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Accurate Approximation of Eigenvalues 
and Zeros of Selected Eigenfunctions 
of Regular Sturm-Liouville Problems 

By Eugene C. Gartland, Jr. 

Abstract. A method for simultaneously approximating to high accuracy the corresponding 
eigenvalue and zeros of the (n + I)st eigenfunction of a regular Sturm-Liouville eigenvalue 
problem is presented. It is based upon equilibrating the minimum eigenvalues of several 
problems on subintervals that form a partition of the orginal interval. The method is easily 
derived from classical mini-max variational principles. The equilibration is accomplished 
iteratively using an approximate Newton Method. Numerical results are given. 

Introduction. The problem of approximating the eigenvalues of regular Sturm- 
Liouville equations has attracted the attention of analysts for a long time. An 
annoying aspect of most numerical schemes is that the accuracy of the approxima- 
tion of the n th eigenvalue decreases as n increases. This is due to the fact that the 
higher eigenfunctions are more oscillatory and therefore more difficult to approxi- 
mate accurately. 

In this paper is presented a simple method by which any eigenvalue can be 
approximated as accurately as the first, which accuracy will depend of course on the 
particular scheme utilized for this basic (minimum eigenvalue) calculation. The 
method is based upon approximating the minimum eigenvalues of several problems 
on subintervals that form a partition of the original interval. These " subeigenvalues" 
are then equilibrated by iteratively selecting appropriate breakpoints for the subin- 
tervals. 

A related question, for Sturm-Liouville problems, is that of calculating the n 
distinct zeros of the (n + I)st eigenfunction. These points are of interest in some 
applications. One approach to approximating the zeros of such a "special function" 
would be to use a standard root finder together with an analytic approximation 
(such as a truncated series or continued fraction) to the eigenfunction. The accuracy 
of the computed zeros then would depend on the accuracy of the approximation to 
the eigenfunction. 

Here we will see that these zeros are precisely the equilibration points mentioned 
previously. Thus they can be approximated, simultaneously with the eigenvalue, in a 
general way, which requires no specific information about the eigenfunction; and the 
accuracy of the approximation will depend only on the accuracy to which one can 
approximate the minimum eigenvalues on the subproblems. 
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The theoretical material consists mostly of simple observations based on familiar 
mini-max principles and is contained in the next two sections. The iterative scheme 
that solves the equilibration problem is an approximate Newton method and is 
developed in Section 3. Numerical results are given in Section 4. 

1. The Problem. Consider the regular Sturm-Liouville eigenvalue problem 

(l l) Lf-Lo (po')' +qo = Aso, O< x< 1, 

(1.1) 4)(O) = 0(1) = 0.* 

It is classical (see [2]) that if the real functions p, q, and s are sufficiently smooth 
with p and s positive then (1.1) possesses an infinite sequence of.real, simple 
eigenvalues -xo < AI < A 2 < ... (with no finite accumulation point) and corre- 
sponding eigenfunctions (DI, .2 ... satisfying (Di, I)5 

8, 
, i, j = 1 2,2.... Here 

( )s denotes the inner product on the weighted L2 space L2([0, 1], s): 

0 Os . 

The (n + I)st eigenfunction, n+ 1, has exactly n distinct zeros 0 < < ... < n < 
1 in (0, 1). 

With the differential operator L and the boundary conditions of (1.1) we can 
associate the bilinear form 

a(o, 4,) f|(pP'4' + q44). 

Let (, *) denote the usual L2[0, 1] inner product. Then the form above results from 
integration by parts of (LO), 4) for sufficiently smooth 4 and 4 vanishing at 0 and 1, 
and for such functions we have (LO, 4) = a(4, 4) = (4, L+). 

The eigenvalues of (1.1) are stationary values of the Rayleigh quotient 
a(o, o)/(5, 4)4. In fact ,we have (see [7]) the variational characterization 

(1.2) An+1 = sup inf a(o , )) 
, . . ., l(= =I,()=0 (4)' 4) ) 

linear functionals 

Here and in the sequel, admissible functions are sufficiently smooth (continuous 
with piecewise continuous derivative), nontrivial functions that vanish at 0 and 1. 
The extremum above is achieved by the (n + I)st eigenfunction, (n+ when the 
linear functionals are given by 

(1.3) ii(o) = OP5,kX)S5, =1.. n. 

We are interested in approximating to high accuracy the eigenvalue An+ I and the 
zeros 1, . ..., (n of Dn+ I We will find a slightly different variational characterization 
helpful. 

2. Connection With an Equilibration Problem. The linear functionals (1.3), for 
which the supremum in (1.2) is attained, are not unique. It so happens that the 
supremum is also attained at the functionals of point evaluation at the zeros of n+ 
This can be deduced as follows. 

*More general separated boundary conditions of the form aok(O) - f3opo'(O) = 0, al(l) + 131po'(l) 
= 0, as well as an arbitrary finite interval, can be handled similarly. The problem (1.1) is chosen for 
definiteness and simplicity. 
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Let D denote the open set {x =(xl,..., x,,): O < xl < < x, < 1) in R. As 
convention take x0 = 0 and xn+ l = 1. For any x in D define 

a() 4) x= f1 p(, + q(p4) 

and 

(4)~ 'P)s- | fc psf i = O..., n. 

Let Ai denote the minimum eigenvalue of the differential operator L on the 
subinterval [xl, xi+ J with zero endpoint conditions. Then A, is a function of x, and 

Xi= inf n. 
4(x,)=4(x,+ I)=0 (4), 0))s,, = 

PROPOSITION 2.1. Let x be in D, A0,..., An be as above, and Amin(x) denote 

min{A0,..., An). Then 

inf a(4),) Amin(X). 
(X1)= ... =4(X.=) (=p, ))s 

Proof. If qs is sufficiently smooth and vanishes at xj,..., xn (as well as at 0 and 1), 
then 

a(4w,p) - -a(0,4))i x Ai('p,4)), > A ,(x) 

(0 ?)S 

- 
-(P'S' 

>-- 
,i (0, o) s i ,min() 

Equality is attained when 4 is an eigenfunction associated with the eigenvalue 
A min(x) and extended zero outside an interval corresponding to this minimum 
eigenvalue. O 

In the case where the points xl,..., xn are located at the zeros 4 n,, of the 
normalized eigenfunction 4)n + 1' we get 

An+ I =a(,Dn+ , Dn+ ( 4Dn+ I S Dn + I )s, i = O S. .. n . 

The second equality simply follows by integration by parts and use of the facts that 

L(n+ I = An+ IS'Dn+ I and n+ l (xi) = 4n+ l(xi+ 1) = 0 (since x, = (i and xi+ I = 

+ I)4 The restriction of (?n+I to the interval [xi, xi+ ] is an eigenfunction corre- 
sponding to the minimum eigenvalue Ai on this subinterval, and AX = A n + . There- 
fore AXmi,() = An+ ,, and we have the following 

PROPOSITION 2.2. The (n + 1)st eigenvalue, An+ 1, satisfies 

(2.1) An+l = sup inf a(4,4) 
n 

O < xl < - - - <xn < I O(eX, ) t X = .. 
( d) )= (0 ) )O 5 

and the extremum is achieved by the (n + 1)st eigenfunction, Dn+ l when X,..., x n 
are taken to be the zeros of this function. 
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Proof. From Proposition 2.1 and the observations above we have 

An+ = inf a(,0 
n1 

41 ... =4 -(tn,)=O0 () s 

K1 sup inf 
O<Xj< 

... 
<n,< I <t0(XI .. =4,(X,) 

= 
(o s) 

K1 sup inf a( =,An) - A 
I I1(p)= =1n(4p)=O (4), O)S f+ 

linear functionals 

The "subeigenvalues" No,... A,n (the minimum eigenvalues of the problems on 
the subintervals) are continuous, strictly decreasing functions of the subintervals, 
that is, if [xi, xi+1] is properly contained in [x', x'+ ], then A > A' and A' -- A, as 
I[x', x'+ 1]\[xi, xi+1] 0. It follows that the set of points x = (x1 ..., xn) that 
maximizes Amin(x) must be such that the subeigenvalues are equilibrated: if these 
were not equilibrated, then one could increase Ami(x) by shrinking those subinter- 
vals corresponding to this minimum value. It also follows that this set of points is 
unique: any other point set must be such that it possesses a subinterval that properly 
contains a subinterval of the optimal set, and it must therefore have a strictly smaller 
A min(x). As already observed, these points must be the zeros of Dn + 1 Moreover, for 
any x in D we have Amin(X) < Aln+l < Xm.(X)5 where Amin and Am. denote the 
minimum and maximum of the subeigenvalues X05 ... 5An on the partition induced 
by x. These results are summarized, for later reference, in the theorem below. 

THEOREM 2.3. The zeros of the (n + 1)st eigenfunction provide the unique maximiz- 
ing points for the supremum in (2.1). They are uniquely determined by the equilibration 
condition 

N?() = = An(X). 

Furthermore, for any x in D we have 

min( X0(x) , ... 5 An W)} _< A n+ I max({0 (x)X *, A n(x)}. 

These observations provide us with a way of approximating the zeros of n+ I by 
equilibrating the minimum eigenvalues of subproblems, producing brackettings for 
An+ I along the way. The only limitation on the attainable accuracy of the zeros or 
the eigenvalue is the accuracy to which one is able to approximate the first 
eigenvalues on the subintervals. Thus, in theory, we can approximate any finite 
number of eigenvalues to the same order of accuracy and not have to accept the 
usual deterioration in the accuracy of the higher values. The tradeoff is in the 
number of minimum eigenvalues that must be approximated. To make the approach 
at all practical, an efficient scheme to equilibrate SO(x),..., An(x) is needed. For 
this, Newton's method can be employed. 
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3. Newton's Method for the Equilibration Problem. The equilibration condition of 
Theorem 2.3, which uniquely determines the zeros 4,..., (, can be written as a 
vector equation F(x) = 0 with 

F1 (x) Xo(x)-X1(x) 

F(x)- F2(x) _ X 1(x)-X 2(x) 

F(x(x 
Fn (x) An - I (x)- n (x) 

Actually, Ai depends only on xi and xI +1; so the Jacobian F'(x) is tridiagonal and 
has the form 

(ax0 ax, ax, 
ax, ax,) aX2 

ax, (ax1 ax2 aX2 
F (x) = ax ax2 ax2 ax3 

an-I 
.____ (., ~ , - axn 

*an-I (an- 1 An) 

To use Newton's method, then, we require some information about the partial 
derivatives of the subeigenvalues with respect to the endpoints of the subintervals. 

The theory of perturbations of a linear operator can be used to conclude that 
under appropriate conditions on the coefficients p, q, and s these partial derivatives 
exist and are continuous. The standard reference here is [3]. Our problem can be put 
into this context by taking a perturbed problem 

- (ppe)` + qpe = X,scp, 0 < x < 1 + 

0'e(?) 0e(l + 0 

and rescaling it to the fixed interval [0, 1]: 

e (?) = e( IJ) = 0. 

Here 4j(x) = 4E((l + e)x/l), and similar expressions hold forp, q, and s. 
To conclude that 

xExA+ +(,l) + ) and 4)4+ p(1) +o(E) 

it is sufficient that the eigenvalue X be stable with respect to the perturbation (in the 
sense that an isolated eigenvalue remains isolated) and that the perturbed differen- 
tial operator converge to the original in an appropriate sense (that of generalized 
strong convergence) [3, Chapter VIII]. The first condition is immediately verified 
since the differential operators are regular for all - sufficiently small and have only 
isolated, simple eigenvalues. The second condition can be verified if p, q, and s are 
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sufficiently smooth-it is enough to have p E C2[0, 1] and q, s E C'[O, 1]-using 
the general theory in [3, loc. cit.]. The details are not central to this paper and are 
omitted. 

Expressions for aAi/axi and axilaxi1I (the only nontrivial partial derivatives of 
Ai) can be obtained using perturbation expansions. Consider 

L OtEe = -(P11J'e + q(P,ue = I\s(p,,, xi + ,u < x < x1+1 + E5 

e(PJx1 + jA) = 4,LE(xi+ I + -) = 0. 

Expand the boundary conditions about xi and xi+ 1 to get 

0 = p(xl + I) = 4,E(Xi) + p,(xi)A ++ 

and 
0 = 

4Pe(xi+?l 
+ O) 

= 
4Pe(xl+l) 

+ 
4PIJe(xi+l)e 

+ 

Substituting for e and (p,,, the expansions 
AZE = A + A10. + Sole + ..- and + = I + it + (o + 

and gathering the terms of order 1, ji, and -, we get 

(L-A =s) O, = (xi)=p (xi+,) = O; 

(L - As)410 = A10sp, plo(xi) + 0'(xi) = p0f(xi+,) = 0; and 

(L - As)0ol = AolsP, (pO(xI) = (PO(xI+1) + P'(xi+1) = 0. 

The first equation above is just the original unperturbed eigenvalue problem for A. 
From the second equation we obtain (using integration by parts) 

AX10( s,i = ((L-sAs)10,) = (p (L - As)p) +P(4pio4p + 44Vo)I x,' 

= -p(xi) p10(xi)(P'(xi) = p(x,) (P(Xi)2. 

Therefore A10 = p(xi)cp'(xi)2/(c, O)s i. The term Aol is handled similarly, and we 
get 

XA = p(Xi) i(Xi)2 an ai _= -(Xi+ 1) i(Xi+1)2, 
~~\,(\2 and 

ax ~~~ax 
= 

i+1 

where pi is the normalized ((i, 4)isi = 1) eigenfunction corresponding to the 
minimum eigenvalue Ai on [xi, xi+ ]. Thus the Jacobian matrix F'(x) has the form 

_p(X)(,O;(X1)2+ +,(Xy)2) P(X2)1l(X2)2 

F'(x) = p(x+),(x1) 
2 

;((X2)(?,(X2 
+ 

?2 (X2)2) P(X3)'OAX3)2 . 

p(Xn -p(X(i(x) + 

To evaluate F'(x), then, one needs information about the eigenfunctions 005 ..., On 

corresponding to the first eigenvalues of the subproblems. Depending upon what 
method is used to approximate AO,..., A n, approximations to f0 4..., On should be 
available (at some additional expense). The use of asymptotic expressions for these 
eigenfunctions, as discussed below, obviates this additional computational effort. 
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As n increases, the subintervals [xi, xi+J become smaller and the subeigenvalues 
.- , Anbecome larger. Thus, in the eigenvalue equation 

-(poi)' + qoi = XjsOl, X, < x < x+ 

oi(x=) = 0, 

the term Xiscp dominates the term qci and the WKB (or Liouville-Green) approxi- 
mation becomes effective (see [4, Section 7.1.3]). This can be obtained as follows. In 
the equation 

- (pu')' + qu = Asu, 

where u = u(x), transform the dependent and independent variables according to 

z - and v(z) = {(x)u(x), 
p 

where { (x) = (sp)1/4(x). This produces 

V" +Xv - +q v= 0or v" +(X +3)v = 0 

where 8 is independent of A and is a complicated expression in s, p, and q and their 
derivatives up to second order. To leading order (for A large), the solutions of the 
transformed equation are sin(VX z) and cos(rX/z), and we get the asymptotic formula 

1 ir,f sin[A2f()], 

xnear xi 
((pS) ) 1/4((x) si[ 1/ +1 s 1/2j 

Some calculations give 

(3.1) (ckt " )~, if ~1+1(s) / 412 sin [2A (1j+1 s 1/ 

ix, 21si'2 
a,1-2[s 1/2 

p (xi),(xi) (- (xi ) Xi and p ( xi+ X ) 0, ( xi+ l )2_~ (-) (x+X). 

Because of the asymptotic relation V/2 Jxx,+ I (s/p )1/2 _ qZ, we can take as a first. 
approximation 

ai 2(s1) (x1)A(3/2) and -2 i 1) 

Actually, using the more complete expressions (3.1) (accurately approximating the 
integrals) produced negligible improvement in the convergence of the method for the 
problems tested. 
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Thus we have the approximate Jacobian A(x) given by 

2 (p) (Xl)(Vd + -l/) (sf 12 p) A2 

A(x)= -) (P (p) ( 2)( X W ) (P? (r(X2 
pS),/, p )~ ~~~~~~~~ ~'(x)~/ 

(X2)(~~ p) (X3,A,- (p (,)A! r ohS ()I~~~S /2 

Now for all x in D, F'(x) and A(x) are nonsingular; in fact, F'(X)T and A(x)T are 
irreducible diagonally dominant [6]. Furthermore, it is a consequence of the expan- 
sion 

= + + t"i0 + o0 + o(e) + o(yt) 

and the continuity of s, p, and X, that F'(x) and A(x) are continuous functions of x 
on D. So the Newton iteration 

x(?) given 

x(k+l) = x(k) - F'(X(k)) F(x(k)), k = 0, 1,... 

and the approximate Newton iteration 

x(?) given 

x(k+1) = x(k) - A(x(k))-'F(x(k)), k = 0, 1,... 

both have the unique fixed point t = (4 I..., n)T (the zeros of 0n+ I) in D. It 
follows that t is a point of attraction for the Newton iteration (once one gets 
sufficiently close) as it will be for the approximate Newton iteration if IIA( t) - F'(k)I 
is sufficiently small (cf. [5]). The approximate Newton scheme was implemented with 
the initial points equally spaced, and in no tested problem did it fail to converge. 

4. Numerical Results. There is a good deal of freedom in how one chooses to make 
use of the material in sections two and three. The basic block upon which any 
procedure must be built is a subroutine to approximate, accurately and efficiently, 
the minimum eigenvalue of a regular Sturm-Liouville problem. This routine will be 
called repeatedly to compute the subeigenvalues A ... ., Anwhile the approximate 
Newton iteration attempts to equilibrate these values. 

The implementation used to generate the results reported in this section employed 
finite differences and extrapolation. Standard central differences were used to 
discretize the differential eigenvalue problem with N equally spaced interior mesh 
points for N + 1 = 4, 8, 16, 32, 64. The minimum eigenvalues of similar, symmetric, 
tridiagonal matrices were then found using a rational QR routine from the IMSL 
package. Richardson extrapolation was used to produce a high -accuracy approxima- 
tion. The computations were done on a CDC 6600, the single floating-point 
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precision of which is about 14 decimal digits. For test problems, the approximate 
eigenvalue typically contained 11 or 12 significant digits, and further extrapolation 
could not improve on this. 

An approximate Newton method, as described in Section 3, was used to equi- 
librate the subeigenvaluess A 0..., An. The initial guess was the vector of equally 
spaced points x(?) = j/(n + 1), j = 1,...., n. The iteration was continued to single- 
precision machine- attainable accuracy. 

Actually there is no need to approximate Ao,...., An to high accuracy in the early 
stages of the iteration, and some efficiency can be gained by only computing up to 
N + 1 = 16 or 32, or so, when one can get away with it. Since a reliable bound 
of the current error is available in the form of the relative equilibration error 
(Amax - Amin0)/Amn and since quadratic convergence of the Newton iteration is 
expected, one can ask the subroutine to provide twice the accuracy of the current 
approximation at any stage. 

TABLE 1 

Relative error in approximation of zeros of ( n + 1) st 

eigenfunction of Example (4.1) 

Maximum Relative Error Relative (max xmin\ 
n Iteration in the n zeros Equilibration Error Xmin 

4 0 1.4 (-1) 1.0 (0) 

1 1.3 (-2) 1.3 (-1) 

2 5.8 (-4) 4.2 (-3) 

3 4.1 (-7) 5.5 (-6) 

4 1.8 (-12) 1.5 (-11) 

8 0 1.5 (-1) 1.2 (0) 

1.4 (-2) 2.0 (-1) 

2 7.9 (-4) 1.1 (-2) 

3 3.6 (-6) 6.5 (-5) 

4 1.3 (-10) 2.5 (-9) 

5 3.9 (-13) 7.3 (-12) 

12 0 1.5 (-1) 1.2 (0) 

1 1.5 (-2) 2.3 (-1) 

2 8.4 (-4) 1.6 (-2) 

3 5.2 (-6) 1.4 (-4) 

4 4.5 (-10) 1.2 (-9) 

5 7.8 (-13) 1.1 (-11) 
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TABLE 2 

Relative error in approximation of ( n + 1) st 

eigenvalue in Example (4.2) 

n Iteration xmin max Xmax Xmin 

4 0 246.751 416 866 247.551 411 248 3.2(-3) 
1 247.070 557 097 247.073 784 535 1.3(-5) 
2 247.071 496 846 247.071 509 547 5.1(-8) 
3 247.071 500 210 247.071 500 266 2.3(-10) 
4 247.071 500 226 247:071 500 229 1.1(-11) 

A5 = 247.071 500 228 (from [1, Table 5.1]) 

8 0 799.441 446 271 800.330 334 571 1.1(-3) 
1 799.770 390 609 799.771 692 638 l.6(-6) 
2 799.770 691 138 799.770 693 024 2.4(-9) 
3 799.770 691 524 799.770 691 533 1.1(-11) 

A9 = 799.770 691 532 (loc. cit.) 

12 0 1667.964 816 399 1668.887 893 174 5.5(-4) 
1 1668.296 045 195 1668.296 733 929 4.1(-7) 
2 1668.296 190 423 1668.296 190 931 3.0(-10) 
3 1668.296 190 515 1668.296 190 532 1.0(-11) 

A13 not available 

Numerical results are reported for three sample problems: 

(4.1) -(cosh x')'=Acoshx+, O<x<1, 

OM = 4(1) = 0, 

(4.2) -4" 
+ 

x24 
= AO, O < x< 1, 

o(?) = j(1) = 0, 

and 

(4.3) -0"' + xlxX} = NO, -1 < X < 1 
*(-1) = 4(1) = 0. 

Example (4.1) has eigenvalues and eigenfunctions given by 

An= inh and OnI(x) = sin( inh I sinhx), n =1,2. 

The true zeros of the (n + I)st eigenfunction are then 

(j = sinh-l(J sinh)I j1= 1,...,n. 

This also happens to be an example where the WKB approximation is exact. Results 
are reported in Table 1. The anticipated quadratic convergence of Newton's method 
is observed; the table also shows the error in the zeros to be of the same order as the 
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TABLE 3 
Relative error in approximation of (n + 1) st 

eigenvalue of Example (4.3) 

n Iteration m mi | mmin 

_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mi n 

4 0 61.039 727 878 62.330 183 164 2.1 -2 
1 61 .679 752 163 61 .694 424 745 2.4 4 
2 61.685 574 159 61.685 799 629 3.7(-6) 
3 61 .685 688 418 61 .685 690 353 3.1(-8) 
4 61.685 689 245 61.685 689 274 4.6(-10) 
5 61.685 689 260 61.685 689 261 9.0(-12) 

* 

A5 = 61.685 689 3 (from [1, Table 5.2]) 

8 0 199.067 743 737 200.651 217 589 8.0(-3) 
1 1199.857 703 989 199.864 748 970 3.5(-5) 
2 199.859 697 451 199.859 751 850 2.7(-7) 
3 199.859 724 772 199.859 724 954 9.1(-10) 
4 199.859 724 824 199.859 724 828 1 .9(-11) 

* 

A9 = 199.859 725 0 (loc. cit.) 

12 0 416.137 939 524 417.843 628 173 4.1(-3) 
1 416.989 889 697 416.993 870 834 9.5(-6) 
2 416.990 893 912 416.990 911 059 4.1(-8) 
3 416.990 902 505 416.990 902 534 6.9(-11) 
4 416.990 902 508 416.990 902 516 1.5(-1l) 

A = 416.990 905 2 (loc. cit.) 13 

equilibration error-as one would expect since F'(k) is nonsingular. We are able to 
approximate these points to within 2 digits of full single-precision machine accuracy 
without using any extended precision or ever actually approximating On+ 1 

Example (4.2) is taken from [1], where 12-digit approximations to the first several 
eigenvalues are given. For this example, the true eigenfunctions are parabolic 
cylinder functions; the WKB approximation is certainly not exact. The approximate 
Newton method, then, is expected to converge linearly with the number of digits 
gained at each stage depending on the accuracy of the approximation to the 
Jacobian. The results are reported in Table 2. The initial guess of equally-spaced 
points is quite good in this case, giving 2 to 3 significant digits to begin. The 
convergence is linear but picks up about 3 decimal digits per iteration. The final 
brackets contain the correct eigenvalues in both cases A5 and A9. Though this is not 
guaranteed, because of the random effect of error at this maximum attainable 
accuracy, the final values strongly suggest that the first 10 digits are correct. 

The final example, (4.3), is also taken from [1]. The eigenfunctions for this 
problem are in C4[-1, 1] with piecewise-continuous 5th derivative. The calculations 
of [1] use the Rayleigh-Ritz method with a basis of trigonometric functions. This 
gives exponential convergence if the eigenfunctions are analytic but here gives a 
convergence rate of the order O(N-6) for an N-dimensional subspace with N = 16. 
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For this example, 10 decimal digits are given in [1], about 8 or 9 of which appear to 
be correct. Our results for this problem are reported in Table 3. The approximate 
Newton algorithm again converged in 4 or 5 iterations, and about 10 or 11 digits of 
accuracy in A5, A9, and A3 appear to be obtained. 

5. Conclusion. The results of the previous section are typical of those over a wide 
range of problems tested. The approximate Newton scheme generally took about 4 
to 5 iterations to converge to full accuracy (once it had a digit or so). In no case did 
the method fail to converge. Final accuracy in the zeros and eigenvalue was always 
of the order of II or 12 significant digits. 

The basic approach seems to provide an effective scheme for approximating to 
high accuracy the eigenvalues and zeros of selected eigenfunctions for such regular 
Sturm-Liouville problems, especially in the " intermediate" range between where 
Rayleigh-Ritz and finite differences are satisfactory and where asymptotic formulas 
do well enough. The only limitation on attainable accuracy is the precision with 
which one is able to approximate the minimum eigenvalue of a regular Sturm-Liou- 
ville problem. This is, in general, an easier problem (for which to attain high 
accuracy) than approximating 4, I or A, I directly: with the Rayleigh-Ritz method, 
for example, the degree of approximation to A,, l is roughly twice that to n+ 1 (due 
to the fact that An + is a quadratic function of ,+ I), while with finite-difference 
methods, extrapolation can be employed to provide a much more accurate ap- 
proximation to An+ l than the best available approximation to 4>n+ 1. Also, since the 
method is iterative, good estimates of the accuracy in the approximate roots and 
eigenvalues can be inferred by simply observing the converging terms of the 
sequence. 

The procedure is not inexpensive, requiring the calculation of n + 1 minimum 
eigenvalues A0, . . ., AXnI for each iteration; but, as observed, one can get by with lower 
accuracy initially or stop the iteration when the relative equilibration error gets 
below an acceptable tolerance. The alternatives are not inexpensive either, for that 
matter, and involve algebraic eigenvalue problems of larger and larger size as n 
increases or as one seeks more accuracy. With this equilibration approach, some 
aspects of the computations even improve with n: for one thing, the size of the 
problem does not grow (the largest array used has dimension 63, independent of n), 
and for another thing, as the subintervals get smaller, the coefficient of the 
differential operator appear more constant, improving the accuracy of the subeigen- 
value approximations, and A0. . ., AXn get larger, improving the accuracy of the WKB 
approximation and rate of convergence of the approximate Newton iteration. 

The programming effort for the approach is small, and as implemented here, the 
method does not require any extended precision. Also, the method had the ad- 
vantage that it is general; it requires no particular information about coefficients of 
eigenfunctions. 
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Added in Proof. The variational characterization (2.1) can be seen as a conse- 
quence of the fact that the Green's function associated with the differential operator 
L is totally positive [A. A. MELKMAN & C. A. MICCHELLI, "Spline spaces are 
optimal for L2 n-width," Illinois J. Math., v. 22, 1978, pp. 541-564.]. The author is 
grateful to Charles Micchelli for this communication. 
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