROPOSITION 2. If U(t) is the solution of (1.9), U,,(t) is the solution of (1.17) with
U,(0) = P,U,, and U, € H* () X HI(R),0 < t < 1*,

(2.5) U(t) = Up(lll-p.p < C(e*) P+~ 'IIIUOIIIq, I<p<r-1L1l<gsxr.

Proof. We write again
HDU(1) + U(t) = (J, - J)DU(1),

so that

JPT'DU(e) + JpU(t) = Jf (J, — J)DU(1),
and
(2.6) JPH'DUL (1) + JPUL (1) =0
so that, with E,(¢) = U(t) — U,(2),

JP*'D, Eh(t) +JPE,(t) = I (J, — J)DU(1),
2.7)

E4(0) = U, — Pl
We set
(2.8) on(1) = (J, = J)DU(2),
form the ((-, -))o-inner product of (2.7) with J#D,E,(t), and obtain
(2.9) ((72+'D,E, (1), JED,E,(1)))y + ((JPE4(2), JPD,E,(1)))g

= ((Jfoy (1), JED,E;(1)))o-
Since J,(X) € S7(2) X L*(R), and J, is skew adjoint on S;(2) X L*(R), the first
term in (2.9) drops out, and we obtain

(2.10) 3 GBS = (70,(0), DIZE(0)o

From (2.10) we obtain, in exactly the same way as in the proof of Proposition 1,
sup IJPEL (o < C(2*) sup (77, ()llo + N1JFD,0,(lllo + NIFE, (O)llo)-

O<r<e* O<r<e*
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By (1.24), this means that
(2.11)  sup MU(2) = U, (¢)l-p.a

o<ttt

< C(1*) sup (lloy (l-p.n + D0, (-4 + NE, O 1)

o<t
In order to complete the proof of the proposition, we shall estimate [||a), ()l p 1,

D0, ()= 5 and I E,(O)ll-,,». Again it suffices to demonstrate the estimation of
the last two terms. Now,

D,o,(t) = (J, - J)D2U(t) = (J, — J)N2U(2).
Making use of (1.37),
D04 (lll-p.n < C(IT = ) U, + R2II(T = J,) A2U(2)lllo).-

By (1.32)

(T = J,) A2U()Ill-p, < ChP* I~ HIIA2U(2)lllg-2

= Ch?* 9 IU(o)lly = Cre* MG,
Again by (1.32)
(T = ) A2U(Dlllo < Cha~ Tl .
We therefore have
I1D,0, (Oll=p.5 < CRZ* I Tyl

As for [l E, (O - .4

WE, (O)ll—p.n = (I = P)Gplll-p.n < CUII = B)Gylll-, + A2II(L = B,) Glllo)
< ChP* N IIGllg-1 < CRP 4 NIG Il

by (1.31) and (1.35), and the proposition has been established.
We can now immediately establish Theorem 1.

THEOREM 1. If U(t) is the solution of (1.9), U,(t) is the solution of (1.17) with
U,(0) = P,U,, and U, € HT™'(Q) X HY(Q),0 < t < t*,

NU(e) = (M-, < C(e*)RPH NGy, O<p<sr—-1,1<g<r.
Proof. By (1.38)

WU(e) = U, (ll-p < C(U(2) = U (lll=p.n + R2NU(2) = U,(2)lllo)
< CRP* NGl

by Proposition 1 and Proposition 2.
Remark 1. The choice Uj,(0) = [Py uy, PPiy] leads to similar estimates if Sj(R)

satisfies the ‘inverse’ assumption
lealli < ChM@allos @4 € Si(Q).

Remark 2. If U, is not smooth enough to be in H%(2) X H'(R), but is merely an
element of, say, X = H'(Q) X L*(R), one can still make sense of negative norm
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estimates. Let us assume suppu, CC @, and suppi, CC Q. Set K}U, =
[KFugy, Kiiy]', where K is a smoothing operator (as considered for example, in [4])
so that

&Gl < Ch™'NITgllo  and  MIKFUy — Gplll—¢r— 1y < CR™~ T llo-

Then it is easily seen from our estimates that the choice U, (0) = P,(K}U,) leads to
NU(e) - U (OMll=¢r=1y < Ch’_szomo-

Thus for r > 2, we have convergence in the sense of distributions, to the solution,
which is a solution also in the sense of distributions. As opposed to the parabolic
case, where nonsmooth initial data is smoothed out at ¢ > 0, in the hyperbolic case
such a result is all one can expect (over all of Q) in the presence of nonsmooth data.

3. Convergence Estimates for Certain Fully Discrete Approximation Schemes. Let
us denote

(3.1 I, = Identity on S;(2), L,= ( T,,|S,;(9))_l
(T, is positive definite on S; () [5]), so that

is (JF) ™', J# = Jyls;xs;- We can then rewrite (1.17) as

(33) DU, (1) + AU (2) =0, t>0,
‘ Uh(O) = P,

so that

(3.4) U, (1) = e "MPL,.

We shall consider rational functions r(z) with the approximation property
(35) () —el<ehl™, Dl<o,

for constants C > 0, » > 0, o > 0, and which are of Class i-I [1]:

(3.6) [r(iy)]< 1 forally € R.

The fully discrete approximation {W")}_, < S;(2) X S;(R) to the solution U(¢) of
(1.9) is then defined by

(3.7) {W"+'=r(kA,,)W", n=01,2,...,

WO = PU,,

where k > 0 is the time step, so that
(38) Wn = r"(kAh)Ph(]O
is to be compared with U, (1), t = nk ((3.4)).
In preparation for the derivation of the error estimates, we shall first discuss the

spectral representation of the relevant functions of J, within the context of ((-, +)),,
parallel to the discussion in [1] within the framework of ((-, ))_ Lhe
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Let X denote the complexification of H'(Q) X L*(R) as well, so that

((2,%))o = a(p, ¥) + (, ¥)
for ® = [g, §], ¥ = [¥, ¥, with ~ denoting the complex conjugate. Let us denote
by J, the restriction of J,, to the Hilbert space S;(2) X L2(R) (with ((-, -))o)- It is
readily observed that J, is skew adjoint, as in the real case, the kernel of J, is
{0y X Kernel T, and
(Kernel fh)l= S;(Q) x (L*(Q) © Kernel T,,),
L*(Q) © Kernel T, = Image T, = S;(Q)
(T, is selfadjoint in L?(), and is positive definite on S; (L) [5]), so that one has
(3.9) S;(Q) x L}(Q) = (Kernel J,) @ (S5;(2) x S;(2)).
As in [1], let (u 1)/=1 denote the nonzero eigenvalues of T), and let {\1/1 ~,bea

correspondmg sequence of eigenfunctions, orthonormal in L%(Q). Then the se-
quence (®/ )M _,, (j = 0) in S;(2) X S;() defined by

. 1/2 .
oh = L =i(w)) "y oh = L () "4} j=12,...,M

is easily seen to be a sequence of orthonormal (with respect to ((-, -)),) eigenfunc-
tions for J,, complete in S;(R) X S;(R), and corresponding to the eigenvalues
n; =i, = —i(p))'"/%,j = 1,2,..., M, respectively.

Thus, for any ® € X, and any function f, analytic in a neighborhood of the points

("7, j——M

(3.10) f(A,)PD

I
e
~
—_
\d |
—
)
kS
e
~
S—/
N

I
l[\gR

U I(CEAA

(’ indicates that j = 0 is omitted), and for any ® € S;(2) X L*(Q) (in particular, for
any ® € J,(X)),

M
(3.11) Je= Y ui((e ®)),2, I>1
j=-M

As in [1], an essential step in the comparison of W* and U, (nk) is the introduction
of an auxiliary function

U = [ug?, 0] € H=(2) x #=(Q),

such that
(3.12) MU g m < K="
(3.13) T, — USRI, < k72T,

for m, p, q > 0 (these follow from the definitions of the norms and the observations

in [1]).

We are now ready to prove Theorem 2.
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THEOREM 2. Assume U, € (HI*(Q) X HY(Q)) N (H*+'(Q) X H*()). For 2< g
<r2<ss<v+lLnk<t
(3.14) liw" - U(nk)lllo () (h7 MUl + &2~ NGyl )-

Proof. Due to Proposition 1, we need only prove that
(3.15) W™ = U, (nk)llo < C(A7~"ITyllly + &2~ TR, ).
By (3.4) and (3.8) this amounts to proving
(3.16) lI(r"(kA,) — exp™(—kA,))PUpllo < C(A7 MUl + &5~ MITRII ).
We introduce the auxiliary function U{®,
(3.17) (r"(kAy) = exp™(—kA,) )P,
= (r"(kA,) — exp"(—kA,))PUHS
+(r"(kAy) — exp (_kAh))Ph(UO U(k)),

and estimate these terms separately.

By (3.10)

ARG~ ) = T ke (- 050,90
so that, by (3.6) and (3.13),
(3.18)  IlIr" (kAP (Us — UsOIIE < jg’M|((Uo—Uo‘k’,¢,”))olz

<ty = UERME < k> NTLlI3.
We also have, by (1.21) and (3.13),
(3.19)  lllexp"(—kA,)P (T — U)o = P, (T — US)lllo
< U, = UPllo < K°ITy I,

Thus
(3.20)  lI(r*(kA,) — exp"(—kA,))P,(Uy — U)o < 2k°IIT I,
and, in order to establish (3.16), we are left with the task of establishing the estimate
(3:21) WE,(kA,)PUS o < C(h T, + &2~ NIT, ),
2<qg<r,2<s<v+1,where
(3.22) F(z)=r"(z)—e ™.
As in [1] (and [2]), we write
(323) U = LI~ J) AU + 10 G,
=0
so that
(3.24) P,USO = P,(J — J, ) AUSP + P, J,(J — J,) N2USR

+ ZJ (J Jh)A1+lU0(k)+ J;+]As+](]0(k),
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We note that
(3.25) P(J-J,)Z=0, ZeH(Q)xLYQ).
Indeed, for Z = [z, %},
P,(J—5)Z=[PUT~ T,)2,0] = [(PI:T_ T,,)Z,O] =0,

since P,T = T,;

a(PI}TZ’ ‘Ph) = a(Tz, ) = (2, 9;) = a(T,2, 9;), o, € S;(Q).
Thus
(326)  IF,(kA,)PUX Mo < IIF, (KA, )P, J, (J — ) AU Pl

N
+ L E, (kAT (T = J,) A TUP
=2

HILE, (KA, I3 A+ D,

Now, as in the derivation of (3.18), for any Z,

(3.27) llr" (kA )P, Zlllo < I Zlllo,
and

(3.28) lllexp™(—kA,)P, Zlllo < I Zlllo,
so that

WE, (kAP T, (] = J,) AUl

<21 (J = J) NUPNlo = 20T = J,) RPN,

< C(I(T = J,) A2URN -y + AT — J,) A2GN),
by (1.37).

By (1.32)
(T = J) A2 U9 -1 < CRAll AT PN -2 = CRANTERI,
< ChlGy 4,
(T = 7)) A2US PNl < Cre~ MG, I,
and we obtain
(3.29) WE, (kAP (T = ) A2USP N < CrANG I,
In order to estimate
WE,(kA,) T (J = J) A 'UPMe,  2<1<s,

we first note that
(3.30) WE,(kA,) 5 Zllo < C(e*) K=, Zlllo,

for 2</<wv+2, t=nk<t* (the proof of this statement is similar to that of
Lemma 3.2 of [1]).
By (3.30)

(3.31) FE, (KAL) JH(T = J,) A UM
< CK'2 1, (I = J) AU Mo = Ch'=2HI(T = J,) A GO .
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By (1.32), (1.37), (3.12),
(T = T A UM -1
< C(IICT = J) NNy + AllICT = J,) AU,
(T = J)ATUPN - < CRa AT UM -3 = Cha™ UM g +i-2)
< Cho™ 1 kTG,

(T = 2,) A 'UPllo < CRIT2IAT UM -3 < Cha 2k~ G,
so that (3.31) yields
(3.32) WE,(kA) T = T)ATUPMo < CRI MG,  2<I<s.
Finally

(3.33) NE, (kAT AT U PMo < Chs~ T AU Mo

by (3.30), and

(3.34) A UM < TN + &0 ha G, ),

so that

(335)  WE,(kA,) L' 0PN < (K~ MTlls + R~ T, ),

once (3.34) is established:
1, A5 TPl < (T, = I ) AU Mo + MTA* TPl
=I(J, = )N T'TPMo + MU
< CRI I UM g-2 + TSI
= Ch UM g s~ vy + T
< Cha™ - kTSN + TG

by (1.32) and (3.12).
Combining (3.29), (3.32), (3.35), we obtain (3.21) and the theorem is established.
Having established the energy estimate for the fully discrete approximation, we
shall consider it sufficient to give the following || - ||l -estimates, 1 < p <r — 1,
which can be compared with the ||| - ||| ,-estimate of Baker and Bramble [1]:

THEOREM 3. For2 < g<sr,2<s<v+ L, 1<p<r—1,nk <r*
(3.36) MW" = U, (nk)lll—pn < C(e*) (AP NG, + &5~ MM -1 ),
(3.37) W = G, (nk)lll-p, < C(e*)(R?* NG Mg + (k=1 + k220G N1 ),
(3.38) W™ — U, (nk)lll-, < C(e*)(hPH 9= MIT M, + &2~ MLl ).

Proof. Once (3.36) is established, (3.37) and (3.38) follow by utilizing the energy
estimate of Theorem 2:

W = U, (mk )l < CAW™ = Uy (k- p.p + A2 = U, (nk)llo)
< C(R?* MGl + &~ INTys—1) + Ch? (ha= NGyl + > =2l -1 )
= (A MGGl + (k5 + 22T,
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and similarly
W™ — U, (nk)ll—p < C(A2 4G + (k5= + k5~ "R2)IITG )
< C(rP* NG, + &GN, ).

Thus, we need to prove (3.36). As in the proof of Theorem 2, (3.36) is established
once we prove that

(3.39)  ME,(kA)PULM - p0 < C*) (AP MNTM + kI, ).
Again
(3.40) INE, (kA PUSON - pp < NE, (kAP (T = J,) RUPII .
N
+ L NE, (kA T(T = J) N U= p
=2

FIE, (KAL) T A TN .
We note that

J,P,J, = J2.
Indeed, for Z = [z, Z],

P, Z = J,P,[T,z, —z] = J,[T,z, — PYz]
= [-T,P%2, - T,z] = [~ Tz, - T,2] = J}?Z.

Therefore (3.40) reads
(3.41)  NE(kA)PUPM -5 < X ME,(kA,) TP (T = J,) AT llo

=1

+|”F;1(kAh)Jh:+p+lA:+ ]Uo(k)”|0~
As in the proof of Theorem 2,

(3.42) WE,(kA,)JLIP(T = J)NTUPMNo < CEUIIP (T = J,) AUl
< CK'mUeprra e kDG,
= Ch? Gl

Finally,

(3.43) WE, (kA) 7 N UMMl = ILE, (KA, ) 7 A UL Mo

< Ck PN U Pl
< Ck Y (NTpIN TP Mo + NIE (T, — T) AU ).
We then observe that
(3.44) TN T Mo = T2~ (J, A) AU Pl
< ClIA~'TPNo < ClG -1,
since

1
e[ [
0 1 0o I

is bounded.
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Now,
WIZ (= YA HTUPMo = (T, = T) AT -
(g, = I) A UPN -, + 2T, = T) A TPMo),

and

(T, = TN TP, < ChP AU g=a = CRPF 9 TS M 251y

< ChP*a- Y S=DIG I,
and similarly
(T, = T)AHUPMN < ChO - kDG,

so that

3.45 WIE (T = T) AT UP Mo < CrP*H 4~ U C= DG, L.
h olllg

From (3.43), (3.44) and (3.495) it follows that
(3.46) F, (kAT PN OB < (KT =1 + A2 NG, ),
and (3.41), (3.42) and (3.46) lead to (3.39), so that the theorem is established.

4. Estimates for the Higher-Order Time Derivatives of Semidiscrete Approxima-
tions. As we noted in the Introduction, our objective in this section is to complement
the results in the paper by Baker and Dougalis [3] by obtaining energy and negative
norm estimates for D;U(t) — D’U,,(t), where U(t) is the solution of (1.9) and U,(t)
is the solution of (1.17) with U, (0) = J;*'A**'Uj, s >

THEOREM 4. Assume Uy € H** 9" \(Q) X H**9(Q), s > 1,2 < g < r, and U,(0) =
JiT NI, Then

(4.1) IDU(t) = DU, ()ll-p < Ch? 7Y, M54
forOsp<sr—1.

Proof. We shall again derive the energy estimate first. Since
JDU(t) + U(t) =0, JD,(D;U(t)) + DU(t) = 0,

and

(4.2) DU(t) = —AU(1),
JDANU(t) + A =

(43) L AU(L) + AU(t) =0
NU(0) = AT,

Similarly

(4.3) DU, (1) + AU () =

' AU (0) = A RN,
since

KU 0) = K77 Uy = Ay (A Vi) SR G
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We shall write
(4.4) DiU(t) — DU (1) = (= 1) (A°U(r) — AU,(1))
= (- 1)'(AU(2) = A JAN'U())
+ (=1 (A NTU(r) = MU (1))
= (=D (E*(1) + E}(2)),

and estimate E}*(¢) and Ej(¢) separately. Both estimates rely upon the following:
ForZ=1[z,z],1<q<r,

(4.5) (T = AI2)ZN-p < ChP* NI ZI -2
This follows readily from (1.29), (1.30) and the expression (obtained from the
definitions and the identity P = L,T,)

J—AJ2=
B B | 0

By (4.5)
(4.6) MNEx*(0)lllo = NAU(r) = Ay JRAATU()Mlo = (T = A, T2 ) A U()llo
< CRAMINTU()lg-2 = CRO UM+ g1
= Ch NG M g4 -1
In order to estimate ||| E}*(¢)lllo, we obtain from (4.3)
J,D,NU(t) + AU(t) = (J, — J)D,AU(1),
(4.7) J,D,(ALJZNH'U(2)) + A JRNT'U(2)
= (J, = J)D,NU(t) + J,D,( A, 2N H'U(t) — AU(2))
+ (A JANTIU(2) — AU(2))

= p,(1).
From (4.7) and (4.3')
WDE}(t) + Ex(1) = 6, (1)
(48) {E;,"(O) ~ 0.

Just as in the proof of Proposition 1, (4.8) leads to
(4.9) WE¥(lllo < C(2*) sup {lllg,()lllo + 1D, (e)lllo}

o<t
for 0 < ¢ < t*, and again it suffices to display the estimation of ||| D,5,(?)lllo: By (4.2)
(4.10) D, (1) = (J, = J)NT2U(2) + J,( A, JRNT3U() = AF2U(1))
+ (AHU(r) — AR J2AH2U(1)).
By (1.32),
(4.11) (I, = D)AT20(0)lllo < ChITMINATT U2
= Ch NU()lls+q = ChO MG M54 4-
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By (4.5)
(4.12) WA 'U(r) = Ay 2N 2U (0o = (T = A2 ) AH2U(2)llo
ChaMAH2U(1)ll -2
= ChNU(ls+4 = CRITMNT M 5+ 4,
and by (4.5), (1.37),
(4.13) I, (A T2 = T)A3U( Mo = (A, T2 = T ) AH3U( )=
C(I(A,J2 = T)N2U@N=1 + AII( A, T2 = T)AH3U()lo)

< CRTMN Ul g=5 = CRANU( s+ = CRIT Tyl 4-

(4.10), (4.11), (4.12) and (4.13) lead to the estimate

(4.14) WD, (llo < ChT Tyl + 4.
Similarly

(4.15) B, (Mllo < CRI~ NG M 54 -1

By (4.9), (4.14), (4.15),

(4.16) MEF(Ollo < C(e*)h7 Ml 0 <2< 1%,

and (4.4), (4.6), (4.16) yield the energy estimate
(4.17) ID;U(t) = DU, (o < C(t*) R~ NGl s+gy  O<t<*,2<g<T.

In order to establish the negative norm estimates, due to (1.38) and (4.17), it suffices
to establish that

(4.18) IDU(t) = DU (Ml-pn < C(e*)R2 T Il 44,

Oty 1gspsr—1.

Since
JD,AU(t) + NU(t) =0
JWD,NU(t) + AU(t) = (J, — J)D,NU(2),
we have
JPH'D,NU(t) + JPNU(t) = JP(J, — J)D,NU(t),

and

JPT'D, AU, (1) + JPANSU,L () =
so that
(4.19) JPT'DE, (1) + JPE,(t) = Jp6,(1),
where
(4.20) E, (1) = NU(t) — MU, (1),
(4.21) 6,(1) = (J, = J)D,AU(2).

Just as in the proof of Proposition 2, (4.19) leads to the estimate
(4.22) WE, (NI, 4

< C)MEON-p + sup (16,( Nl + NDE,(Ip.0) )

o<



414 TUNC GEVECI

Now,
E,(0) = AU, — A, J3 TNy = (J = AJR) N0y,
so that, by (1.37) and (4.5),
(4.23) NE,(O)I_p. < CI(T = AJ2) AT G-, + h2I(T = A,T2) A Gylllo )
< ChPH T NMIN TGl g—2 = CRP 7 IG5 4 -1

As for || D,6, (¢)lll .5, we have, using (1.37) and (1.32),
(4.24) (I, = T)A 22U p s

< C(|||(J,, = J)NH2U(=, + 22T, — J)A”ZU(t)lIlO)

< ChPH NI U(0)llg-2 = CRP A IU(2)lll 544

= Ch?* NGl + 4.

Similarly,
(4.25) 6, (M -p.r < CRP* I~ Uyl s+ g1

(4.22), (4.23), (4.24) and (4.25) lead to (4.18), and the theorem is established.

5. Concluding Remarks. Even though we have examined a specific case, it is
evident that the approach of the paper is relevant to Galerkin approximations of
equations in the form
(5.1 Dvo(1) + Av(t) =

where A is a positive definite selfadjoint operator which may result from a plate
problem or a problem in three-dimensional elasticity. Formally, (5.1) leads to the

evolution equation
o[l s wIlial-

o(1)

which is Hamiltonian with energy

v 2\ /2
e = (C0. o9 et

[7], and it is this structure that we have exploited in our discussion of our specific
case.

It might also be of interest to apply our approach to the nonhomogeneous
equation

D2v(t) + Av(t) = f(1),

and obtain convergence results for nonsmooth data in terms of the negative norms
(cf. Remark 2).
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