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On the Convergence of Galerkin Approximation 
Schemes for Second-Order Hyperbolic Equations 

in Energy and Negative Norms 

By Tunc Geveci 

Abstract. Given certain semidiscrete and single step fully discrete Galerkin approximations to 
the solution of an initial-boundary value problem for a second-order hyperbolic equation, H' 
and L2 error estimates are obtained. These estimates are valid simultaneously when the 
approximation to the initial data is taken to be the projection onto the approximating space 
with respect to the inner product which induces the energy norm that is naturally associated 
with the problem. The L2-estimate is obtained as a by-product of the analysis of convergence 
in certain negative norms. Estimates are also obtained for the convergence of higher-order 
time derivatives in the presence of sufficiently smooth data. 

1. Introduction. We consider the following initial-boundary value problem: Given 
a bounded domain U c RN with smooth bourdary 4, and 0 < t* < x, a function 
u is sought such that 

7D2u(t, x) + Lu(t, x) = 0 for (t, x) G (0, t*] X Q, 

(1.1) u u(t, x) = 0 for (t, x) e (0, t) x aui, 
u(0, x) = uo(x), Dtu(O, x) = iuo(x) for x e Ul. 

Here, uo and iuo are given functions and L denotes the second-order elliptic operator 
N 

aa 
Lu =- E- - a ij(x) ax) + ao(x)u, 

with 

aij =aji E C(), i, j = 1,2, ... N, ao E C?(Q), ao > 0 in Q, 

and 
N N 

E i(X)tigy. > tE(2 
i,j=l i=I 

for x E K2, all ( 21, .2'. . N) E RN, a being some positive constant. 
As in the paper [1] by Baker and Bramble on the approximation of (1.1), and the 

papers [2], [5], [6], [9] on Galerkin schemes for parabolic equations, we shall discuss 
the well-posedness of (1.1) and the convergence of approximation schemes within 
the framework of the spaces HS(2) c Hs(Sl), s > 0, and their duals. Thus, 

f10(2) = L2(2), 
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and 

ks(U) = (v e Hs(R): v = 0 and Liv = 0 on au forj < s/2) 

for s > 0. For s < 0, Hs(2) denotes the dual, with respect to the L2-inner product, 
of fts(2). As shown in [6], 

s (SI ) = {( tE L2 ()22): jjsV| (V, s) 1/ }< 

for s > 0, where 0 < XI X 2 * j < ... is the sequence of eigenvalues of 
the operator L with homogeneous Dirichlet boundary conditions, with the corre- 
sponding complete, orthonormal (in L2(i2)) sequence of eigenfunctions {(7)j' I. The 
norm 11 * Ils is equivalent to the usual Sobolev norm on Hs(72), and on L2(i2) the dual 
norm induced by H-s(R) (s > 0) is equivalent to 

llvll s = (v, E )0As ) 

(*,) will denote the duality between H-s(i) and Hs(2) as well as the L2-inner 
product, and a(-, *) denotes the bilinear form associated with L, i.e., 

NK- au aV 1 
a(u, v) J4i E au1 + auv] dx. 

Let T: H l (2) -- fi1(i) denote the solution operator defined by 

a(Tf, T) = (f, p), q: e H ( (2). 

For f E L2(Q2), Tf E ft2(2) and can be represented as 
0 

I 
Tf= E A(fJ' j)Tj. 

j=1 I 

One notes that, forf E L(o), 

(1.2) 11112-s= (Tsf,f), s > 0. 

When T is considered to be a linear operator in L2(2), it is selfadjoint and positive 
definite [4], [9], so that 

(1.3) (v, w) -s (Tsv, w), s > 0, 

defines an inner product on L2(Q2), and induces the norm 11 
The initial-boundary value problem (1.1) may be viewed as an evolution equation 

for U(t) [u(t), i(t)]' (' denotes the transpose) in the space X -H'(Ri) x L2(Ei); 

( 1 .4) 
f DtU(t) + AU(t) = 0, 

where 

(1.5) A=[ 0 -I] 

U0 = [u0, ik]', and IllUllix IllUllo -{ IIuI + IIUII0)1/2 for U= [u, ii]' is the 'energy' 
norm. 
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Using IIIUIIIq ={ IIUI12+1 + IIqII2)1/2, q > 0, to denote the norm in Hq+l(l) X 
Hq(2), one observes that, for U E H xHQ U I H () x kq(Q), 
t E R, and that 

(1.6) IIIU(t)IIIq = IIIU(0)IIIq, t E R, q > 0. 

This is easily deduced from the representation 

(1.7) u(t) = 
E 

Lu0, T1)cos( 1t ) + (ia0 ' sin X1t) 1A 
j=1 x 

For q = 0 (1.6) states the conservation of energy, for q > 1 it may be viewed as a 
regularity result pertaining to the solution to which we shall appeal frequently. For 
future reference let us also note that 

(1.8) IIIUIlIq = IllAqUIlIlo 
for U E H4t l'(2) x fq(2). This follows readily from the characterization of the 
spaces Hq(U) and the spectral representation of the norms 11 * Ilq mentioned at the 
beginning, noting that 

0 
)[ Lq/2] for q even, 

1)(q- 1)/2 0 -L(q- 1)/2 forqodd. 
L(q+)12 0 

fo 
1 

od 

The Galerkin formulation of (1.1) that is relevant to the approximation schemes to 
be considered in this paper results from 

(D,2u(t), p) + a(u(t), T) = 0 all p E fi'(i) 
with u(t) E H'(S2). As in the paper by Baker and Bramble [1], this may be cast as an 
evolution equation for U(t) E fl(s2) x L2(52) with DtU(t) E L2(Q) x H- 1(l); 

(1.9) (f JDU() + U(t) = 0, > 0, 

(1.9) ~~~~u(o) =U0, 

where 

( 1.9') _[0 T] 

One notes that J: L2(0) X H- 1(2) H'(2) x L2(2), so that (1.9) certainly makes 
sense. With u(t) given by (1.7), U(t) = [u(t), Dtu(t)]' is such a solution for 
Uo E- kl(2) X L 2(Q). 

Parallel to the conservation of the 'positive' norms III - llq, q > 0, as expressed by 
(1.6), the negative norms defined by 

IIUJII_-p (IIUI12 (p + iiU4II2 )1 , p2 > 1, 

so that 

IIIUIII-p = IIIUIIIH5P-')(Q)Xu-P(R) 
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are also conserved: 

(1.10) 111U(t111-p = IIIU(O)II-P t E- R, 

where U(t) is the solution of (1.9). (1.10) easily follows from the representation (1.7). 
Nevertheless, we shall derive it in a way that will indicate to the reader the spirit in 
which we handle the Galerkin approximations. 

We first note that X = ill(i2) x L2(S2) is provided with the inner product denoted 
by 

((U, V))0 a(u, v) + (u, i) 
for U = [u, u]', V = [v, v]', and this inner product induces the energy norm I 111. l. 
J, defined by (1.9'), is skew adjoint; 
(1.1 1) ((Ju, V))O = - ((U, JV))o, U, V e X, 

as is easily verified. In particular, 

(1.12) ((Ju, U))O = o, U E X. 

Next, we observe that 

(1.13) IIIUIII-P = iiiJpU1110, p > 1. 

Indeed, 

llljPUlll = ((JPU, JPU))o = (I- )P((J2PU, U))O, 

by the skew-adjointness of J ((1.1 1)), and 

J2p ()P [TP 

so that 

lllJPUllo2 = a(TPu, u) + (TPi, u) = (TP-'u, u) + (TPiu, u) 

= IlIuI1(p21) + II2 

Now, from (1.9) it follows that 

JP+'DtU(t) +JPU(t) = 0, 

and 

((JP+'DtU(t), JPDtU(t)))o + ((JPU(t), JPDtU(t)))o = 0. 

Due to the skew-adjointness of J ((1.12)), the first term falls away, and we obtain 
I 

d-111JPU(t)jjj2 = 0, 

and by (1.13) 

d IIIU(t)1112p = 0, dt 

so that the conservation statement (1.10) holds forp > 1, as well as for Ill * Illo. 
We shall now describe the semidiscrete Galerkin scheme that will be considered in 

this paper. Let Sh(2) c 'l(S2) be a finite dimensional subspace with the approxima- 
tion property 

(1.14) inf {jju - PhIlo + hjju - (hiIl} < Chqlulq, 1 < q < r, 
pShS2) 

and r> 2. 
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The solution operator Th: f- l(i) -* Sh(2), corresponding to T, is defined by 
(1.15) a(Thf, Th) = (f 'h) for all Th e Sh'(2) 

with f a given element of f- 1 (2). Uh (t) e Sh(2), the Galerkin approximation to the 
solution u(t) of (1.1) is sought as that function which satisfies 

(1.16) f( D7uh(t), Th) + a(uh(t), 9h) = 0, t > 0, T'h E 

\uh(O) = Uo,h esh(= 2), DtUh(O) = U0,h e s(2) 

As in [1], (1.16) is cast in the form 

(1.17) fJhDtUh(t) + Uh(t) = 0, t > 0, 
Uh (0) = U0 h 

where 

Uh(t) = [Uh(t), ih(t)]', UO,h = [UO,h, UO,hl', 

and 

(1.18) Jh [OI Th] 

parallel to (1.9), (1.9'). Jh' written as in (1.18), is an operator L2(i2) x f-'(i2) 
Shr(j) x L2(i2). Just as J is skew adjoint in X = t'(i2) x L2( 2), equipped with the 
inner product ((, ))o, Jh is skew adjoint in Shr(2) x L2(i2) equipped with the same 
inner product. Indeed, for U = [ Uh, u]', V = [ vh, I]' in Shr(2) x L2(2), 

(GJhU, V))O (([ThO, Uh I, [Vh, i]'))O = a(Thiu, Vh) - (Uh, V) 

= (U, Vh) - (Uh, V), 

and 

((U, JhV))O (([Uh, "I', [Th', VhI ))O = a(Uh, Thy) - (u, Vh) 

a(Thi, Uh) - (, Vh) = (V, Uh) - (U, Vh), 

by the definition (1.15) of Th and the symmetry of a(-, *), so that 

(1.19) ((JhU, V))O = - ((U, JhV))O, U, V E Shr (2) X L2(2), 

and in particular 

(1.20) ((JhU, U))0 = 0 

for U E Shr(2) x L2(E2). 
Conservation of energy is readily obtained from (1.17) by making use of (1.20): 

((JhDtUh(t), DtUh(t)))O + ((Uh(t), DtUh(t)))O = O, 

the first term vanishes by (1.20), and 

2 dt 0iU tlio=O 

so that 

(1.21) 111U1(t)1110 = IIIUh(0)IIIo, t E R. 
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Furthermore, the discrete counterparts of the negative norms III * l, p > 1, are also 
conserved. If we adopt Thomee's definition and notation [9], the seminorm 

(1.22) hIVIIss h -(T4v,V)', s > 1, 

is induced by 

(V, W) -s,h -(ThsV1 W), 

and we define the seminorm 

(1.23) IIIVIII-p,h = {IIVII-(p-1),h + ||V||-p,h)7, p > 1, 

which is induced by the inner product 

((V,W)) -p,h -(Tf u, v) + (T, V) 

for V= [v, v]', W= [w, v]'. 
Just as in the case of I II III-p, we note that 

(1.24) IIIJ VhIIIO = IIIVhIII-p,h, p > 1, 

for Vh e Sh(2) X L2(S2). Indeed 

IIIVh hII1= ((jh jh Vh))o = (-h1) ((J h, Vh))O 

by the skew-adjointness of Jh on Sh(2) x L2(S2) ((1.19)), and 

Jh ( 1P ) 0 T*p] 

so that 

IIJ,'VIIIO = a(T,lvh, Vh) + (T,lil lb) = (T, fvh, Vh) + (Tt iV) 

2 III2 , 
= IIVhll-(p-1),h + ji)jj-p,h 

for Vh = [vh, v] E Shr() x L2(s2). We now go back to (1.17) and obtain 

Jh 'Dt Uh ( t ) + J4 Uh(t) = 0, 
so that 

((JhP+'DtUh(t), JkPDtU(t)))o + ((Jh Uh(0t) Jh'DtUh(t)))O = 0 

and, making use of (1.20), 

1 d |lJPA(t)1112 =?0 2dt 

which, by (1.24), yields 

(1.25) IIIUh(t)III-p,h = IIIUh(0)III-p,h, t E R. 

Thus the solution Uh(t) of the Galerkin equation (1.17) conserves the discrete 
negative seminorm III * III-p,h, p > 1. 

Let us note that ((, ))- 1,h coincides with the inner product ((, )) utilized by 
Baker and Bramble in [1] in order to obtain L2-estimates for Uh(t) - U(t: 
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We shall carry out our convergence analysis simultaneously within the energy, i.e., 
III *110-framework, and within the context of the negative norms III * 11K-,, the relation- 
ship of which to III - 111-p,h will be stated presently, and not only II * 111- I,h. We shall 
choose Uh(O) to be PhUo, where Ph: l'(2) x L2(-) Shr(2) x Sh(il) denotes the 
projection with respect to ((, ))-. Thus 

Ph V = [ Phv I Phv, 

for V = [v, v]', where Ph denotes the Ritz projection onto Sh(2) with respect to 
a(-, ), and Ph denotes the L2-projection onto Sh(2), so that 

(1.26) a(Phv, Th) = a(v, Th), Th GE Sh(), 

(1.27) (PhV TOh) = (V Th), 'hE Sh(2), 

Baker and Bramble choose Uh(O) = [Ph uo, Phoito] and obtain optimal L2-estimates 
for Uh(t) - u(t), in [1]. In general it cannot be expected that energy estimates will be 
obtained with this choice of initial data. Thus, one may view the results of our paper 
as complementing those of [1], within the spirit of Thomee's paper [9] on negative 
norm estimates for Galerkin approximations to the solutions of parabolic equations. 
The author is greatly indebted to the works of all three authors. 

Before we state our results more explicitly, we shall state the approximation- 
theoretic results that will be needed in the sequel. The background is available in the 
papers already referred to. 

The following results are well known: 

(1.28) liv - P,^vphV I ChP_Pjvf+q, - < p < r -2, 1 < q < r. 

(1.29) ||v-J'vll p ChP+q?lvJjq, 0 < p < r, 0 < q < r. 

(1.30) ||(T- Th)f ll-P < ChP?q?2fffjq, -l p < r -2, - < q < r -2. 

From (1.28), (1.29) and the definitions of the norms III t-P, 'Illq, one readily 
obtains 

(1.31) IIIV-PhVIIIP , ChP+q?pIIIVIIIq , 0 p < r-1, 1 < q 4 r. 

From (1.30) and the definitions of J and Jh it follows that 

(1-32) III(J-Jh)FIII_p < ChP+q-?l11FIllqq2, 0 < p < r-1, 1 < q < r. 

We also need to clarify the relation between jjI j jl-p and IIj j III-p,h. In [9], Thom'e 
proved the following result (Lemma 1 in that paper): For 0 < p < r and v E L2(Q), 

(1.33) jV(Ij-p,h K C{lvJI-p + hPjlvljo}, 

(1.34) jjVJj-p ,< C{!IvlI-p,h + hPIlvlo}. 
Parallel to (1.33) and (1.34), one obtains 

(1.35) JIVJJ -(p- 1),h < C{IIvIl -(p- I) + hPlIvIl 1}, 

(1.36) IJv j-(p-1) K C{iivii-(p-l),h + hPjlvIll) 

for v E fl(Q), 0 < p < r - 1. The proof is similar to that of Thomee's proof of 
(1.33) and (1.34), making use of (1.30) and the inequality 

llv||_- < C{h21ivii + h-PJJvJJ-(P+l)} 
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instead of 

||V|| -2 < C{h211vjjo + h-(P- ')jjvjj -(p+ 1)) 

both of which are easily obtained from the spectral representations. From (1.33), 
(1.34), (1.35) and (1.36), it follows that 

(1.37) 111VII1p,h < C{(IIVIII,p + hPIlIVIIIo), 
(1.38) IIIVIII-P < C{IIIVIII-p,h + hPIIIVIIIO) 
for V EH-'(Q)xL2(),O0 < p < r- 1. 

In Section 2 we shall discuss the convergence of semidiscrete approximations and 
prove the following: 

THEOREM 1. If UO E fq+1(2) X fq(U) Uh(O) = PhUO,forO < t < t 

IIIU(t) - Uh(t)III_p < C(t*)hp+q- l 0Uolllq 0 < p < r-1, 1 < q < r. 

In particular, one has the energy estimate 

IIIU(t) - Uh(t)jIIo < C(t*)h rIIIU0oIIr, 
and the L2-estimate 

I|U(t) - Uh(1t)O <- C(t*)h rIll UOIllr. 

The reader will observe that these estimates are valid for the choice Uh (0)= 

[Phu0, Phoii]' if Shr(2) satisfies the inverse property 

||h||l1 <- ChIlT|hIl 

for all Th E Shr(U)- 

In Section 3 we shall give estimates for fully discrete approximations correspond- 
ing to the class of rational approximations of the exponential labelled by Baker and 
Bramble [1] as Class i-I. Imposing the appropriate stability condition, as in [1], the 
reader may readily obtain the corresponding results for rational approximations of 
Class i-II. 

In Section 4 we shall give estimates for the convergence of higher-order time 
derivatives of semidiscrete approximations, parallel to the results in the paper [3] by 
Baker and Dougalis. In order to obtain estimates for 1IIDtU(t) - DtUh(t)IIj_p, 
O < p < r - 1, we choose Uh(O) = JhS+ lAs?U+ s s > 1. This is one of the choices 
considered by Baker and Dougalis. These authors had been aiming at Lo-estimates 
for (u(t) - Uh(t)), and made use of estimates for 1IIDtsU(t) - DtsUh(t)IIll h. We do 
not duplicate their effort in the direction of L0-estimates and present our results 
concerning 1IIDtsU(t) - DtsUh(t)IIj_p, 0 < p < r - 1, as results which are of interest 
in their own right. Neither do we attempt to utilize our estimates in order to obtain 
other results parallel to those obtained in [5] and [9] for parabolic problems. 

2. Convergence Estimates for Semidiscrete Approximations. We are comparing the 
solution U(t) of the evolution equation (1.9) and the solution Uh(t) of the corre- 
sponding equation (1.17), with Uh(0) = PhU(O). We shall first establish the energy 
estimate, then the estimates in the discrete negative norms, and combining these 
results we obtain the principal result of this section, stated as Theorem 1 in the 
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Introduction. The energy estimate is of course classical [8], but we still choose to 
include the proof, which is in line with the overall approach of the paper, and which, 
in our opinion, has aesthetic appeal. 

PROPOSITION 1. If U(t) is the solution of (1.9), Uh(t) is the solution of (1.17) with 

Uh(O) = PhUO, and UO eH ftq?I(Q) x ftq(2), 

(2.1) IIIU(t) - Uh(t)IIIo < C(t*)hq- 'IjUOlllq, 1 < q < r, 0 < t < t*. 

(As usual, C will denote a generic constant which may have a different meaning at 
different places.) 

Proof. To begin with, the case q = 1 is trivial, since 

IIIu(t)1110 = l11uo01i0l 
and 

IIIU1(t)I1o = IIIPhUOIIo <1 I1Uo010o, 
by (1.6), (1.21) and the fact that Ph is the projection with respect to ((, 
Therefore we need to consider 2 < q < r. Writing 

U(t) - Uh(t) = (U(t) -PhU(t)) + (PhU(t) - Uh(t)), 

and noting ((1.31)) that 

IIIU( t) - hU(t )IIIo < Chq '1IIIU(t)111q- I =Ch q IIIUll0ljq- I, 
< Chq 'jIUOlllq, 

we shall have to prove 

(2.2) IIIPhU( t) -Uh(t)IIIo , Ch q IjU0lllq, 

2 < q < r, in order to establish (2.1). Since 

JDtU(t) + U(t) = 0, JhDtU(t) + U(t) = (Jh- J)DtU(t), 

we have 

JhDtPhU(t) + PhU(t) = (Jh- J)DtU(t) + Jh(PhDtU(t) - DtU(t)) 
+ (PhU(t) - U(t)). 

Set 

(2.3) Ph(t) = 
(Jh- J)DtU(t) + Jh(ph - I)DtU(t) + (Ph - I)LU(t) 

= (J - Jh)AU(t) + Jh(I - Ph)AU(t) + (Ph- I)LU(t), 

by (1.4). Thus, 

JhDtPhU(t) + PhU(t) = Ph(t), PhU(0) = PhUO, 

and 

JhDtUh(t) + Uh(t) = O, Uh(0) = PhUO, 

so that with Eh* (t) PhU(t) - Uh(t), 

JhDtEh* (t) + Eh*(t) = Ph(t), Eh (O) = 0. 

By forming the ((-, * ))0-inner product with DtEh*(t), 

((JhDtEh(t), DtE*(t)))O + ((Eh*(t), DtE,*(t)))O = ((ph(t), DtEh* (t)))0, 
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and noting that the first term on the left falls away due to the skew-adjointness of Jh 
((1.20)) on Sh'(x) x Sh'(Q), we obtain 

I d 
_t11 

2 dt IIIE*(t)II - ((ph(t), DtEh*(t)))o 

= dt ((Ph(t), Eh*(t)))o -((DtPh(01 Eh*(t)))O, 

and 

IIIE,**(t)III2 - IIIE**(0)III + 2((Ph(t), Eh*(t)))o - 2((ph(0), Eh,(?))) 

-21 ((DtPh(T)' Eh* (T)%) dT 

Since Eh*(0) = 0, 

IIIE, (t)Io = 2((Ph(t), Eh (t)))0- 2j ((DtPh(T), Eh*(T)))0 dT. 

This implies, as in the proof of Theorem 2.1 in [1], that 

3 
sup IIIEh*(t)III 4 (t)IIo+ sup IIIEh*(t)III2 4 O~<-t6<t* 0 <- t 6 t* 4 0 ~< O<t t* 

+ 4t*1 IIIDtPh (T)l OdT, 

and finally 

(2.4) sup IIIE,*(t),II < C sup (IIIPh(t)1112 + (t*)2IIIDtph(t)1112). 

We shall now estimate IIIPh(t)IIIo and IIIDtPh(t)IIIo. By (2.3) and (1.4), 

DtPh(t) = (Jh - J)A2U(t) + Jh(Ph - I )A2U(t) + (I - Ph)AU(t). 
Obviously, it is sufficient to estimate IIIDtPh(t)IIIo. By (1.32), (1.8) and (1.6), 

tI(Jh - J)A2U(t)III 0 Ch- 'IIIA2U(t)IIIq-2 
- Chq- 'IIIU(t)lllq = Chq- 'IIIUolllq 

By (1.31) 

Ill(I - Ph)AU(t)IIIo < Chq- IIIAU(t)lIlq- 1 

= Chq- 'IIIU(t)lllq= Chq- IIIUolllq. 

Now 

II Jh (Ph - I)A 2U(t)1 = III (Ph - I)A2U(t)IIIl 1,h 

C C(III(Ph- I)A2U(t)III-1 + hIIl(Ph- I)A2u(t)1110), 

by (1.37). We have 

III(Ph - I)A2U(t)III_1 I I l?(q- )-'IIIA2U(t)IIIq-2 = Chq IIIUo 
due to (1.31), and 

III(Ph JI)A2U(t)III0 0 Ch_"- 
1) 'IIIA2U(t)IIIq-2 = Chq-2IU0Iq 

again by (1.31). 
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Combining the above inequalities, we obtain 

IlIJh(Ph - I)AU(t)1110 < Ch ljjUojjlq. 
Therefore 

IIIDtPh (t )III0 < Chq- IllUolil q 

and similarly, 

IIIPh(t)III0 < Chq- 'IIIUOIIlq- 
so that 

sup IIIEh*(t)IIIo < C(t*)hq- IIIUOIIlq, 

and the proposition has been established. 

PROPOSITION 2. If U(t) is the solution of (1.9), Uh(t) is the solution of (1.17) with 
Uh(O) = PhUO, and UO E fIq+l(O) x kq(Q)q 0 < t < t*, 
(2.5) IIIU(t) - Uh(t)lll-p,h < C(t*)hP?qI jjUolllq, 1 < p < r - 1, 1 < q r. 

Proof. We write again 

JhDtU(t) + U(t) = (Jh - J)DtU(t), 
so that 

Jhp DtU( t) + JPU( t ) =Jk(h 
- 

JhJ) DtU( t ) 

and 

(2.6) Jhk +DtUh(t) + JhPUh(t) = 0, 

so that, with Eh(t) U(t) - Uh(t), 

Jf + iDtEh (t) + J,PEh (t) = J, (Jh - J) DtU(t), 
(2.7) 

Eh(0) = Uo 
- 

PhUO- 

We set 

(2.8) ah(t) = (Jh - J)DtU(t), 

form the ((*, * ))0-inner product of (2.7) with JkPDtEh(t), and obtain 

(2.9) ((J + DtEh ( t) JhDt Eh (t)))o + ((J,Eh ( t ) 'J4Dt Eh (t)))O 

= ((Jkoah(t), J4DtEh(t)))O. 

Since Jh(X) C Shj(2) X L2(Q), and Jh is skew adjoint on Shr(Q) x L2(g), the first 
term in (2.9) drops out, and we obtain 

(2.10) 2 dt IIIJkEh = ((JgaUh (t) DtJh?Eh (t)))O. 

From (2.10) we obtain, in exactly the same way as in the proof of Proposition 1, 
sup 11J4'Eh(t)IIIo < C(t*) sup (IIIJg0h(t)III0 + IIIJkDt0ah(t)IIIo + IIIJjEh(0)IIIo). 



404 TUNC GEVECI 

By (1.24), this means that 

(2.11) sup IIIU(t) - Uh(t)IIK-p,h 
O<tat* 

< C(t*) sup (0IIh(t)IL-p,h + IIDtah(t)IIL-p,h + IIIEh(O)IIL-p,h). 

In order to complete the proof of the proposition, we shall estimate IIIah(t)Lj-p,h, 
11IDtah(t)L1-p,h and IIIEh(O)L-p,h. Again it suffices to demonstrate the estimation of 
the last two terms. Now, 

Dtah(t) = (Jh - J)Dt2U(t) = (Jh - J)AU(t). 

Making use of (1.37), 

IIIDtah(0t)II-p,h -< C(11( - Jh)A2U(t)III-p + hPIlI(J - Jh)YAU(t)IIIo). 

By (1.32) 

III(J - Jh)A2U(t)lll_p ' q IIIA2U(t)IIIq-2 

=Chp+q- '111U(t)111q = Chp+q- 'IlIUOlIlq- 

Again by (1.32) 

III(J - Jh)A2U(t)IIjO j Ch_-IIIIU0IIjq. 

We therefore have 

|||Dth ( t )|||-p,h -< Chp+q 'IIlUoIlq- 

As for IIIEh(O)IIL-p,h, 

IIIEh(0)111-p,h = 111(1 - Ph)UOIL-p,h < C(III(I - Ph)UOIIKp + hPIII(I - Ph)Uo0IIo) 
' hP I-IlUOlllq_ I, Chp+q- 'IIIUOlllq 

by (1.31) and (1.35), and the proposition has been established. 
We can now immediately establish Theorem 1. 

THEOREM 1. If U(t) is the solution of (1.9), Uh(t) is the solution of (1.17) with 

Uh(O) = PhUo, and UO E tq + '(S) x ftq(S), O < t < t*, 

IIIU(t) - Uh(t)jII-p < C(t*)hp+q- lIl|Uolllq, 0 < p < r-1, 1 < q < r. 

Proof. By (1.38) 

IIIU(t) - Uh(t)III-p < C(IIIU(t) - Uh(t)lll-p,h + hPIIIU(t) - Uh(t)IIIo) 

Chp+q- 'IIIUOlllq, 

by Proposition 1 and Proposition 2. 
Remark 1. The choice Uh(O) = [Pouo, Phoi0]' leads to similar estimates if Shr(2) 

satisfies the 'inverse' assumption 

li(Phil 1 < Ch '1 l9hil0l Th GE Shr(2) * 

Remark 2. If UO is not smooth enough to be in H2(Q) x H'(Q), but is merely an 
element of, say, X = H'(S2) x L2(s2), one can still make sense of negative norm 
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estimates. Let us assume supp uo c c 52, and supp io c c &2. Set K'*Uo = 
[K,'*uo, K*iij]', where Kh* is a smoothing operator (as considered for example, in [4]) 
so that 

IIIKhU0IIIj < Ch-v 'IIU0I10 and IIIK*U0 - UoIII-(r- I) < Chr- I'11Uo01fo. 

Then it is easily seen from our estimates that the choice Uh(O) = Ph (Kh*Uo) leads to 

IIIU(t) - Uh(t)III-(r-1) < Ch 2 IIIUOIIIo. 

Thus for r > 2, we have convergence in the sense of distributions, to the solution, 
which is a solution also in the sense of distributions. As opposed to the parabolic 
case, where nonsmooth initial data is smoothed out at t > 0, in the hyperbolic case 
such a result is all one can expect (over all of S2) in the presence of nonsmooth data. 

3. Convergence Estimates for Certain Fully Discrete Approximation Schemes. Let 
us denote 

(3.1) Ih Identity on Shr(Q), Lh = ( ThjSr(g)) 

(Th is positive definite on Shr(51) [5]), so that 

(3.2) A [ - Ihj 

iS (Jh*) 1Jh* - JhIS,XSr. We can then rewrite (1.17) as 

(3.3) (DtUh(t) + AhUh(t) = ), t > O, 

so that 

(3.4) Uh(t) = e- PUo. 

We shall consider rational functions r(z) with the approximation property 

(3.5) |r(iy) - e-'Y1 < Clyl'+ 
1 Y < 

for constants C > 0, v > 0, a > 0, and which are of Class i-I [1]: 

(3.6) Jr(iy)jI 1 forally E R. 
The fully discrete approximation (WI)' c: Shr(Q) X Shr(Q) to the solution U(t) of 
(1.9) is then defined by 

(3.7) |Wn+1 = r(kAh) Wn, n = O, 1, 2,... 

W? = 
PhUO, 

where k > 0 is the time step, so that 

(3.8) W = rn(kAh)PhUO 

is to be compared with Uh(t), t = nk ((3.4)). 
In preparation for the derivation of the error estimates, we shall first discuss the 

spectral representation of the relevant functions of Jh within the context of ((*, *))., 
parallel to the discussion in [ 1] within the framework of (( *, * ))- l h- 
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Let X denote the complexification of fll (2) x L2( 2) as well, so that 

((1, "))0 = a(qF, 4) + (F,, 4) 
for 4 = [, 1]', = [4, 4]', with - denoting the complex conjugate. Let us denote 
by Jh the restriction of Jh to the Hibert space S,r(2) x L2(2) (with ((, ))0). It is 
readily observed that Jh is skew adjoint, as in the real case, the kernel of Jh is 

(0) x Kernel Th, and 

(Kernel Jh)' = Sr(x) X (L2(2) e Kernel T, ), 

L2(2) e Kernel Th = Image T, = S,r (2) 

(Th is selfadjoint in L2(S), and is positive definite on S*,(2) [5]), so that one has 

(3.9) S,r(2) X L2(2) = (Kernel Jh) ED (S,r(2) x S,ir(2)). 

As in [1], let (tj`)jM= 1 denote the nonzero eigenvalues of Th, and let (4jh)Ji l be a 
corresponding sequence of eigenfunctions, orthonormal in L2( 2). Then, the se- 

quence j -M ( 0) in Sr() X Shr(E) defined by 

j= 
1 | jh =-| 

1 yi ) j = 1, 2, ..., M, 

is easily seen to be a sequence of orthonormal (with respect to ((, ))O) eigenfunc- 
tions for Jh' complete in Shr(2) x Shr(2), and corresponding to the eigenvalues 
rj = i(,jh)l1/2 

T 
_ = -i(Ah)l/2,j = 1, 2,. . ., M, respectively. 

Thus, for any 4 E X, and any function f, analytic in a neighborhood of the points 

{~ 81 j} =-M 
M 

(3.10) f ( A h)Ph4= ' f ( 71- ') ((P ( jh )) D!jh 
j=-M 

M 

' f(qy'(( ,4)h)0'ih 
j=-M 

('indicates thatj = 0 is omitted), and for any (F E Sh(2) x L2(2) (in particular, for 
any F E Jh (X)), 

M 

(3.11) Jh= E (((F =Ij'))0?F, / > 1. 
j=-M 

As in [1], an essential step in the comparison of Wh and Uh(nk) is the introduction 
of an auxiliary function 

U (k) = [Uo ), i(o)]k E koo () )(X fto(i), 

such that 

(3.12) glUo 111q+m < k lUlq 

(3.13) 111U0 - U _(k)IIKp < k ?PIIIUOlllq 

for m, p, q > 0 (these follow from the definitions of the norms and the observations 
in [1]). 

We are now ready to prove Theorem 2. 
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THEOREM 2. Assume UO E (lq+ '(2) X ftq()) n (Hs+ ?(2) X fS(2))* For 2 < q 
< r, 2 < s < v + 1, nk < t*, 

(3.14) IIiWn - U(nk)IIIo < C(t*)(hq- 1IIIUolllq + ks1-IIIUoIIIs). 

Proof. Due to Proposition 1, we need only prove that 

(3.15) Iiiwjn - Uh(nk)llo < C(hq-IIIIUolllq + ks-lIIUoII1s). 

By (3.4) and (3.8) this amounts to proving 

(3.16) 111(rn(kAh) - expn(-kAh))PhUoIIo < C(hq-'IIIUOlllq + ks- I IIUoIIIs). 
We introduce the auxiliary function Ugk), 

(3.17) (rn(kAh) - expn(-kAh))PhUO 

= (rn(kAh) - expn(-kAh ))pUgk) 

+ (rn(kAh) - expn(-kAh))Ph(UO - Uok)) 

and estimate these terms separately. 
By (3.10) 

M 
rn ( kAh )Ph ( Uo - U(k)) - - r ( kr')((Uo - Uok), 4jh ))4j, 

j=-M 

so that, by (3.6) and (3.13), 

(3.18) lilr (kAh)Ph(UO - )Io - I (U0 - u0(k))II )o 
j= -M 

11JU - U 0(k)111o 2 k2sllUo111. 

We also have, by (1.21) and (3.13), 

(3.19) ||ep(kAh)Ph (UO - U0 )lo=Il*(o-u()I 

11JlUo - Uo(k)JI1o ksilluoills. 

Thus 

(3.20) 111(r (kAh) - exp(-kAh))Ph(UO - u0(k))IIIo < 2kslIlUoIlls, 

and, in order to establish (3.16), we are left with the task of establishing the estimate 

(3.21) IIJFn(kAh)PhUok)IIIo 0 C(hq-'IIUolIIq + ks'iiiU0ii) 

2 < q < r, 2 < s < v + 1, where 

(3.22) Fn(z) r(z) -e 

As in [1] (and [2]), we write 
s 

(3.23) Uk (h = 

l=0 

so that 

(3.24) PhUO Ph(J-Jh)AUo +PhJh(JJh)AU 
S 

+ ( Jh)A UO(k)+ Js+IAS+ IU(k) 
1=2 
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We note that 

(3.25) -P Jh)Z = 0, Z E Ht(2) X L (2) 

Indeed, for Z = [z, z]', 

Ph (J- Jh)Z [Ph(T - Th)?,0] = [(PhT - Th)?,O] = ?, 
since PhT = Th; 

a(P,hT?, (Ph) = a(T?, TOh) = (Z, TO) = a(Th?, TO)', Th Sh 
Thus 

(3.26) IIIFJ(kAh)Phu0k)IIIo < IIIFn(kAh)PhJh(J - Jh)A UO(IIIO 
S 

+ E IIIFn(kA h).Jh( - Jh )AUO)IIIo 
1=2 

+ 111IFn (kAh ) jIs +A + IU(k)IIlo. 

Now, as in the derivation of (3.18), for any Z, 
(3.27) Illr (kAh)PhZIII0 < IIIZIIIO, 
and 

(3.28) llexpn (-kAh)PhZIIIo < IIIZIIIO1 
so that 

|||F(kAh )Ph.Jh ( J-jh )A2U0(k)IIIo 

11I 2IIh(h J -hJh)A Uo( jIIIJ = 2|||(J - 

< C(III(J Jh)A Uo III-1 + hIII(J - J)AUO2III)) 

by (1.37). 
By (1.32) 

III(J -Jh)A U( )III < c __ 2 = k 

III(J - Jh)A U0( 1110o < Chq lIU|IICq, 
and we obtain 

(3.29) 1IIFn(kAh)PhJh( -Jh)A UO( 111l < Ch lllUllIIq. 
In order to estimate 

IIIFn(kAh).Jl(J -J)A'UOIIIO, 2 < I < s, 
we first note that 

(3.30) III Fn(kA )*ZI110 <- C( t*)k 1l h ZI11o 
for 2 < 1 < v + 2, t = nk < t* (the proof of this statement is similar to that of 
Lemma 3.2 of [1]). 

By (3.30) 

(3.31) IIIFh(kAh) Jh( J-Jh)A UO(IIO 

< Ckl IIJh(j -J )A u i0 = Ck 212 |211( - 
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By (1.32), (1.37), (3.12), 

111(j - jh )A~+UOkIIIl 

< c(III(J - Jh)A U0 IlL-1 + hIII(J-Jh)A UO)IIIO), 

III(J -- Jh)A lujk)IIL-1 Ch q 1 ll lq3 =Chq U q+1-2) 

< Ch- ' -(1-2)lUolq 

1I(j - Jhh)A +IUJk)lIlo 2 Ch-2A'+ lUjk)q3 Chq- 1-2) 

so that (3.31) yields 

(3.32) IIJFn(kAh)Jh(J -Jh)A IIl0 0 Ch9qIIjU0Illq, 2 < I < s. 

Finally 

(3-33) JjjFn (kAh )Jhs+ lX+ lUf)lO<CS llJA+loklI 

by (3.30), and 

(3.34) IIUJhA lUO()IIO s c(ijukiiLs + k-(s-) * hq- 1iIIUOIlq), 

so that 

(3.35) Fn(kA)J+ C(k llUolis + h9 IIUoIq) 
once (3.34) is established: 

IIJhAh 
IUl(k)ls 

0 
I 

_(Jh 
-J)As+?U0(k)lllo + IJIJAS?lUc(k)jljo 

II(Jh J)A? 1U(k)IIIo + JjIU?(k)III 

< Ch9 lIIA? U0k)IUIqk 2 + 111U0(k)1115 

= 7q- 11IILUgk)II~~1 IIILUJk)'JIIL = Ch 1 kl(llq+(U _I) + 111U01115 

Chq-1 ' k-(s- )IlIlUolI1q + IIIUolIls 

by (1.32) and (3.12). 
Combining (3.29), (3.32), (3.35), we obtain (3.21) and the theorem is established. 
Having established the energy estimate for the fully discrete approximation, we 

shall consider it sufficient to give the following III - III-p-estimates, 1 < p < r - 1, 
which can be compared with the I II * I11 l h-estimate of Baker and Bramble [1]: 

THEOREM 3. For 2 < q < r, 2 < s < v + 1, 1 < p < r- 1, nk < t*, 

(3.36) IIIWn - Uh(nk)lll-P,h < C(t*)(hP+q- l11U01l1q + kS-111U0III51-), 

(3.37) IIIWn - Uh(nk)lll-P < C(t*)(hP+q-lillU0iiq + (ks-' + ks-2hP)IIIU0III5_1), 

(3.38) iIIWn - Uh(nk)IIL-p < C(t*)(hP+q4- IIUoIIlq + ks-IllUo0IIsI). 

Proof. Once (3.36) is established, (3.37) and (3.38) follow by utilizing the energy 
estimate of Theorem 2: 

111W n - Uh(nk)lllp < C(|||Wn - Uh(nk)IIK-p,h + hP|IIWn - Uh(nk)IIIo) 

< C( hP? IIIUolllq + k"1IJllU0I1I,i) + ChP(hq-l IIUol0lq + ks2IIU0IIs- 51) 

= C( hP+q- ?1IIIUOilq + (ks- I + ks-2hP)lIU0oIIs-I1), 
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and similarly 

11W' - Uh(nk)III-p < C(hP+q- 'IIIUolllq + (ks-1 + ks- 'hP)IIIUOIIIs) 

< C(hP+q- 'IIIUolllq + ks 'iiiUoiiis). 

Thus, we need to prove (3.36). As in the proof of Theorem 2, (3.36) is established 
once we prove that 

(3.39) IIIFn(kAh)PhUo k)IIIp,h < C(t*)(hP+q 'IIIUoIIIq + ks '111u01115). 
Again 

(3.40) IIIFn(kAh)PhU )I 11-p,h < 11IIFn(kAh)PhJh(J - Jh)AU0 1L-p,h 
S 

+ E 1IIFn(kAh)Jh(J - Jh)A U 11 |-p,h 
1=2 

+1IIFn(kAh) Jh?s A U( 111-p,h- 

We note that 

Jh Ph Jh = Jh 

Indeed, for Z = [z, z]', 

JhPhJhZ JhPh[Thz, -Z] Jh[Th,, -Phz] 

= [-ThPhZ -Th2] = [-ThZ Thz] Jh Z 

Therefore (3.40) reads 

(3.41) IIIF1l(kAh)PhU(k)III-p,h 0 
IIIJn(kAh) JnP'(J -Jh)AI u0(k)IIIo 

1= 1 

+1IIIn(kAh )js+p+ lAS? lu(k)III 

As in the proof of Theorem 2, 

(3.42) IIIFn ( kAh )J/J(J -Jh)A UIII o Ckl'IIIJI'(J -Jh)A U0 Ill 0 

Ckl-l - hP+q- I . k-(I- I) IIIUolllq 

-Chp+q- 'IIIUOlllq- 

Finally, 

(3.43) Fn(kA S+p lU(k) 0 = I uFn(kA Jo 

Ck+s (IIIJ,UJAS?U0(k)IIIo + IIIJl( Jh - j)As 1U(k)IIIo). 

We then observe that 

(3.44) IIIJ4AsU0(k)Illo = IIIJ4- '(JhA)AX1u0(k)III1 

< 711U\ ( )IlLo < ClIILUIlls-1 
since 

JhA [A o ]L ][ o] 

is bounded. 
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Now, 

IlIJ4(Jh - J)AS?1U(k)III0 = III(j - j)AS UO(k)II1P,h 

< C(III(J-h j)AlU0(k)II -J)AslUO(k)II1o), 
and 

h - J)AS? U(k)III 0 C IIIAs+lUok)IIq-2 = Chp+q lillUlk)III sI 

Chp+q- 'k-(s- 0)lilUolilq, 

and similarly 

Iil(Jh - J)XAs+lU(k)J < Chq-1 kI-(s- 1)IIIU0IIq, 
so that 

(3.45) IIJh(J - Jh)A U III Chpq ( 

From (3.43), (3.44) and (3.45) it follows that 

(3.46) IItFr(kAh)Jhs+P+?lAs luk)IIo s< C(ks liIIUoIIsl + hP IIIUlllIq), 
and (3.41), (3.42) and (3.46) lead to (3.39), so that the theorem is established. 

4. Estimates for the Higher-Order Time Derivatives of Semidiscrete Approxima- 
tions. As we noted in the Introduction, our objective in this section is to complement 
the results in the paper by Baker and Dougalis [3] by obtaining energy and negative 
norm estimates for DsU(t) - DsUh(t), where U(t) is the solution of (1.9) and Uh(t) 
is the solution of (1.17) with Uh(O) = Jhs lAs luo s > 1. 

THEOREM 4. Assume U0 e HS_+q+1() X Hk+q(2) s > 1, 2 s q < r, and Uh(O) = 

JhS+As?+UO. Then 

(4.1) IIIDtsU(t) - DtsUh(t)lJIIp 

forO p < r- 1. 

Proof. We shall again derive the energy estimate first. Since 

JDtU(t) + U(t) = 0, JDt(DtsU(t)) + DtsU(t) = 0, 

and 

(4.2) DtU(t) = -AU(t), 

I JDtAsU(t) + AsU(t) = 0, 
(4.3) AsU(O) = ASUo. 

Similarly 

,43{) JhDtAhUh(t) + AhUh(t) = 0, 

(3 AhUh(O) = AhJh2XAsUo? 

since 

AVUhh(0) = AhJhs ilAs lUo = Ah(Ah 2Ji I)J,2As?1uO. 
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We shall write 

(4.4) Dt-Uh(t) - DtUh(t) = (-1 )s(NAU(t) - AhUh(lt)) 

= (- l)s(ASU(t) - AhJh2AS?+U(t)) 

+ (-1l)s(AhJ2As? U(t) - AhUh(t)) 

= (-1)((Eh**(t) + E*W)) 

and estimate Eh**(t) and Eh*(t) separately. Both estimates rely upon the following: 
For Z = [z, ?]', 1 < q < r, 

(4.5) iii(J - Ah Jh2)ZIII-P < ChPq- IIIZlllq-2- 

This follows readily from (1.29), (1.30) and the expression (obtained from the 
definitions and the identity Pho = LhTh) 

J~AhJhl2=[p T -TJ 

L Ph I O ] 

By (4.5) 

(4.6) IIIEh**(t)ijIo = IIIAsU(t) - AhJh2AS+lU(t)110 = -l(J-AhJh2)AS+?U(t)IIIo 

s Chq lIIIAs? 1U(t)IIIq-2 = Chq 'IIIU(t)IIIs+q-I 

= Chq- 'ljjUo111s+q- 1 

In order to estimate IIIEh*(t)III0, we obtain from (4.3) 

JhDtAU(t) + AsU(t) = (Jh - J)DtAsU(t), 

(4.7) JhDt(AhJh2As? U(t)) + AhJh2As? U(t) 

- (Jh - J)DtANU(t) + JhDt(AhJhA+ 'U(t) -AsU(t)) 

+ (AhJh2As+U(t) - AsU(t)) 

-MO(t). 

From (4.7) and (4.3') 

(4.8) (JhDtEh*(t) + Eh*(t) = Ph(t) (4.8) 
~~~E,*(0) = 0. 

Just as in the proof of Proposition 1, (4.8) leads to 

(4.9) IIIEh*(t)I10o < C(t*) sup {IPh( t )IMIIO + 1IIDh 1(110)IIo} 

for 0 < t < t*, and again it suffices to display the estimation of IIlD, Oh(t)I Io: By (4.2) 

(4.10) Dt(,h(t) = (Jh -J)AS U(t) + Jh(AhJh AsU(t) - Ah2U(t)) 

+ (As+lU(t) - AhJ hAs?2U(t)). 

By (1.32), 

(4.11) III(Jh - J)AS+2U(t)IIIo - I|+2U(t 

= Chq- '111U(t)IIIs+q = Chq- 1IIIUoIIIs+q. 
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By (4.5) 

(4.12) IIIAs+lU(t) - AhJh2AS?2U(t)IIlo = III(J - AhJh2)AS?2U(t)IIIo 

< Chq-l11AS+2U(t)111q_2 

= Chq- IIIIU(t)lIls+q = Chq- 'lIIU011s+q, 
and by (4.5), (1.37), 

(4.13) IIIJh(AhJh - J)AX?3U(t)jIIo = III(AhJh2 - J)As?3U(t)Il_ 1,h 

< C(III(AJh - J)AS+3U(t)lll_l + hIII(AhJh2 -J)As+3U(t)IIIo) 

, Chq l111AS+3U(t)111q3 = Chq 'IIIU(t)IIIs+q= Chq' IIUoIIIs+q. 

(4.10), (4.11), (4.12) and (4.13) lead to the estimate 

(4.14) IIID(ph(t)IIo s Chq 1'IIUo0iIs+q. 
Similarly 

(4.15) IIP()IO<Ch q -1U011Is+q- I 
By (4.9), (4.14), (4.15), 

(4.16) IIjEh*(t)Ijj0 < C(t*)hq- '11 U011s+q, 0 < t < t 

and (4.4), (4.6), (4.16) yield the energy estimate 

(4.17) IIIDtsU(t) - DtsUh(t)jIIo < C(t*)hq- i lU0110s+q, O < t < t* 2 < q < r. 

In order to establish the negative norm estimates, due to (1.38) and (4.17), it suffices 
to establish that 

(4.18) IIIDtSU(t) - DtSUh(t)III_p,h < C(t*)hP+q- 'IIIUoIIIs+q, 
O < t < t* < p < r -1 

Since 

JDtAsU(t) + ASU(t) = 0, 

JhDtAU(t) + ASU(t) = (Jh - J)DtASU(t), 
we have 

JhP+lDtAsU(t) + J4AsU(t) = J4(Jh - J)DtAsU(t), 

and 

Ji +lDt AhUh (t) + JNAhUh (t) = 0, 

so that 

(4.19) J4+' DtEh(t) + J4Eh(t) =Jkdh(t), 

where 

(4.20) Eh(t) AAU(t) AhUh(t), 

(4.21) -h(t) (Jh J)DtAsU(t). 
Just as in the proof of Proposition 2, (4.19) leads to the estimate 

(4.22) II|Eh(t)111-p,h 

< C(t*){IIIEh(0)111-p,h + SUp (0116h(t)111-p,h + IIIDt6h(t)IIL-p,h)}. 
0 < t .< t 

.* 
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Now, 

Eh(O) = ASUO - AhJh+lAs+lUo = (J- AhJ )As+UO, 

so that, by (1.37) and (4.5), 

(4.23) IIIEh(O)III-p,h < C(III(J - AhJh 2)A?UOII1p + hPIll(J - AhJh )As?UoIIIo) 

Chp+q- '1lS Uolllq_2 = Chp+q- '111Uo111s+q- 1 

As for 1IIDt6h(t)II1p,h, we have, using (1.37) and (1.32), 

(4.24) III(Jh -J)A?U(t)111-pI h 

C(111(J - J)As+2U(t)IIj_p + hPIll(Jh - J)As+2U(t)jjjo) 

< Ch II-1AS+2U(t)IIIq_2= Chp+q-U(t)IIIs?q 

- ChP+q-?'IU0111s+q. 

Similarly, 

(4.25) 111dh(t)111-p,h < Chp q- IllUo111s+q- I 

(4.22), (4.23), (4.24) and (4.25) lead to (4.18), and the theorem is established. 

5. Concluding Remarks. Even though we have examined a specific case, it is 
evident that the approach of the paper is relevant to Galerkin approximations of 
equations in the form 

(5.1) D72v(t) + Av(t) = 0, 

where A is a positive definite selfadjoint operator which may result from a plate 
problem or a problem in three-dimensional elasticity. Formally, (5.1) leads to the 
evolution equation 

rv(t) ] [ 0 ]rv(t)] ro D 
)(t1.) 

J A 0 Li)(t) 
J 0] 

which is liamiltonian with energy 

|| = ((Av, v) + IIi0) 

[7], and it is this structure that we have exploited in our discussion of our specific 
case. 

It might also be of interest to apply our approach to the nonhomogeneous 
equation 

Dt2v (t) + Av(t) = f(t), 

and obtain convergence results for nonsmooth data in terms of the negative norms 
(cf. Remark 2). 
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