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A Difference Method for a Singular 
Boundary Value Problem of Second Order 

By Ewa Weinmiiller 

Abstract. The standard three-point discretization applied to the numerical solution of linear 
boundary value problems for second order systems with a singularity at the origin is 
investigated. A number of numerical examples illustrating the theoretical results are pre- 
sented. 

1. Introduction. We consider the three-point difference method applied to the 
linear boundary value problem 

(I.l"(t) -AI()(t) - y,(fA(t), 0 < t < 1 

(1.1b) BoY(O) + BIY(l) = / 

where Y(t) = (y(t), y (t))T. Here, y and f are vector-valued functions of dimension 
n, A 0(t) and A,(t) are n x n matrices, Bo and B, are m x 2n constant matrices and 
/3 is an m-vector, where m < 2n. 

The numerical solution of scalar equations of this type has been investigated by 
several authors; see Jamet [5], Natterer [10], Russel and Shampine [15]. The finite 
difference method discussed here has been applied by Natterer [10] to the scalar 
problem. Jamet [5] and Russel and Shampine [15] study the problem in a form which 
often occurs in chemistry or physics, viz., Ao = 0 whilef is a function of t and y. 

First order systems with singularity of the first kind have been discussed by 
Brabston and Keller [1] and de Hoog and Weiss [2]. Our investigations are based on 
the techniques developed in [2] and therefore we transform the second order system 
(1. la) to the first order one; see (3.2a). In practical applications nonlinear versions of 
(1.1) also arise; some examples from mechanics and chemistry may be found in 
Keller and Wolfe [7], Parter, Stein and Stein [12] and Rentrop [14]. 

It is the main aim of this paper to present the basic ideas of the treatment of 
second order systems, using the spectral decomposition (proposed in [2]) of the 
matrix M M(O), cf. (3.2a), and the contraction arguments. The basic analytic 
properties of (1.1) like existence, smoothness and uniqueness of solutions have been 
studied by the author in [16]. 

The outline of the paper is as follows. In Section 3 we briefly discuss the analytical 
results for the continuous solutions of (1.1), which we require for the investigations 
of the numerical scheme in Section 4. 

Received December 6, 1982; revised June 11, 1983. 
1980 Mathematics Subject Classification. Primary 65L10, 39A10. 

?' 1984 American Mathematical Society 

0025-5718/84 $1.00 + $.25 per page 

441 



442 EWA WEINMULLER 

Here, as in the analysis of problem (1.1), see [16], we transform the difference 
equations for (1.1a) to first order difference equations. The order of convergence 
depends on the smoothness of y and the eigenvalues of M. For f E C2, it can be 
shown that the order of convergence is h qln hIP, p > 0, where h is the equidistant 
gridspacing on [0, 1]. If all eigenvalues of M have nonpositive real parts, then q = 2; 
otherwise q depends on the smallest positive real part a, and q = min(a+, 2). 

In Section 5, we present a number of numerical experiments illustrating the 
theory. 

2. Notations and Preliminary Results. We use the following notation: X' is the 
space of complex-valued vectors of dimension n, and we use to denote the 
maximum norm in X', 

IxI = (x , x2,.. . ., Xn)= max lx. 

CP[0, 1] is the space of vector-valued functions which are p times continuously 
differentiable on [0, 1] as well as the space of complex-valued matrices, whose 
elements are p times continuously differentiable. CP (0, 1] is defined similarly. For 
each vector y E C0 [0, 1] we define the norm 

OIYI ot<l IY() 

and for each matrix A E C?[O, 11, I5A I is the induced norm. We use C = C[O, 1] = 

C0[O, 1] and C(O, 1] = C0(O, 1]. For each y E C the modulus of continuity is 
defined as 

(,o (y; y) mal (t + 3) - y(t)l- 

Let 

7 = {tj, i = o(l)NI t, = i h, tN = 1) 

be an equidistant partition of [0,1], where i = 0, 1,..., N is shortly denoted by 
i= O(l)N and 

A = A(iO) = {tj, i = iO(l)Nj t, = i h, tN = 1). 
With each partition A(io), we associate the linear space XA, whose elements xA have 
the form 

XA = (Xi05 Xio + , XN)5 i0 > ? 

where for each XA, io is a fixed number and Xk = (xkl, Xk2,..., xkn) E xn, 

k = io(l)N. The norm on XA is defined by 

lIxAll= max Ixml. 

Finally, we denote by RA: C XA the bounded linear map such that 

RAY = (y(ti0),Y(ti0+i),.. Y, Y(tN)) 

We now prove the following results. 

LEMMA 2. 1. Given a complex number X = a + iK, a > 0 and 
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We define for e E 2 (X) 

(1, k =j, 

(2.1) zk' O) = kH (t, - 1h)/tl, I < k <j,j = 2(1)N + 1. 
lz=k 

Then there exists an q > 0 such that 

IZkj(it) ! < const(tk/tj)', k <j,j = l(l)N, 

for all ,t E S2(X). 

Proof. Since t1 = hl for every 1, we have 

(t, - Ah)/tl = (1 - I-)/1. 

Let e - S2(X) and I > lo = 3a Then 11 - tl < 11 - vI, wherev = a/2 - i(IKI + a/2). 
Let k > lo . Then I zkj (L)I < I Vkj 1, where 

j-I 

(2.2) Vkj = H (1 - v)/l. 
I=k 

Using 

n-l 

F(z + n) = ( (z + k) F(z) 
k=O 

and the asymptotic expansion 

T(s + a)/F(s + b) = Sa-b(l + 0(1/s)), Re(s) > 0, 
cf. [9], we can rewrite (2.2) and obtain 

j-I 

VkJ = H (1 - )/1 = F(j - v)F(k)/F(k - ) F(j) = (k/j)v(1 + 0(1/j)), 
l=k 

which completes the proof for k > l. The result for k < lo follows now, since 

Zkj(t) 
= Zk,I(II)Z10,j(t) and Zk,10 consists of at most lo terms. El 

LEMMA 2.2. For every k > j > I and y e R, 

k-I constIt'Y - ('ll Y O, 
E ht'y -I / cosltk tjI, *0 

l=j 
I 

constln(tk/tj), -y = 0. 

Proof. The result follows from the inequality 

ht, < constft1+Is'yIds. El 
ti 

We also use the fact that, for a matrix A and an analytic function t(X), the matrix 
function t(A) can be represented as 

(2.3) ~(A)= 27ri f()(XI-A)-'A 

where F is a closed curve which contains all eigenvalues of A. 
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3. Analytical Results. In this section we recapitulate the analytical properties of the 
solutions of linear problems. 

Consider the linear boundary value problem 

A() A() 
(3. 1a) y"(t) - I t) )y'(t) - ?(t )y(t) = f(t), O < t < 1, 

(3.1b) BOY(O) + BIY(l) = /3, Y(t) = (y(t), y'(t)) T. 

By the linear transformation z = (y(t), ty'(t))T, applied to (3.1), we obtain the 
following boundary value problem of the first order 

(3.2a) z'(t) t -A(t) ]z(t) + t[f(t) M(t)z(t) + (t), 

(3.2b) BOY(O) + BIY(1) = /3. 

We now consider the case, whenf E C and A0(t), AI(t) can be written as 

(3.3) AO(t) = Ao + tvCo(t), AI(t) = Al + tPCI(t), v > 1, 

where AO, A are constant n X n matrices and CO, Cl E C. By (3.3) the system (3.2) 
is equivalent to 

(3.4a) z'(t) t- [A I+A] z(t) + t [ C0(t) C(t)] Z(t) + t[(t)] 

1 - 
-t Mz(t) + t -C(t)z(t) + tf(t), O < t < 1 

(3.4b) BOY(O) + BIY(1) = P3. 

We denote by R the spectral projection onto the eigenspace of M = M(O), corre- 
sponding to an eigenvalue X = 0, and by S the spectral projection onto the invariant 
subspace of M associated with the eigenvalues with positive real parts. We set 

P=R+S, Q=I-P. 

Finally, we define 

S= U+ V+ T, 

where U is the spectral projection onto the eigenspace of M corresponding to the 
eigenvalue X = 1, and V is the spectral projection onto the invariant subspace 
associated with eigenvalues, whose real parts are greater than one. 

Let E be the 2n x 2n matrix of (generalized) eigenvectors of M such that 
M = EJE-1. 

Additionally, for any 2n x 2n matrix G we denote by G, the n x 2n matrix 
consisting of the n first rows of G and by G2 the n x 2 n matrix consisting of the n 
last rows of G. 

We make the following asumptions: 
L.3.1. Qz(0)= 0. 
L.3.2. BoIT1E= 0, 

where TIE is the n x i matrix consisting of nonzero columns of T1E, i = rank[T] and 
BoI is the m x n matrix consisting of the last columns of Bo. 
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L.3.3. Let us denote by P the 2n x m matrix consisting of the linearly indepen- 
dent columns of P, where m = rank[PJ. Then the m x m matrix 

RI 
Bo UIM P + BIP 

has to be nonsingular. 

THEOREM 3.1. If L.3.1, L.3.2 and L.3.3 hold, then (3.1) has a unique continuous 
solution 

y(t) = Ilz(t) and yE C n C2(0,1]. 

We note that L.3.1 is the necessary condition for z to be continuous. We have to 
assume L.3.2 since 

lim y+(t) = lim T1z'(t) = x0 
t-0 

T 
tO 

and L.3.3 is necessary for y to be unique. 
Finally, we formulate the smoothness properties of y. Let f, C1 E CP and 

CoECP+. Then 

(3.5) if the real parts of all eigenvalues of M are nonpositive,y E Cp + 2 [0 1], 

(3.6a) if p < a+< p + 1, y E CP n CP+'(O,i ], 

(3.6b) ifp + 1 <a+<,p + 2, y E CP+ I'n CP+2(O,l], 

(3.6c) if c+> p + 2, y E Cp+2, 

where u+ is the smallest of the positive real parts of the eigenvalues of M. 
Clearly, all results are valid if (3.1) is a boundary value problem with constant 

coefficient matrices AO(t) AO and Al(t) Al. 

4. Numerical Results. Consider a partition ST as defined in Section 2. Then the 
standard three-point discretization for (3.1) is 

(41a LyA- 
i+I 2, l-I l ti Y+ -Yi 

AO(i) =1f(ti), (4.1a) Ljy\:= h2 tj ( 2h ) 12ti 

i=l(l)N -1. 

(4.1b) BoYo + BIYN= i ( - 

where Yo = (Yo, yO)T YN = (YN I y)T, and where by yO, YN we denote approxima- 
tions for y'(O) and y'(1), respectively. Without loss of generality, we assume that the 
boundary conditions, which are necessary for the solution of (3.1) to be continuous 
(and equivalent to Qz(O) = 0), are given by 

(4.1c) QYo=O, 
where Q is a constant r x 2n matrix and r = rank[Q]. For a wide class of problems 
appearing in practice, we typically have either y(O) = 0 or y'(O) = 0; see [7], [14]. To 
approximate y'(1) we choose y~ = (YN+1 - yN- )/2h and complete the difference 
scheme (4.1 a) by one more equation for i = N. The choice of yo is not that simple, 
because we cannot include the point tl = -h into the scheme. However, we can 
remedy the situation if the solution y is smooth enough, which is valid for many 
practical problems. 
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Now we study the case when the coefficient matrices A0(t) and A, (t) are constant. 
Lety E C2. Then Taylor's theorem applied to Eq. (3.la) yields 

lim(y"(t)- 
, 

(y'(O) + ty"()) - y(O) +ty'(O) + =Y"(p) f (0), t-0 ~ t t2k 2 , 

where 0 < , p < t, and therefore 

Ay"(O):= (I - A, - A0/2) y"(O) = f (0) 

if and only if 

(Al + Ao)y'(O) = 0, Aoy(O) = 0. 

Provided that the last conditions hold and A-' exists, the natural approximation for 
y'(O) is 

(4.2a) Yo = (yi -yo)/h - hA-'f (0)/2. 

If (4.2a) is not well defined, another approximation must be taken; for instance, by 
the polynomial interpolation we obtain immediately 

(4.2b) Yo = (-Y2 + 4y, - 3yo)/2h. 

Both (4.2a) and (4.2b) are 0(h2) approximations for y'(O), if y E C3. 

We saw in Section 3 that the fundamental properties of (3.1) have been deduced 
via an investigation of the associated first order system (3.2). This is also the case for 
the numerical scheme, and therefore we introduce the transformation 

(4.3) Uj-I =Yi-I, u2J-I = i(yi- yi-), i = l(l)N. 

From (4.3) we have immediately 

(4.4) U,1=u,1, + :u2,, i= l(l)N, 
(4.5) ~ ~ ~ 1j= +1-I j 

(4.5) Y 
2- 

= i + u,1,, i = l(l)N. 

We now rewrite (4.1 a) as follows 

(4.6) - -i) ( I + AO) (i + 
A 

yi-I = h2f(ti), 

= l(l)N - 1, 

and substitute (4.3) and (4.5) into (4.6) obtaining 

(4.7\ ~I A, +2 \l' -I +AO U2j-I , j 
( 2i )i+1 

+ 
i,) -(+ 2II 

) 
+. 

+ (I + A , I = h2f(t1) i = l(tl)N 

We now make the following assumption. 
A.4 . The matrices 

(4.8) I 2i) 1i 2' 

exist. We note that JJA,/2ill < 1 for each IIA111/2 < i < N, and thus the matrices 
I - A,/2i are regular. 
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We now rewrite (4.7) and have 

( 2iI 2 )41 + (2i + i2)( i + 

- (i + 2i u1j_ + h2f(ti), i-l(lN- 

This implies 

U2J - (i + i)( + I,i I 

+i + 1)(I - )j'(2I + Ao)( U2 + ) 

-(i+ i)( i- I + +(2 + i)( - )h2f(t') 

+(i +[4i ( )( 2)- (2+ I:)j 

+ +(i - Al AO 

For 0, and 02 we have 

0 (i + I)(I i )j4 =2 + i ( 2i- Ay (A +I)A 

02= ( + )( 2i - -( + 2i + 2 I 

z ( i) ( 2i ) (z i 

=+ ?r+1)(I- 2i + (Ao)2) 

1 ri ~A0 AO 1 

=I+, !(I+A,) + 42(I- 2i4)(( + ~)A?+(I 2 )A1) 

and finally 

(4.9) u2,,i ( = -I + + + + A) +1 

+ O3(i) hti+f(ti), i(l)N, 

where 

(4.10a) eI(i) = (i - j(i) + IA IO 
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(4.10b) E2(i) I -2 I+ )AO + (A 

(4. 1Oc) 3(i)= (I - 

(4.4) and (4.9) yield the following system for 

u= (ul,i, u2 )T, i = l(l)N, 

(4.11) u,= u,_ + .MuI,_ + 204(i)ui-I + tj+lhe5(i)j(ti), 

where 

e4(i) = [e,(i) e2(i)]' 9 5(i) [0 e3(i)] 

Due to J = E-'ME, we have for the vector v, = E-lu, the following equation 
associated with (4.1 1) 

(4.12) v= v,_ + Jv,_ + i2E(i)vil + tI+lh4(i)j(tI), 

where 

e(i) = E-1e4(i)E, J(i) = E-05(i) i = l(l)N. 
As a first step in the analysis of (4.12) we study the growth of solutions of the system 
of difference equations 

1 
(4.13) vi = v,1 + .:Jv1 + ha+ lt7', i = l(l)N, 

where a, y are real numbers, ri is a 2n-vector and J is a 2n x 2n Jordan box 

1= = U, + iK. 

We consider the three cases a < 0, X = 0, a > 0 separately. 
Case 1. a < O. Letv0 =v 8 0 io i. Then 

(4.14) 10= ( ->)+ k 1 ( 4 )+ J )ha) ltkrk 

+ha+lty7+lri 
i1- 1 

_Z1 + I8 + E Zi,k+ lha+ ltZy lrk + ha+ t7Y+ ?r, 

k=io+ 1 

i =(io 1 )(I)N, 

where 

j,k+1 Zk+ l,j+1(J) 2 krifrk+l,j+I(X )(X J)dX 

and F = (tj jX - = -a/2). From Lemma 2.1 we have 

Izi,k+ll < const(tk+l/ti+l)', > 0, 
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and 

(4.15) v,j < const 181 + E (tk+1/t,+l?)lh0?ltZ?IrkI}, i = (io + 1)(I)N. 
k=io+ 1 

Furthermore 

k (tk+11+ti+ 1) h1tk 1rk| 
k=lo+ I 

Econst(t,+Z)'rh`jI ht-+n+l||rll, y > -2, 
ki 1 k=io+I 

|ha E ht'y+'Illrll, -y < - 2, 
k =lo + I 

and by Lemma 2.2 

(const(t,+ I)ha Z t7y+j+2 - ty++2 j1rj11, -y > -2, 

s const(t,+ ?) nh"It?? "-t 1 lIIrJl, -y = -2, 

const h'| t7j+2 - t-7j+2 |yr, Y < -2. 

Finally, we have 

(const(131 + hat7?2Ir All}, -y > -2, 

(4.16) vil < ( const( 6J + hallrjll), -y = -2, 

const{ 8| ? h+ t P 2IlrAl), -y < -2. 

Case 2. X = 0. Let VN,I = 3, and Vio,k = Sk' k = 2(1)2n. We consider the system 
(4.13) in its component form, and for the last component vi,2n we obtain 

(4.17) V1,2n = 
Vi0,2n + ? ha+ltZyrk 2n 0 O io 

k=io+ 1 

and by Lemma 2.2 

(I32nI + const hatY7+21IrJ, -y > -2, 

(4.18) Vi,2,J n < I82nl + const halln tiol jlrll, -y 2, 

k18 2nI + consthat7?2IIrjI yh< -2. 

For the (2n - l)th component we have 
i 1i 

Vi,2n- -I = +io,2 n- + + kVk 1,2n + ha+ tZY?rk,2n-19 
k=io+ i k=o 

It 
k=i0+ 1 

and there is by (4.18) and Lemma 2.2 

tconst{(82n- 1 + 182nI iln tio + hat7Y ArIll), y > -2, 

vi 2u n I I const{ 82n + ?82nl lin tiol + ha(lln tiol + iln tiol )lrAll 7 = -2, 

lconst{ 182n 11 + 182nl ln tiol + hatY+2(I + ln tu)IIrI}, y < -2. 
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Clearly, continuing this process we obtain 
(2n k-r 

const( E l,j in t1j + h tY72IIrAIII, y> -2, 

( ) | .l < tCO sttE Sk klln tiol I h >l zllrl , Y 2 
k=r k 
(2n kr 2n-r+1I 

(4.19) lVi,rI constk E 3kI iln tjio + hr'+ E iln t- = -2, 

k=r k=O 

for r = 2(1)2n and i = (io + l)(l)N. 
Finally, for r = 1 

N N 

Vi1 = 
VN,1- k Vk-I 2 - h lt7 Irk l 

k=i+ 1 k=i+ 1 

and the following estimate is a result of (4.19) for r = 2 and Lemma 2.2 

const{1S 1I + k jl ki1ln tiol + ha( I- )IIrZjI}, y > -2, 

const I+8+n I + 2n 1ntj ol + ho , lln tiol |r) \ = -2, 
(4.20) iv |I 

k2 2 
k=kI 

const{1311 + k=2 lln tiolk 

2n- I k\ 
+?a(ty+2 + t ky 2 V |lnt1I )IIrAII ' y <t-2. 

Clearly, if 18o0 max2<k<2 n lk1, then 

const{1811 + 1o0 lnhl I+ hallrAllI}, y > -2, 

(4.21) j|vj| < const{| 8I + I8t |ln h|2n- I+ halln hl2nrjI}, ry = -2, 

const{13s1 +%oj lnhl + ha+y+211n hi 
2n-I -y < -2. 

Case 3. a > 0. For the system (4.13) and VN = 8 we have 

= ( + i+ 1 J) (vi+?I 
- 

It+Iri+ I) 

N I\ N (k / 1 

k=i+ I + k=i+1 I=i+7 1 )h tkrk i = O(k)N-1 

Since a > 0, (I + J/k)' exist for each k and by the definition from Lemma 2.1 we 
can rewrite the last expression, obtaining 

N 

vi 
= 

Zi+ I,N8 E Zi+I,kh+1tY1 rk, 
k=i+ I 
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where 

j+ 1,k Zj+ 1,k+ I() 27Ti Ir 1,k 

and F = (,tl IX - 1 = a/2}. It follows from Lemma 2.1 that there exists a constant 
0 < 7 < 1, such that 

N 

(4.22) lvil < const t,l83 + E (ti+l/tk+l) ha?ltklIrklI, i = O(l)N - 1, 
k=i+ i 

and from Lemma 2.2 

(const(t?181 + hallral}, y > -2, 

(4.23) ivil < const(t?131 + hallral}, = -2, i = O(1)N-1 

const(tI181 + hatT21rll)1}, y < -2. 

Finally, we consider the iteration scheme, which is implied by (4.12) and has the 
form 

(4.24a) v(k+ l) - - 
1 Jv) { I ) = + ti + '+ (i) hJ(t ), 

io < i 0 N, 

(4.24b) QV,k 1 = So Pv (k) = 8N 

Formally, we can write this as 

(4.25) V(k+ I) = GV(k) 

where G: Xa -- Xa is a bounded linear map. Additionally, we use the following 
notation: 

G1V(k) (GV(k))1i 
= Vk+') 

We can now formulate three lemmas dealing with the cases when all eigenvalues of 
M have negative real parts, are zero or have positive real parts. 

LEMMA 4.1. Let all eigenvalues of M have negative real parts. 
(i) For each t0 = e > 0, there exists an h(e) such that, for each h E (0, h(e)), the 

system (4.1 1) has a unique solution for each vio = 8 and fa. Furthermore 

iluall < const(131 + llfall}. 

(ii) Let yA be a solution of (4. la). Then 

(a) IIYA - RAyII < const w(f, h), if f E C, 

(b) IIYA - RAyII < const h2, if f E C2. 

All constants appearing in the estimates (i) and (ii) do not depend on e. 
Proof. (i) We consider the system (4.12) and show that G is contracting on XA. Let 

Vand Wbe in XA. Then by (4.15) 

GiGV- Gifl < const ( tr+l/ti)+ I)h 2t-21E| (r) 11 I Vr I- Wr- l 1, 
r=io+ I 
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and it follows from (4.16) that, for a = 1 and -y = -3, 

| GiV -Giff < Ct h151 ||ai (V - w),A|| 
io 

where C = const. Clearly, for each tio = e > 0, there exists an h(e) = e/CIIE)AII such 
that, for each h < h (e), 

|| (GV -GW) all < || (V V-W) all 

and the result follows. The estimate in (i) is obtained now from (4.16) for a = -y = 0 
and ui = Evi. 

(ii)(a) In this case y E C2, if f E C and QY(O) is equivalent to y(O) = y'(O) = 0. 
Furthermore, it follows from [ 16, Lemma 3.1 ] that 

w(y", h) < const c(f, h) 

and 

lY'(tj) - y'(,qj) I < const ti+ ico(f I h),I ti. < qly < ti+ 1. 

Also 

LjRay = y"(t) - y'(t) - 
A0y(t;) tI tI2 

+ (Y"(71;) - y"(;) t(Y'(0)- AOt)) 

where t < qj j < tj+ I j = 1(1)N and hence 

(4.26) IL(RAY - ya) < const co(f, h), j = l(l)N. 

Assume (i) to hold for an index io > 0, and consider the initial conditions 

(4.27) Yio = Yo, (YO+I - yO)/h = y'(O). 

Then, it follows by Taylor's theorem applied to (4.27) that 

(4.28) 8 
ti0?I[(yi0?I- y-)1h - 

y'(t,0)] 
O(h2) 

and the result holds by (i). 
(ii)(b) Since y E C4 if f E C2, the result follows in a very similar way on noting 

that 

(4.29) |Lj(Ray - y-)| < const(h 2M + h2M,/t1), j = 1(1)N, 

where Mk = maxI <j<Nly k)(tj)I, k = 3, 4. 0 

LEMMA 4.2. Let all eigenvalues of M be zero. 
(i) For each tio = e > 0, there exists an h(e) such that, for each h e (0, h(e)), the 

system (4.11) has a unique solution for each (I - R)u,1 = 80, RUN = 3N and fa. 
Furthermore 

Iluall < const{ 1o01 |ln hId I+ INI + llfall} 

where do is the dimension of the largest Jordan box of M. 
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(ii) Let y be a solution of (4.1 a) subject to the terminal condition R YN = R Y(1), see 
[16, Lemma 3.2 and Remark 3.1]. Then 

(a) IIyA - RAyll < const o(f, h), iff E C, 

(b) IIYA - RAyll < const h21ln hl?do, 
I 

iff E C2. 

Proof. (i) Consider the system (4.12) and the iteration scheme defined by (4.24). 
Then it follows by (4.20) that for V, W E X, and a = 1, y = -3, 

(4.30) IGi V- GI H1 < Ct 
h 

ln tiol 
do 

ea| 
I 

||II(V - W)AI19 

and the result holds for each t1o = e and h < e/(Clln eldo- 1IIA I1) The estimate for uA 
can be obtained now from (4.20) for a = y = 0. 

(ii) This follows as in Lemma 4.1, since y E CP+2 if f E CP, p >? 0, and y'(t) has 
the same form as in Case 1. Furthermore, AN = RYN - RY(1) = 0 and So = O(h2) 
yield the result. a 

LEMMA 4.3. Let all eigenvalues of M have positive real parts. 
(i) For each t1 = e > 0, there exists an h(e) such that, for each h E (0, h(e)), the 

system (4.11) has a unique solution for each uN = 8 andfA. Also 

iluASll < const(ISI + l|fu:|) . 

(ii) Let y, be a solution of (4. la) subject to the terminal condition YN = Y(1); see [16, 
Lemma 3.3]. 

(a) Iff e C, then 

(const(ha+Iln hi Id- I + W(f, h)), 0 < +< 1, 

IIYL~- R~yII 4,const(h|ln hi + + o(f, h)}, 1 <a+< 2, 

const(hln hl d+ + (f, h)), a+= 2, 

\const{h + w(f, h)}, a+> 2. 

(b)Iff E C2, then 

(const ha+Iln h Id+ , 0 < a< 2, 

IIyA - RAyll < const h2lln hld+, ?+= 2, 

const h2, a> 2. 

Proof. (i) Consider the iteration (4.24). Let V, W E X,. Then it follows from (4.23) 
for a = 1, y = -3 that 

IGiV- Gi < c hkIIejI ii(V- W)AI, io 9 i < N, t. 

and G is contracting on X, for each t10= e > 0 if h < e/ClIiill. The estimate 
follows now from (4.23) for a = y = 0. 

(ii)(a) Consider the system (3.2). Let p(t) = E-lz(t). Then 9p is a solution of the 
following problem, (g(t) = E - 1f(t)) 

(4.31) 0'(t) = IJ4(t) + tg(t), g e C. 
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Let us assume that J consists of one Jordon box of dimension 2n, whose eigenvalues 
are A = a + iK, a > 0, and investigatey'(Qq) -y'(tj) and y"(Q1) -y"(t.). From the 
mean value theorem, we obtain 

(rj(tj+i) - Tr(tj))/h - 4(t1j) = pr;(e'jr) -.)r (tj), 

where njr = tj + ejrh, Iejrl < 1, r = 1(1)2n and] = O(I)N - 1. 
Using (4.31), we have for vr = 1 if r = 1(1)2n - 1 and P2n = 0 

P9r'' (jr)P;(tj) = At(j 
I 

r(Tijr)- 
I 

y9r(tt)) 

+ Pr+ I (1 jr ) - r+ I(tjr ) + -(1jr) tjgr(t;) 
71jr 

T+I(qr 
i 

Jt)+7j 

= - I) (Ar(7jr) + Prq)r+I(?ljr)) 

+ 
I 

[A(rr(njr) - pr(tj)) + Pr(9r+I(71jr) -Pr+?I(tj))] 

+iijrgrr(ijr) - tjg r(t1) 

= o(l(tj)l/h2) + 0(co(9p, h)/hj) + o(t1o(g, h)). 

Clearly, 

y'(,qj) -y'(tj) = O(IT(tj)I/jtj) + O(o(T, h)/tj) + O(tjco(f, h)) 

and 

y"(0) -y"(tj) = o(IT(tj)l/tj2) + O(.(4p, h)/lt2) + O(.o(f, h)). 

Thus 

(4.32) IL(YA - RAy)I < const{hIp(tj)|/tj3 + w(p, h)/tj2 + c(f, h)}, 

j = l(l)N - 1, 

andy' - y'(1) = O(h),yN - y(l) = 0. 

Let 0 < a < 2. Hence, we have from [16, Lemma 3.3] 

T ( tj) < const tjuI in h 2n- 1 j = I(I)N 

const h'jln hl2n- I 

const hlln hl , 1 < a< 2. 

Let 0 < a < 1. Then (4.32) is 

IL(yA - RAy)I < const(htjo-31lnh 2n-I + ht;211ln hI2n- + -(f, h)} 

and the first estimate in (ii)(a) follows by (4.23) for a = 1, y = a - 3 < -2; a = a, 
-y = -2 and a = y = 0, respectively. Let 1 < a < 2. Then we can write (4.32) as 
follows 

ILj(yA - RAy)l < const htja-31ln hI2n- + ht;21ln h2n-I + cO(f, h)} 
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and the result holds by (4.23) for a = 1 and y < -2. For a = 2 we need only to 
replace lln h12,- ' by lln hI2' and if a > 2, then w(p, h) < const h, and the result 
follows in a very similar fashion. 

(ii)(b) Since in this case y E C4 (0, 1], we can differentiate (3.1 a) and obtain by 
16, Lemma 3.3] 

const h2tj-41n hi 2 , 0 < a < 2, 

|LJ (Y2N-R,AY)I < { const h2tj 2ln hIl a = 2, i=l(l)N, 

const h22, a > 2. 

The estimates in (ii)(b) hold now by (4.23), on noting that in this case yN - y'(1) = 

0(h2). E 

We shall now extend the results of Lemmas 4.1-4.3 to the general case where J 
consists of some Jordan boxes with different eigenvalues. 

LEMMA 4.4. For each tio = e> 0, there exists an h(e) such that, for each h < h(e), 
the system (4.11) has a unique solution for every Qu,0 = 80, PUN = 3N' fA and 
furthermore 

(i) I I u II |< const(I o IIln hIdol I+ I|NI + |IfAZ,|} 
(ii) Let yA be a solution of (4. la). 
(a) Iff e C, then 

constha+ |ln hi d+ + w( f, h)), 0 < a+< 1, 

IyA - R l < const(hlln h d+ + W(f, h)), 1 < a+< 2, 

const(hIln hld+ + (f, h)}, a+= 2, 

tconst{h + w(f, h)), a+> 2 or S = 0. 

(b) Iff e C2, then 

const h?+ llnh+ , 0 < a+ < 2, 

IIyA-RRyIJ < const h2(Iln hId+ + Iln hIdo ), += 2 

const h2lln hldo- l a > 2orS = 0. 

Proof. (i) Let M = EJE-1, where J is the Jordan canonical form of M. Then the 
result follows as in Lemmas 4.1, 4.2 and 4.3 on considering the encoupled system 
corresponding to (4.13) first and using the contraction argument afterwards. 

(ii) This follows from previous lemmas and (i). a 

Remark. (i) The results (ii) of Lemma 4.4 can be improved when the eigenvalues 
X = 0 of M are simple. 

(i)(a) Consider the system (4.13) and vio = 8. Then it follows immediately that 

(const{18jO + h"t 2IIAllII), y > -2, 

(4.33a) ivil < const({ISI + h"jln tj0I IIrAIy), Y = -2, 

const{k80l + hat?2lIr,l}), y < -2. 



456 EWA WEINMULLER 

(i)(b) For VN = 38 we have 

(const(18k1 + hallrall), y > -2, 

(4.33b) lvil < ( const{1311 + halln tj 1lrjl}, y = -2, 

const{1811 + hat"?2arllj -y < -2. 

Finally, it follows from Lemma 4.4, (ii)(b), that for the case when (4.33a) holds 

(4.34) IyA - R yJl < const h2, if a+> 2 or S = 0. 

(ii) We shall now extend the results of Lemma 4.4 to problem (4.1). We first 
assume that the associated analytical problem (3.1) has a unique solution 
y E C n C2 (0, 1] and recall that the necessary condition for the solution y of 
(3.1) to be continuous is given by QY(O) = 0. To show that the results of Lemma 4.4 
hold also for the solution of (4.1) we have to consider two problems: 

(ii)(a) We have to prove that the solution ua of the difference equation (4.11) 
subject to the boundary conditions Quo = O, PUN = SN yields the solution ya of the 
difference equation (4. la) subject to the boundary conditions (4. lb) and (4. 1c). 

Before proceeding further we briefly recapitulate how we have treated the analo- 
gous problem in the analytical case; cf. [16, Section 3]. First, we have considered the 
three cases where a < 0, A = 0, and a > 0, separately, and in each case we have 
given the conditions that are necessary for the solution to be continuous and the 
conditions that are required to make the solution unique. Using the spectral 
projections, we have constructed the general solution (for the case when M has 
different eigenvalues) by superposition of continuous components pertaining to 
different eigenvalues. We have shown that the condition Qu(O) = 0 is necessary for u 
to be in C[O, 1] and the condition Pu(l) = Py yields to m = rank[P] equations for 
the constants that have to be specified to make the solution unique. This solution has 
the form 

z(t) = (Hf)(t) + 41(t)Py, 

where 

(HJ)(t) = t2f Qs- Msf(ts) ds + tM tPs Msf(s) ds, 

?(t) = tMP. 

Clearly, for problem (1. la) the m conditions which we need for y to be unique have 
to be given by (l.lb). It has been shown in [16, Theorem 3.1] that the m constants 
can be uniquely determined from (1. lb) if and only if the-inverse of a certain m x m 
matrix which we obtain by substituting the solution y(t) = z1(t) and its derivative 
into (l.lb) exists. 

We can use this idea again in the case of difference equations. Comparing the 
representations for the analytical and discrete solutions in each of the three cases 
mentioned above, and, finally, in the general case, we can show that the solution of 
the difference system can be written in a way which is a discrete analogue of that of 
the analytical case. To see this we define 

R? f = (f (0), f(h), f(2h), .- , f(ih),- .. .f(l)) 
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and then the solution uA of (4.1 1) can be written as 

uA = HA(Rof) + 4APUN. 

This form corresponds to that given above. Substituting this general solution into the 
boundary conditions, we obtain a system of equations for m constants that uniquely 
determines the discrete solution of (4.1). This system is uniquely solvable if and only 
if the same m x m matrix as in the analytical case is nonsingular. 

(ii)(b) The second problem is how to pose the boundary conditions at the left 
point of the interval if io > 1. 

We have chosen 

Bo [ ( y/+ Il-y, _ l)/2h + Bi ( YN+ I -YN- l )2h ' 

~[( Y0? l-Y,O )/2h QY(O) = 0, 
and it follows by Lemma 4.4 and Remark (ii)(a) that the estimate (i) and the 
convergence rates from Lemma 4.4 remain valid. Clearly, we have to replace AN by ,B 
in (i). 

For the practical computations we have chosen io = 0 and modified the boundary 
conditions as follows 

(4.35a) B4[ ( -yO)/h - hA-lf (0)/2 I[ (YN+ I YN_ l)/2h ] 

(4.35b) Q (y, - ye)/h - hA -f (0)/2] 
=0 

where the matrix A is defined as at the beginning of Section 4. We can motivate the 
choice of io = 0 by the fact that the restriction on io following from Lemma 4.4 is 
sufficient (but not necessary) for the existence of the operator (I - F)-', where F is 
the Frechet derivative of G. The choice of io = 0 worked well also for some 
problems with variable coefficient matrices A0(t) and Al (t) as well as for nonlinear 
examples. This could suggest that the theoretical results presented here can be 
extended to the whole interval [0, 1]. This may be the subject of further considera- 
tions. 

The extension of the theoretical results to the boundary conditions (4.35) is 
obvious. 

We now consider the linear system (4. la) with 
(4.36) Ai(t) = Al + t"C1(t), = 0, 1, 

where v > 1 and C,(t) E C[O, 1]. To show the existence and the uniqueness of the 
solution of (4.1) we use contraction again. First of all we shall derive an analogous 
equation to (4.1 1) for this case. For Ai (t) given by (4.36) we have 

(4.37a) 0,(i, h) = - i (1i ) (I + 1 )At (i))A 

(4.37b)e2(i, h) = I- i + i ( ' ) [(I + A)o(tJ) + I + A A) 
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(4.37c) e3(i, h) = (I-Al + - TIC1(t) 
t 

and we assume that for 1 < i < maxo<t<I(IIAI(t)lII/2), e1j(i, h), j = 1,2,3, exist. 
Then we have the following system for u, 

(4.38) u, = ui I + .M(t)u,_1 + 2 04(i, h)u,_, + t,+,h5(i, h)f,, 

where 

e4(i, h) [ ) e2G, h)] J 5(i, h) 03(' )] 

and 

M(t1) = M + tC(t), C(t1)= [C0(1) C1(1) 

We rewrite (4.38) and obtain 

1 
m tiv 1 

(4.39a) = u , + .Muj ++i C(t,1) u + -2 -E4(i, h)u,, 

+ ti1e5(i, h)f, i = (io + 1)(I)NO, 

subject to the boundary conditions 
(4.39b) Quio =o, PUNO =N 

Note that the boundary value problem (4.39) is defined on the interval [tio, tNo0] 
where t - = e > 0 and tN = T < 1. We consider the iteration scheme, as defined in 
(4.24) applied to (4.39) and show that G is contracting if tNo is small enough. The 
proof of this statement can be shown by consideration of the three previous cases 
separately and the subsequent extension to the general case. Since the arguments 
used are very similar, we shall not repeat the whole analysis but just derive the 
conditions which are sufficient for G to be contracting. 

If a < 0, then 

(4.40) I GiV - GiW| < C 
h 

110,6,1 + tp III || C1 | ll (V - W ) 5 ll 

and hence 

ll(GV - GW),\l < C { IIe1II + tp + lC (V - W) All 

If A = 0, then from (4.27) 

(4.41) ll(GV - GW)Al < C hIntno 
2n 

111II + tNO+IICAIIII(V - W)All 

Let a > 0. Then we have 
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Let t10 = ? > 0. Then II(GV - GW)AII < II(V - W)AII if h and tN, are sufficiently 
small. The standard contraction argument yields now the existence and uniqueness 
of the solution of (4.39) on [E, T], where T < 1. It is clear from (4.39a) that this 
solution can be uniquely continued to T = 1, and the following lemma is obvious; 
see also [16, Theorem 4.2] and Remark (ii). 

The convergence rates in part (ii) have been obtained as in Lemma 4.4, using the 
smoothness properties of y from Section 3. 

LEMMA 4.5. If the homogeneous boundary value problem (3.1) has only the trivial 
solution, then, for each tio = e > 0, there exists an h (e) > 0 such that, for every 
h < h (e), the system (4. la) subject to the boundary conditions 

(4.43) BoYio+Bl YN=3 QBYN so, 

has a unique solution for each fA and the following estimate holds: 

(i) IIy1II < const{ISoIIln hIdol + I/BI + IIfI). 
(ii) Let y, be a solution of (4. la) subject to the boundary conditions (4.43) with 

so= 0. 
(a) Iff, C, E C and Co0 E C1, then 

const h |11n h"d+-I + w(f, h)), 0 <a+< 1, 

IIY -R Yll < | const(hIln hld+ I+ W(f, h)), 1 <a < 2 

| const{hIln hl d+ + co(f, h)), a+= 2, 
const{h + o(f, h)}, a+> 2 or S =0. 

(b) Iff, C1 E C2 and C0 E C3, then 

constha+IlnhI hd+ 
I 

<a+< 2, 

IIyA -RAy { < const h1n 
+Iln 

h lln)h a 2 

const h2ln hl do , 0+ > 2 or S = 0. 

5. Numerical Examples. 
Example 1. We consider the scalar equation 

y"(t) - (r5 - I)y'(t) - I7y(t) = 3 - 2A. 
t ~~~~~t2 

There are two different eigenvalues 

A = (d - 3)/2 <0, A2= (V + 3)/2>2, 

and therefore we choose the following boundary conditions 

y(O) = 0, y(l) = 0. 

This yields the continuous solution of the form 

y(t) = t2_ t(-5+3)/2 

and we expect that the error behave like h2. 
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Example 2. We have now the following scalar problem 

y"(t) - 0y'(t)= -1, y(O) =y(l) = 5, 
t 

whose solution is 

y(t)= 5- t2 + t3"2. 

The convergence rate of h3/2 is illustrated in Table 5.1, where the corresponding 
results for the first example are also tabulated. For both examples io = 0. 

TABLE 5.1 

Example I Example 2 

h A = lyA - RAyl A/h2 A = lyA - R A Y A/h 3/2 

1/10 1.480 E - 3 0.1480 3.647 E - 3 0.1153 
1/20 3.748 E - 4 0.1499 1.462 E - 3 0.1308 
1/40 9.437 E - 5 0.1510 5.650 E - 4 0.1429 
1/80 2.370 E - 5 0.1517 2.130 E - 4 0.1524 
1/160 5.935 E - 6 0.1519 7.894 E - 5 0.1598 
1/320 1.485 E - 6 0.1521 2.891 E - 5 0.1655 
1/640 3.715 E - 7 0.1520 1.049 E - 5 0.1698 

Example 3. We now consider the 2 x 2 system (3. la) where 

Al = [9/4 4] 140 [O I f (t) [9 + 17t] 

The Jordan canonical form of M is 

-2 1 0 0 
O -2 0 0 

I O 1/2 1/2 

L O O 1/2 

and hence y(O) = 0 is the necessary condition for y to be continuous. Furthermore 
we choose 

(a) y(l) +?y(1) 
6 [4j, (b) yv(l) +?y'(1) = 1 

and the corresponding solutions are 

ya(t) = [2t] yb(t) 1[ -12 + 2t2 

t3 
1 

~~18W-t + /3 

Since the error behavior does not depend on the component of these solutions, we 
list in the following tables the global error in the first component and the error at a 
fixed point t = 0.5 in the second component of each solution. In both cases io = 0. 
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TABLE 5.2 
Example 3(a) 

h ISt component A ll/h2 2nd component A 22/h2 
A IA 2 

1/4 1.374 E-2 0.219 2.905 E-2 0.465 
1/8 3.336 E - 3 0.214 6.686 E - 3 0.428 
1/16 7.721 E-4 0.198 1.647 E-3 0.422 
1/32 1.711 E-4 0.175 4.105I E-4 0.420 
1/64 3.667 E-5 0.150 1.026 E-4 0.420 
1/128 9.111 E-6 0.149 2.564 E-5 0.420 

TABLE 5.3 
Example 3(b) 

h I st component A I/h 2nd component A 2/h 2 

A1 A2 

1/4 4.996 E - 1 0.999 2.729 E - 1 4.37 
1/8 3.484 E - 1 0.985 6.616 E - 2 4.23 
1/16 2.453 E - 1 0.981 1.643 E - 2 4.21 
1/32 1.732 E - 1 0.980 4.102 E - 3 4.20 
1/64 1.224 E - 1 0.979 1.025 E - 3 4.19 
1/128 8.652 E - 2 0.978 2.563 E - 4 4.19 

Example 4. To illustrate the results of Lemma 4.5 we investigate the 2 x 2 system 
with 

Al= [ O -1]' Ao=[o 1/4]' 

= 100X5 + 200X25 + 218.75x - 100 

and the boundary conditions 

Y(0) = 0, Y2(0) = 0; y1(l) = 0, yl(l) = O. 

The corresponding eigenvalues of M are A1= - 2 = 0, A3 = 1/2, A4 = -1/2 and the 
Jordan canonical form is 

1/2 0 0 0 
[1/2 -1/2 0 0 

O O 0 I 

Since the problem has a solution y E C n C' (0, 1], it follows from Lemma 4.5(ii) 
that the convergence rate is 0(rh ). 
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TABLE 5.4 

h 5(h) = IIYA - RAyII A(h)/Vr A(h/2)/A(h) 

1/10 3.044E - 1 0.9626 * 

1/20 3.143 E - 1 1.4056 1.0325 
1/40 2.320E - 1 1.4673 0.7381 
1/80 1.630 E - 1 1.4579 0.7026 
1/160 1.141 E - 1 1.4433 0.7000 
1/320 8.014 E - 2 1.4336 0.7024 
1/640 5.645 E - 2 1.4281 0.7044 

lim A(h2) 0 7071 
h- 0 A(h) 

Example 5. The next system is two-dimensional and 

A 
[I 
= 

3] 
AO= L o ?] f= [8 

M has the following eigenvalues A, = -2, A2 = O, A3 = A4 = 2.5. The boundary 
conditions are 

Y2(0) = 3, y2(0) = 0; yl(l) = 8, y'(1) = 36, 
and the continuous solution of this problem is 

y(t) = r18t251n t + 4t25 + 4t22 

From the last remark we expect the convergence to be of second order and this is 
verified by the results from the next table. 

TABLE 5.5 

A = IIYA - RAyll A2 

1/10 7.502 E - 2 7.502 
1/20 1.861 E - 2 7.444 
1/40 4.645 E - 3 7.432 
1/80 1.161 E - 3 7.430 
1/160 2.903 E - 4 7.432 
1/320 7.257 E - 5 7.431 

Example 6. Finally, we consider the following homogeneous system to illustrate 
the results of Lemma 4.4 (ii)(b) in the case when J consists of two Jordan boxes. Let 

A I [=a I , [? aO] f(t) [= ] 

If a, = 0.5, ao = 1, then A1 = A2 = 0, A3 = A4 = 1.5 and the boundary conditions 

Y1(O) = 3, Y2(0) = 0; y(l) = -1, y2(l) = 3 

yield the solution 
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If a, = -0.2, ao = 1, then X1 = A2 = 0,A3 = A4 = 0.8 and if 

Y(0) = 3, Y2(0) =0; y(l) = 0.4, y2(l)= 1.6, 

then the solution is 

(ii) y(t) 3 - 2t?8(l - In t) j 

1 1 .6t0-8 
The error behavior follows by Lemma 4.4 on noting that there are no logarithmic 
terms in the second components of both solutions y(t). 

TABLE 5.6 (i) 

1st component 2nd component 

h A(h) A(h)/h' 5Jln hI A(h/2)/A(h) A(h) A(h)/h' 5 A(h/2)/A(h) 

1/10 4.751 E-2 0.6525 * 1.094 E-2 0.3460 * 

1/20 2.185 E - 2 0.6524 0.460 4.385 E - 3 0.3922 0.401 
1/40 9.575 E - 3 0.6567 0.440 1.695 E - 3 0.4288 0.387 
1/80 4.057 E - 3 0.6625 0.424 6.390 E - 4 0.4572 0.377 
1/160 1.677 E - 3 0.6687 0.413 2.368 E - 4 0.4792 0.371 
1/320 6.795 E - 4 0.6743 0.405 8.672 E - 5 0.4964 0.366 
1/640 2.712 E - 4 0.6796 0.400 3.148 E - 5 0.5097 0.363 

lim A(h/2)/A(h) = (1/2)" 5 - 0.354 
h-.0 

TABLE 5.6 (ii) 

1st component 2nd component 

h A (h) A(h)lh 08 iln h I A(h/2)/A (h) A Q(h) A (h)lh 08A(h/2)/A (h) 

1/10 3.809 E - 1 1.0437 * 2.161 E - 2 0.1363 * 

1/20 2.450 E - 1 0.8984 0.643 1.342 E - 2 0.1474 0.621 
1/40 1.562E- 1 0.8099 0.638 8.037E- 3 0.1537 0.600 
1/80 9.884 E - 2 0.7512 0.633 4.887 E - 3 0.1627 0.608 
1/160 6.205 E - 2 0.7089 0.628 2.889 E - 3 0.1675 0.591 
1/320 3.869 E - 2 0.6771 0.623 1.693 E - 3 0.1709 0.586 
1/640 2.398 E - 2 0.6523 0.620 9.863 E-4 0.1734 0.583 

lim A(h/2)/A(h) = (1/2)" 8 0.574 

All experiments have been carried out on a CDC Cyber 170/720 in single precision 
(48 bit mantissa). 
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