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Preconditioning By Incomplete Block Cyclic Reduction 

By Garry Rodrigue* and Donald Wolitzer 

Abstract. Iterative methods for solving linear systems arising from the discretization of 
elliptic/parabolic partial differential equations require the use of preconditioners to gain 
increased rates of convergence. Preconditioners arising from incomplete factorizations have 
been shown to be very effective. However, the recursiveness of these methods can offset these 
gains somewhat on a vector processor. In this paper, an incomplete factorization based on 
block cyclic reduction is developed. It is shown that under block diagonal dominance 
conditions the off-diagonal terms decay quadratically, yielding more effective algorithms. 

Introduction. Iterative methods are frequently used for solving the linear systems 
arising from the differencing of 2-dimensional elliptic or parabolic partial differen- 
tial equations, [19]. These systems are often very large and take on the structure 

Al Bt 

B~ A2 Bt xiK 
(1.1) Ax= l = K y 

BL-I AL 

where A, is tridiagonal and symmetric (i = 1, 2,..., L) and B, is tridiagonal (i = 

1, 2,..., L - 1). Each block is order K. x, and y, are vectors of length K (i = 1,..., 
L). K and L refer to the number of discrete x and y coordinates respectively on an 
orthogonal numerical grid, [16]. The matrix A is assumed symmetric and positive 
definite 

Most iterative methods for solving Ax = y involve approximating the matrix A by 
a matrix M (called a preconditioner or a splitting matrix), and at each iteration, 
solving a system of the form Mz = d. For example, first order iterative methods such 
as the Jacobi, Gauss-Seidel, or SOR iterative methods (cf. [21]) can be put in a 
general form 

(1.2) Mx(k+?) = Nx(k) + Y, 

where x(?) is given and A = M - N. Second order iterative methods are generally 
regarded as accelerations of first order methods and can be put in general form as 

(1.3) Mz(k) = y - Ax(k) 

x(k+?) = x(k-I) + Wk+l(akZ(k) + X(k) - X(k -)) 
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where Wk+ l a are scalars and x(l) and x(?) are given. The Chebyshev semi-iterative 
method and Richardson second order method are of this form (cf. [21 ]) as well as the 
generalized conjugate gradient method (cf. Concus et al., [2]). As can be seen from 
(1.2) and (1.3), with the exception of inverting M, iterative methods are highly 
parallel algorithms. This is where the problem lies. The matrix M can range from a 
simple diagonal matrix (e.g., Jacobi's method), where inverting M is a single vector 
division, to a complicated product of lower and upper triangular matrices (e.g. 
point-SSOR) where inverting M is a highly recursive process, cf. Young [21]. 
Unfortunately, the more recursive the inversion process, the faster the iterates x(k) 
converge to the solution of the system (1.1) and the less vectorizeable the method. 

Lately, taking M to be an incomplete Cholesky factorization of A has proven to be 
a very powerful choice for a preconditioner. Intuitively, the construction of M in this 
case is very straightforward. Since A is symmetric and positive definite, it admits a 
Cholesky factorization, A = LDLt, where L = (1,J) is a lower triangular matrix and 
D = (d1J) is a diagonal matrix. These matrices are given by the recurrence formula: 

Fori= L,...,N, 
1-1 

(1.4) iJI aj, - E lJmlmdmm, j = i,1 + 1 ..., N, 
nz= I 

di = 1/1,II 

where N = KL. For an incomplete Cholesky factorization of A, the computation 
(1.4) is performed with the constraint that IJ = 0, where the pair (j, i) is not in some 
matrix sparsity pattern that is to be maintained. A common practice is for the new 
lower triangular matrix L to have the same sparsity pattern as the original matrix A. 
Using this form of M = LDLt as a preconditioner has its origins in Varga [20]. 
However, the real power of this preconditioner came when Meijerink and van der 
Vorst, [15], coupled it with the generalized conjugate gradient method of Concus, 
Golub, and O'Leary, [2]. Kershaw, [10], demonstrated the superiority of this method 
over the conventional relaxation methods such as S.O.R. Since then, several papers 
have appeared in the literature dealing with different aspects of this method, e.g., 
Manteuffel, [14], Axelsson, [1], Gusstafson, [6], Ehrel et al. [4] and to describe the 
contribution of each of them would indeed add considerable length to this paper. 
Consequently, we have elected to omit this discussion. 

Resolving the incomplete Cholesky factorization in (1.3) by a back-substitution 
algorithm is a recursive process and can be very troublesome for efficient vector 
computing. Greenbaum and Rodrigue, [5], Jordan, [8], and Kershaw, [9], describe 
implementations of the back-substitution algorithm on vector-processors but these 
methods do not yield vectors with lengths large enough for efficient pipelining. This 
is due mainly to the dependence of the back-substitution process on the way the 
original factorization was set up in the first place i.e. the Gaussian Elimination 
method (1.4). Thus, to achieve a more vectorizeable method, the entire factorization 
and substitution process must be re-examined. 

Lambiotte and Voigt, [11], and Madsen and Rodrigue, [12], have shown how the 
odd-even and cyclic reduction algorithms are highly parallel methods for solving 
scalar tridiagonal systems on vector-processors. Heller, [7], extended these algo- 
rithms to block-tridiagonal systems such as (1.1). In this paper, we show how the 
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idea of incompleteness can be extended to these algorithms in such a way as to yield 
preconditioning systems that have a high potential for vector- as well as multi- 
processor computation. In addition, we capitalize on some of the results by Heller 
concerning the decay of the off-diagonal blocks in the odd-even or cyclic reduction 
process to yield an even higher degree of parallelism. 

2. Incomplete Block Odd-Even Reduction. We begin by first discussing block 
odd-even reduction in terms of the diagonal notation of Madsen et al. [13]. This 
notation will be used throughout the paper and maintains the following conventions: 
For a given block matrix T = (T,J), 

n-I 

T => Tk, T - (T'J) 
k= -(n- I) 

T(k) J 1ifj=I + k, 
'J 0, otherwise, 

i.e., Tk has only a nonzero k th block diagonal. Figuratively, 

~~=o Tk= 0X0 
kth block diagonal 

Sometimes we will be using the scalar entries of a block matrix. To avoid confusion 
we will use lower -case letters to denote the scalar diagonals. That is, if T = (tij) is a 
scalar matrix, then 

n-I 

T= E tk, 
k= -(n-1) 

where the tk are scalar diagonal matrices defined as above. The important conse- 
quence of this diagonal representation is that the diagonals of a matrix can be 
mathematically followed during the course of an algorithm. This is largely due to the 
following relationship for matrix multiplication: if T = VW, then 

(2.0) TJ = E VkWm. 
j=kAm 

With this notation in mind, the block odd-even reduction algorithm can be described 
as follows: 

BLOCK ODD - EVEN REDUCTION 

Decomposition: Let A(') = A and p an integer such that 2P < L < 2 P. Then for 
q = O,l,...,p- 1, 

(2.1) Q(q) = I -A(q)(A(q)) 

(2.2) A(q+I) = (I + Q(q) A(q). 

Forward Substitution: 
p-l p-l 

(2.3) [H (I + Q(q))A(O)x A(P)x = (I + Q(q)) y = y(p). 
q=O q=O 
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Backward Substitution: 

x = [A(P)]-ly(P). 

Remark 1. Note that 

A(q) = A(2%) + Aq2)q + A (o) and AP = A 

i.e., the nonzero off-diagonal blocks of A(q) are precisely A(4q)q, and AP is a 
block-diagonal matrix. 

Remark 2. If 

(2.4) H(q)= I - (A(q))1Aq 

then 

A(q+ 1) = A(q)(I + H(q)). 

Heller [7], analyzed the behavior of the 1- and 10-norms of the off-diagonal blocks 
in the odd-even reduction algorithm and his results are as follows: 

THEOREM 2.1. Suppose A(?) is a nonsingular N x N matrix and llH (0)t < 1. Then 
for q = 0, 1,.. , p, the block odd-even reduction algorithm yields 

(i) A (o') is a nonsingular N x N matrix; 

(ii) IIH(q+ 1)1100 < JI(H (q)) 211 0; 

(iii) If IIQ(0)111 < 1, then IIQ(q+l1)ll l < II(Q(q))2111. 

Theorem 2.1(iii) states that the off-diagonal blocks of Q(q) decay quadratically to 
zero. Hence, block odd-even reduction can be prematurely terminated to obtain the 
following algorithm: Let 

m-I m-I 
A(m)x = H (I + Q('))A(0)x - H (I + Q(i))y = 

i=O i=O 

and define x(m) = (A(in))-ly(m).Then, cf. Heller [7], 

COROLLARY 2. 1. If A4() is nonsingular and ||H(0) l < 1, then 

lix - x(m) 1L0 0 lH~~ 
llx Xlloo 

<tHmlo 

where x is the solution of (I.1). 

Since our goal is to examine the behavior of odd-even reduction on matrices 
arising from elliptic partial differential equations, it is natural to study the effect of 
the odd-even reduction algorithm on M-matrices. We call a matrix T = (tij) with 
tii > 0 and tij < 0, i *j, i = 1,..., n an L-matrix. Further, an L-matrix is a 
nonsingular M-matrix if it is inverse positive, i.e., T` > 0. A necessary and 
sufficient condition for inverse positivity of an L-matrix T is the existence of a vector 
v > 0 such that Tv > 0. A symmetric nonsingular M-matrix is a Stieltjes matrix. 

THEOREM 2.2. If A(0) is an N x N Stieltjes matrix, then the block odd-even reduction 
algorithm generates A(q), 0 < q < p, that are also N x N Stieltjes matrices. 
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Proof. The proof is by induction on q. Assume A(q) is a Stieltjes matrix. Then, 
setting certain off-diagonal entries of A(q) to zero still results in an M-matrix (cf. 
Varga [19, Theorem 3.12]). In particular, A(q) is a Stieltjes matrix, (A(oq))-l 0 0, and 

Q(q) = I - A (AO 0. 

Let x > 0 such that A(q)x > 0. Then 

(2.5) A(q+I)X = (I + Q(q))A(q)x > 0. 

By (2.2), 

,A(oq+i) = Aq)-A(q)q( A(oq) ) A2%)-A(2g)( A(oq) 
I 
A (q2q4 

A(2=+-A") = -A(2A ) ( A(Aq))A(2%) ) 

and 

A (q2+q Ak =- q2)q ( A (q) ) -A (q)q . 

Hence, A(q 1) is an L-matrix and, by (2.5), an M-matrix. Symmetry follows from the 
fact that (Aq2)q)t = A(2%). 0 

As can be easily seen, the block odd-even reduction algorithm causes numerical 
fill-in of the blocks almost immediately from the onset, and any matrix sparsity 
patterns in the original system (1.1) are completely destroyed. However, following 
the example of the incomplete Cholesky factorization, sparsity patterns can still be 
maintained if an incomplete version of the block odd-even reduction algorithm is 
used. 

Sparsity patterns are formalized by using the concept of a graph. If M = {1, 2,... 
n) X {1, 2, .. ., n), then a graph G is any subset of M. A given graph G induces an 
operator sp, on the set of all n X n matrices, A(n), as follows: 

SpG: A(n) -- A(n), SPG[A] = B = (b,j), 

where 

b =0 if (i, j) * G and b1= a,, if (i,j) E G. 

A graph G is said to be symmetric if (i, j) E G implies (j, i) E G. Hence, if G is 
symmetric, 

[spG(A)]t = spG[At]. 

For matrices with block entries, T = (Tb) where Tj E A(n), define 

sPG[T] = (SPG[Tij]). 

In the same way, if G is a symmetric graph, 

[spG(T)]t= spG(T.). 

We assume in the remainder of the paper that a symmetric graph has been given and 
write sp as the induced operator spG. An incomplete version of the block odd-even 
reduction algorithm now follows. 
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INCOMPLETE BLOCK ODD - EVEN REDUCTION 

Decomposition: Let A(0) = A and p an integer such that 2P < L < 2p.+ ' Then for 
q =0,l,..p- 1, 

Step 1. This is just the normal Cholesky L(q)JYq)(L(q))t factorization of Af Y); 

Step 2. Define 

C+q) = sp [A(2q)(Lq (fD(q) ) 1g q p[(q) (q) )( t( (q)) . 
t(~')=sp[4)(L(q)yt(iq))Sp], ~ q2) = 

Step 3. Define 

4(q+ l) - A+ I1 + 'j(q '+ (2%+11), 

where 

(oq + l ) = A -Sp [ &q)D(q) [ (q) ) ]-Sp ( 1 q) t D(q) ( q) t 

(q2+lq = 
_sp 

[( fq))b(q)( (q))t] A(%q1 = -sp[d(q)J(q((q))] 

Forward Substitution: Let y(0) = y. Then for q = 0, 1, ..., p - 1, 

Y(q + [I + &+q) (L(q)) + ( 1&q))(L(q)) lY(q). 

Backward Substitution: 

XI = wyl))-Iy(p) . 

x, is called the incomplete solution of (1.1). 

For the incomplete block odd-even reduction algorithm we get 

LEMMA 2.1. Suppose A is an N X N Stieltjes matrix. Then the incomplete block 
odd-even reduction algorithm generates A(q), 1 < q < p, that are also N x N Stieltjes 
matrices. 

Proof. Using induction on q, let us assume A(q) is a Stieltjes matrix. Then Aoq) is a 
Stieltjes matrix, A(q) q < 0, and (A4q2)q)t = A(2%). Further, ( JL(q) 3 0 so that q) 4< 0. 
Thus 

+X2q+l - -4p[a+q)(q)(+ 4))t] 0 0, ((2% +I ) - 2q+ 

and 4(oq+ 1) is a symmetric L-matrix. Hence, (q?+ I) is a symmetric L-matrix. It now 
remains to show that (q+ ) is inverse-positive. Since (q) is an M-matrix, there 
exists a vector s > 0 such that 4(q)S > 0. Define 

T = [2I -(q)(A(q))-l 

so that Ts > 0. Further, 

T= (q) - 2 (-(q) ) (2%) 2%) (J(q) j q)q. 

Since 
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we obtain A >+ 1)5> Tos >1 0. Similarly, T+ 2 1 j A+qVI <' 0. Thus 

A(q+ )S = Aj(q+ I)S + A(%++ll)S + 'j-q A +~~ ~%YS+ ~h 
> Tos+ T2q+IS+ T2q+IS = Ts> 0, 

and the proof follows. LD 
Using the identities 

Q(q) -j (q) (A(jq)) and ft(q) = I - ( A(q) ) A(q) 

similar to the ones in (2.1) and (2.4), it is now possible to establish a theorem similar 
to Theorem 2.1 for the incomplete algorithm. 

THEOREM 2.3. Let A be an N x N Stieltjes matrix. Then for the incomplete block 
odd-even reduction algorithm, 

(i) if II"P0)jIIo < 1, then 111(q+ 1)11 < 11(fq))211 0 < q < p - 1 
(ii) if I I(o) I II < 1, then jjQ(q+ 1lii < 11(Q(q))211 0 < q < p - 1. 

Proof. The proof is by induction on q. Assume (i) holds up to q. According to the 
previous lemma, A(q) is a Stieltjes matrix. Define 

-(q+ ) = (q)(I + jpq)) and 1(q+ ) = I _ (T(q+ j) (q+ ). 

Then, by Theorem 2.1, 

||(q+1j0 _loo< 
| q II 1(frq))21100 

Further, 

T (q2+q+= -4(q) q(4(oq) ') ((q)kq 

=-[(+q)2q( L(q) )-t (#q))) | D(q) [(f)(q) )-'(L(q) ) IA(q) q 

< (j(qq+q )) ?0 

and 

((?)e(q) 
-1((q) 1j(q)) 

< ( q1((q1-(q) A 0 

an () olow. heprofof(i) olow4i a% simla manner. L (+ 

To( - -2q o 0 - 2 Vo -,z0 
Since bothLA(q+) and To(q+ ) are nonsingular M-matrices, then (cf. Varga [19, p. 87]) 

(oq+l))- > (A -1l) >O 

and 

m =H [ q+ 1) an I(m) -+ 1) ) 1 '( (q [+)<? 

yielding 

11k'q+ 1)11 Co <, IIH(q+ ")1100, 

and (i) follows. The proof of (ii) follows in a similar manner. [D 

COROLLARY. Suppose A is an N\ X N M-matrix with IH (?)I I 0 < 1. Let 

n y(()- + (&q)(L(q)l y and x() A(m y - 
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If x, is the incomplete solution of (1.1), then 

11 
, l l 

0 
<1 1011 

m | O 

Proof. The proof follows from the fact that 

k(m)(x - x(m)) = - [4(m?, + 
(2T)]xI. 

0 

3. Incomplete Block Cyclic Reduction. The algorithm of cyclic reduction is a 
variation of the odd-even reduction algorithm where only selected block rows of the 
matrix are eliminated. The basic idea is as follows: 

Consider an even block equation of (1.1) 

B2i_ lX2i- I + A2,X2, + B2iX2i+I = Y2i. 

We eliminate the odd-indexed unknowns from the even-indexed equation by multi- 
plying equation (2i - 1) by (-B2,-,A-'-,) and equation (2i + 1) by (-Bt A-2') 
and adding these to equation 2i. The resulting equation is 

(-B2, -1AJ-1B2i-2)X2i-2 + (A2, - B2i-1 Bti- BtiA-2+ B 
(BtiA2i+ A Bt.+ ,)X2i+2 = Y2i-- B- - Bt iA'l+ly2i+ 

2i 2i?I 2i + I i2i 21?Yi? 

If we do this to all of the even equations, they make up a new block-tridiagonal 
system with half of the original number of blocks. Once this new system has been 
solved, the solution of the original system may be obtained by back-substitution into 
the odd equations. To solve this new system, the same approach may be applied to 
its even indexed equations (the indices of these were originally multiples of four). 
The process may be continued until just one block remains. 

The complete algorithm can be expressed as follows: (Here, the matrix subscript 
denotes the subblock position of (1.1) rather than the diagonals as before.) 

BLOCK CYCLIC REDUCTION (Version 1) 

Decomposition: Let B/0) - Bi, Ai0? - Ai (i = 1, . . ., L), and p be an integer such that 
2P < L < 2P+ . Then for each q=0, 1, 2,..., p - 1, 

(1) C2(2,I = B,q) ,(A(qI) ,)', 1 (2i - 1) (L DIV 2q), 
(2) C2(= (BJq))t(A(q)+ I)-', 2 < 2i < (L DIV 2q), 
(3) A(q+ ') A(q) - C2(q) l(B'q) 1)t - C2(0B(q), 1 < i < (L DIV 2q+ l), 
(4) B(q+ l)=_C2(q) I B (q), I <, i <, (L DIV 2 q+l_1), I ~~i+1 2i 

where (a DIV b) = c, c the largest integer < a/b. 

Forward Substitution: Let yi(O) = y, (i = 1,..., L). Then for each q = 0, 1,2,..., 

p - 1, 

=q 
+ 

Y2(iq) - C2(q)Y2(q) - C2(q)y2(q+ , 1 i < (L DIV2q+l). 
Backward Substitution: Let x(F) = (A(Pl))-'y(P). Then for each q = p - 1, p - 2, ..., 
1,0 

X -q) = Xq+ 1), 1 i < (L DIV 2q+l), 

Xiq) I = (A(2q1) Y2(?) 1 -(Ct2q2)tx2 

-(C2(9)1)tXiq), 1 (2i - 1) < (LDIV2q) 
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Formally, block cyclic reduction can also be viewed with the use of odd-even 
permutations p(q). Such permutations take an ordering of blocks 1, 2,... into the 
ordering 1, 3, 5,..., 2, 4,.. ., cf. Rodrigue et al., [17]. 

BLOCK CYCLIC REDUCTION (Version 2) 

Decomposition: For q = 0, 1,..., p - 1, let (we now resume the diagonal notation) 

p(q+1)A(q)(p(q+)) t G(q) (Eq))t 

E(q) I F(q) 

C(q) = E(q)(G(q))-l', A(q+)= F(q)-C(q)(E(q) t 

Forward Substitution: Let y(0) = y. For q = 0, 1,..., p - I 

p [yOg) 1 (q+ 1)q)yo(). 

Yv 

Backward Substitution: Let x(B) = (A(P)-Iy(P). For q = p - 1, p - 2,..., 0 

x(3) -= (G(q) )- [yo(g) -(E(q) T x(q+ 1)] 

Let x(q) be such that 

p(q+ I)X(q)= od(3 
[x(q+ 1)] 

For q=0,I,...,p- ,let 

i(q) = I-(A(Aq)y)A(q), Q(q) = I -A(q)(A(q)) 

Since cyclic reduction is nothing more than odd-even reduction on selected block 
rows of the matrix, we get immediately from Theorem 2.1, 

THEOREM 3.1 Suppose A is invertible and IIH(?)0I0 < 1. Then for q = 0, 1,..., p 
- 1, the block cyclic reduction algorithm yields 

(i) A(oq) is invertible, i.e., cyclic reduction is well-defined; 
(ii) IIH(q+ 1)lloo _<. JI(H(q))21100; 

(iii) If IIQ'0'111 < l,then IIQ(q?l)1ll < IIQ'q211, 

As in incomplete odd-even reduction, it is also possible to define an incomplete 
block cyclic reduction algorithm. 

INCOMPLETE BLOCK CYCLIC REDUCTION 

Decomposition: For q = 0,.. ., p -1 

(3.9) p(q? l)A(q)( p(p+ l) ) - [ G(q) (E(q))tj| 
E(q) I I(q) 

(3.9a) q)= L(q)Df(q)(L(q))t (Choleskydecomposition), 

(3C.9b) (q)= Ltq)( L(q) )-t ( D(q) )-1 

(3 .9d) = q)(L(q))-t(Dq) 

(3.9d) C+q) sp[C(q)] 
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(3.9e) - q)= SP[C(q)], 

(3.9f) 4(q+1) - 4(q+1) + 4(q? ) + (q +l) 

(3.9g) Aj(q+1) = Pq) - Sp[(+q)b(q)( (q)) t-Sp[ (q)b(q)(Cjq) ] 

(3.9h) 4(q+1) - Ip+q)b(q)(Cq))t] 

(3.9i) I(q+) -+ 

Forward Substitution: For q = 0, 1, 2,. . ., p - 1 

y (q) -Yd] 

tLYe( 

(3 . 10)Y( q + 1 ) =y(q)- ) ( q) )ye(vq) -a q) ( q) ) qe( (3.10) 1) y(q - 
q v (L Ye 

where C+= C> or C+ as before. 

Backward Substitution: Let 

X(P)= (A(P)) y(P). 

Thenforq=p-1,p-2,...,1,0, 

(31)x(q)= (L(q)) 1[(D(q)) 1(L(q))I ye(q)(q ) tx ( (e!) tx ( 

let x(q) be such that 

p (q + )X (q) od 1 
L x(q 1 

Let 

(q) = j-(1j(q)) -A4(q) Q(q) = I-j(q)((-q)I 

As stated before, incomplete block cyclic reduction is incomplete block odd-even 
reduction on selected block rows of the matrix. Hence we get 

THEOREM 3.2. Suppose A is a Stieltjes matrix and IIH(?)I0,I < 1. Then for q= 

0, 1, . . ., p - 1, the incomplete block cyclic reduction algorithm yields 
(i) A4(q) is a Stieltjes matrix; 

(ii) IIkq+ 1)IIoo _< 11(kq))21100; 

(iii) If I IQ? o(o II < 1, then II0(q+ )II11 < 11(0(q) )2111 

If the decomposition and forward-substitution phases are terminated at q = m < 
p - 1 and the back-substitution begins with 

x(m) = (-(M) y(m) 

then we get 

COROLLARY. If A is a Stieltjes matrix and IIH(0) II 00 < 1, then 

IIxj - xm 
|ll I lloo < 101v11 X IXI1IL0 

where x, is the incomplete solution and x(m) is the incomplete solution determined by 
terminating the process at q = m < p - 1. 
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4. Point vs. Block Incomplete Cholesky Decomposition. A few words on the 
difference between the usual incomplete Cholesky decomposition and that given in 
the previous section are worth mentioning. Cyclic reduction is equivalent to block 
Gaussian Elimination without (block) pivoting on a permuted system (PAP')(Px) 
= Py where P is a permutation matrix taking the original ordering of blocks 
I1, 2,. .. ., L into 1, 39 S,. .. ., 29 6, 109. . . 49 12, 20,. .., 2P. To illustrate, for L =7 

Al Bt 

A3 B2 3 

A5 15 B4 

(4.1) PAPt= A7 B6 

B1 B2 A2 

B5 B6 A6 

B3 B4 A4 

Further, the block Cholesky factorization of PAPt= LDLt yields a block lower 
triangular matrix L with the block structure 

x 
x 0 

(4.2) L x 

x x x 
x x x 

x x x x x 

As mentioned earlier in Section 1, the standard incomplete Cholesky decomposition 
commonly found in the literature generates a factorization LDLt where L retains the 
sparsity pattern of (4.1). However, in the block incomplete cyclic reduction algo- 
rithm, the block sparsity pattern of the block Cholesky factor in (4.2) is maintained. 

5. Applications. We consider certain finite difference approximations of the second 
order elliptic partial differential equations in two dimensions. 

(5.1) - vA(x, y)Vu + p(x, y)u = - 0aa - 8aAa + p(x, y)u f (x, y) ax2 ay 2 

with A > 0, p > 0, (x, y) in some two-dimensional region R. Associated boundary 
conditions are 

au 
a(x, y) + ,8(x, y) a(x, = y) 

where (x, y) are in F, the sufficiently smooth boundary of R, and au/an refers to 
outward pointing normal on F. 

To approximate the solution of (5.1), a network of straight lines with mesh spaces 
hx and hy,, parallel to each of the coordinate axes, is superimposed over the region. 
Then at each regular mesh point (ihX, jhy), 

(= h [Ai+ ?12,j 
(Uij 

- u,+,,) + A1l/21( -u111)] 
x 

h 
+ h x [A11j?12(u11 - ui,1?1)A11712(Ui,j -Uij1] 

y 
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This yields a set of inhomogeneous, linear, simultaneous, symmetric equations 
which can be expressed in matrix notation Ax = y where x and y consist of the 
unknown approximate solution u1j at (ihx, jhy) and the known boundary values, 
respectively. If we assume a columnwise ordering of the unknowns, the coefficient 
matrix A is a sparse, structured, real N X N matrix (N is the number of unknown 
mesh points) with the following properties: (i) symmetric and (ii) positive definite. 
We will use the generalized conjugate gradient method of Concus et al., [2], to solve 
this system. A description of the algorithm is given in Appendix I. All computations 
are performed on a CRAY- 1 vector-processor. 

For our first set of computations, we compare the generalized conjugate gradient 
methods for preconditioners given by an incomplete Cholesky factorization and an 
incomplete block cyclic reduction. For the calculations performed here, the incom- 
plete Cholesky factorization provides a preconditioner of the form M = LLT where 

El 

0 
L= F2 E2 

FL EL 

where the Ei are lower bidiagonal matrices and the F, are tridiagonal matrices. This 
factorization is denoted by IC( 1, 1), [18]. 

The solution of the residual correction Mz, = ri (cf. (3) in Appendix I) is given by 

Forward Substitution: 

SI = El17r,. 

Fori = 2,..., L, 

Si = El-' (r, - Fsi+1), 

Backward Substitution: 

ZL = (EL) SL. 

For i = L - 1, . . . , 1, 

Z, 
= (Ei-t)(si - Ftz, )- 

For the computations here, the inversion of both Ei and Eit were performed by a 
scalar first order recursion. Although on vector machines other than the CRAY, 
algorithms such as recursive doubling, cf. Dubois and Rodrigue [3], may be more 
suitable. 

Incomplete block cyclic reduction consists of two phases: the decomposition and 
the forward/backward substitution. The decomposition is performed only once and 
is accomplished by the algorithm given in (3.9a-i). The implementation of this 
algorithm for calculations done on a vector-processor is given in Appendix II where 
the sparsity pattern "sp" is the tridiagonal pattern. In this way, a solution of the 
equation Mzi = r, by incomplete block cyclic reduction in the conjugate gradient 
method is provided. 
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Problem 1. The first problem is Laplace's equation on the unit rectangle with 
Dirichlet boundary conditions, i.e., 

A= 1, R= [0,1] x [0,1], 

u(O, y) = u(l, y) = u(x,O) = u(x, 1) = 0. 

A five-point central difference approximation yields a system (1.1) with block 
submatrices 

Ai ~ ~ ~ ~ ~ ~ 1-I. 

L j = 1 . -1 | 41 

For the conjugate gradient iteration, an initial guess of x(?) = 0 was used and the 
right-hand side vector, y, was given by Ax = y where the components of x were 
randomly generated. Both the incomplete Cholesky (IC(1, 1)) and the incomplete 
block cyclic reduction (IBCR) variations of the conjugate gradient were coded in 
CRAY-Fortran (CFT) in such a manner that full vectorization of algorithms by the 
compiler was accomplished. These were then tested on the CRAY-1. The iterations 
were terminated when 

IIx (k) - X112 
l)X112 

< 10- 7 

Table 1 lists the results (time is in secs.) and K refers to the number of numerical 
grid points on each of the sides of the numerical grid. 

Problem 2. The second problem is (5.1) where we assume that the region R is the 
unit rectangle, [0, 1] x [0,], h = h = h = 1/K + 1, the boundary conditions are 
pure Neumann, i.e. 

au (? Y) =au (1 Y) a ) = 
au 

1) = 0 

and p(x, y) = a = constant > 0. The function A(x, y) is generated randomly to 
take on values in the interval (0, 1). 

In this way, the coefficient matrix A approaches singularity as a -x 0. The same 
computational environment as in the previous problem was maintained. Table 2 
records the results. 

Comments. In all of the experiments, we see that the number of iterations for both 
methods is roughly the same. However, as the number of gridpoints increases, the 
IC(1, 1) method begins to require approximately 1.5 as much CPU times as the 
IBCR method. The reason for this is quite obvious-the vector lengths are larger in 
the IBCR method and can exploit the pipelining capability of the computer. 

6. Other Preconditioning Systems. If the original system (1.1) is a Stieltjes matrix 
and satisfies the hypothesis of Theorem 3.2, then the off-diagonal blocks of the 
generated matrices Q(q) in (3.9d aind e) begin to decay quadratically. Hence, if one 
uses Z(m), m < p, instead of z, in the conjugate gradient method where Z(m) is 
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obtained by stopping the incomplete block cyclic reduction process at the m th cycle, 
then by Theorem 3.2, the iteration count may not be severely affected. To test this, 
Problem 2 was rerun. As a consequence of Theorem 3.4 in Heller, [7], the matrix 
does in fact satisfy Theorem 3.2. Table 3 records the results. For comparison 
purposes, the time in parentheses is the time taken from Table 2 for the IC(, 1) 
algorithm. 

Comments. As one can see, only two cycles of reduction are necessary to achieve 
the minimum number of iterations. In doing so, the IC(l, 1) is now twice as 
expensive as the early termination IBCR method. If the algorithm were executed in a 
multi-processing environment, an even greater speed-up would be obtained since 
each level of cyclic reduction involves data-movement through the memory-processor 
interface. 

7. Acknowledgements. The authors would like to acknowledge helpful discussions 
with David Kershaw and Alex Friedman. We also thank the U.S. Department of 
Energy, Office of Basic Energy Sciences, Applied Mathematical Sciences Division, 
for support. 

TABLE 1. 5 pt. Laplace equation on N x N grid 

Itns Time 

_N IC(l, 1) IBCR IC(l, 1) IBCR 

10 15 10 .008 .016 
30 31 24 .15 .13 
50 47 39 .67 .43 
75 67 55 2.1 1.2 

100 87 72 4.9 2.8 

TABLE 2. 5 pt. random matrix 

Itns Time 

AN IC(l, 1) IBCR IC(l, 1) IBCR 
10 22 16 .01 .02 
30 48 40 .24 .2 
50 75 61 1.05 .66 
75 107 91 3.4 1.8 

100 135 114 7.6 4.4 
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TABLE 3. Random matrix with early termination of cyclic reduction 

8N q Itns. Time 

1 77 .176 
30 2 42 .136 (.24) 

3 40 .168 
4 40 .2 

1 128 .6 
2 68 .43 

50 3 62 .49 (1.05) 
4 61 .57 
5 61 .66 

1 249 4.6 
2 133 3.2 

100 3 114 3.2 (7.6) 
4 114 3.6 
5 114 4.0 
6 114 4.4 

Appendix I 

GENERALIZED CONJUGATE-GRADIENT ALGORITHM for solving Ax =y: 

Let M be a symmetric positive-definite matrix and x0 an arbitrary initial vector. 
Letr = y - Axo andp0 = M-'ro. Then for i = 0,1,2,... 
(1) xl+ = xl + a1 pi, where a, = (ri, M- r1)/( p,, Api), 
(2) r, +I= r - a, Api, 

(3)p PI+= M-'r,1 + l Pip, where i = (r+j M-1r+jl)/(r, M-r,). 

Appendix II 

INCOMPLETE BLOCK CYCLIC REDUCTION 

Decomposition: Let A(0) = A. Then for q = 0, 1,.. ., p - 1 let 

6(q) = L(q)f)(q) (L(q) t 

where 

D5(q) = d L(q) = I + I(q'), 

and 
K-I 

(1) (~~~~~~L(q))= 
l 

_(q)) 
l=0 

Since we are using the tridiagonal sparsity pattern, 

&q) = C(q) + c(q) + C(q). 
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Further, 

(2) k q) = e(q) + e"q) + e ,q) 

so that the scalar diagonals of &q) are constructed by performing (3.9b) with (2) and 
a truncated series in (1), i.e., 

c(+q)1 = e(q) (d+q)) 9 

c+ =(q) (Oq)) 
- I l(1(ql)) (dq))- = (q)(d(q))- - c -1(ql)) 

t 

c = e(q)(d(q))-1 e(q)(j(ql))t(d(q))- + e(q)(1(q))t )2(doq))- 

= e(q) (q))-1+ C(q) (1(q) 
t 

A similar algorithm can be used for q). 
Again, since we are using the tridiagonal sparsity pattern, 

A(q+ 1) = a(q"j) + a(q%+ 1) q 

Now, 

jq) = f(l) + f (q) - f (q) 

so that an algorithm for (3.9g) is 

OqO+1)-=fo(q)_-C(+q) ( dq) ( +q) t)- C(+q oq) (C(+q)) q) - (+qq)co aOq 1 ) = j (lq) - C(+q) l + - c - 

- c(q) 2 dofC(qo) - Cod ") ( C (q) q - C(ldo (C( ) )d-c)-- -- -,I)oq ( -,I _ 1' ) t- 

a(q1+ ) = fq) - c(q) d (q)- C(+q) C (q)d ( c(q) ) -' + - I d +') (c', 1)C+I 

Silary, an a rc(q)idtq)C(qh)m C(qdf(q)(.9h 

' '-I=0 _' -' - 

a(qf 1) = f- c(q) d -(q) - (q+_ C q) d (q) ) t 

and an algorithm for (3.9i) 

a(q + 1) = (q (dq) ( +q) ) (q) d(q) ( +q) t ) q - (qo) oq)C(q a- f'Oj = - o(C - c) 

a(q+ql= -{ c( q) do)c(7 - Cq Cq ) ( cd(q) t, 

a(+l) _ dqC= C(q)dq)C(q - c(q)dq) ( c+q) ) 
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The forward and backward substitutions are given by (3.10) and (3.11) where the 
inversion of the L q)'s is carried out by a first order scalar recursion. 
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