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Calculation of the Moments 
and the Moment Generating Function 

for the Reciprocal Gamma Distribution 

By Arne Fransen and Staffan Wrigge 

Abstract. In this paper we consider the distribution G(x) = F-'f0x(1(t))-1 dt. The aim of the 
investigation is twofold: first, to find numerical values of characteristics such as moments, 
variance, skewness, kurtosis, etc.; second, to study analytically and numerically the moment 
generating function (p(t) = fo e-t/xF(x) dx. Furthermore, we also make a generalization of 
the reciprocal gamma distribution, and study some of its properties. 

Introduction. In [4] we considered, among many other things, the distribution 
G(x) = F- 'jX(r(t))-1dt, which was suggested as a distribution of possible use in 
reliability theory by Dr. Gustaf Borenius, the former head of our section. He 
suggested this distribution because its shape looked like that of the gamma distribu- 
tion, only with a thinner tail. Moreover, the problem as such was a mathematical 
challenge. The normalization constant F was calculated and presented to 60D by 
Fransen and Wrigge [4], to 80D by Fransen [3], and to 300D by W. A. Johnson [10]. 

We were asked by Dr. Samuel Kotz if we could calculate analytically and 
numerically the moments of the reciprocal gamma distribution. To our surprise, we 
managed to find not only a useful recurrence relation for the moments an = E(Xn) 
but also several analytical expressions. 

The aim of this investigation is twofold: first, to find numerical values of 
characteristics such as moments, variance, skewness, kurtosis, etc.; second, to study 
analytically and numerically the moment generating function 

p(t) = f (e-tx/F(x)) dx. 

Furthermore, we also make an obvious generalization of the reciprocal gamma 
distribution and study some of its properties. 

When starting this study we did not know much about the work of our predeces- 
sors on similar problems. We learned that Ramanujan [8] as well as Wyman and 
Wong [17] and Doming et al. [1] had studied related problems from a purely 
analytical standpoint. In Erdelyi et al., Vol. 3 [2, pp. 217-224] several functions close 
to the one studied by us are mentioned. Paley and Wiener used these functions, 
when studying inversion formulae for the Laplace transform; see [13, p. 39]. We also 
learned a lot when reading a doctoral thesis from 1887 by A. Lindhagen [11] on the 
gamma function. 
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1. A General Formula for the Mean Value E(a,(X)), Where X Has a Generalized 
Reciprocal Gamma Distribution. We begin with a 

Definition. By a generalized reciprocal gamma distribution we mean a distribution 
with a density function f(x) = 1/g(x), where g(x) satisfies g(x + 1) = xg(x) and 
x E [ 0, oo). 

We may then formulate 

THEOREM 1. Let 1/g(x) be a generalized reciprocal gamma probability density 
function, and let A(x) be a continuous function such that 

E(4(X))-= jOo7(X) dx 
0g(x) 

exists. Then 

E(.,(X))f u(u) du, 
og(u + 1 

where 
Fu =(u + k) 

F =u (u) + E j!k-(u + j) (0k 

and the series for uF(u) is assumed to converge uniformly in [0,1]. E 

Proof. 

E(+(X)) =E | ()dx = E | (+ )du E(4,X))=k=OLg(x) k=0O g(u +k) 

(1 uF(u) du 
Jg(u +1) 

The "partial fraction" is deduced in the ordinary way using the identity 

1=__ (n-_I ) (iM 1 , nI=1,2 . 
u(u +1) (u + n-1)m=O\ m (n-1)! u + m 

Of special importance is the case when A(x) is periodic with a period equal to one. 
We may, e.g., determine the constant C2n such that c2 nsin2n(vx)/F(x) becomes a 
probability density. (See Section 3b.) 

It should be noted that one might as well define the generalized reciprocal gamma 
distribution demanding that the density function f(x) satisfies f(x + 1) = f(x)/x. 

We have also studied the more general case where the probability density function 
f(x) satisfies the functional relation 

(1.1) f (x + 1) = r(x)f (x), 
where r(x) is a rational, or even more general, function. It is then easy to see how to 
generalize Theorem 1. 

An example of such a function f(x), which we have studied in some detail, is 

(1.2) f(x) = c H 17(mix) H r(njx), 
i=1 j=1 
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where m, and n1 are positive integers, chosen such that the integral fo? f (x) dx exists, 
and c is a normalization constant. A simple example is 
(1.3) f(x) = cF(x)/F(2x), 

giving r(x) = 2(2x + 1)-i. 
We plan to present our studies of the more general density functions in (1.1) and 

(1.2), and corresponding moments and moment generating functions, in a future 
paper. 

2. Some Formulae for the Moments and the Factorial Moments. 
a. The General Case. Let X be a random variable with the same distribution as in 

Theorem 1. We want to obtain a useful formula for the moments a,7 = E(Xn). 
Let us define the numbers Xn as An = Jl(xn/g(x)) dx. We may then formulate 

THEOREM 2. Let an = foJ(xn/g(x)) dx and Xn = fol(xn/g(x)) dx. Then the mo- 
ments an satisfy the recurrence relation an = 1 + X -Ao + En=1(n)ak-l, with start- 
ing value aO = 1. El 

Proof. 

dxn j x Xnd-X jo(X +1) n 

o g(x) 1 g(x)x =A+ o xg(x) 

A simple use of the binomial theorem and some manipulations easily yield Theorem 
2. El 

We may describe the solution of the equation in Theorem 2 in 

THEOREM 3. The solution of the recurrence relation in Theorem 2 may be written in 
the following way 

n 

an = bn+1 + E dk(n)Xk; do(O) = 0, dn(n) = 1, b1 = 1, 
k=O 

where bn is the Bell number of order n and the integers dk(n) satisfy 

dm(n + 1) = ( j+ 1 )dm(j)- om, dm(j) = O forj < m. E 
j =m 

Proof. The numbers bn satisfy the equation 

(2.1) bn+l = E bk bo = 1 

(see, e.g., Lunnon, Pleasants and Stephens [12, p. 2]), which is also obtained from the 
recurrence relation in Theorem 2. Now, consider 

(2.2) an?1= 1 + A - A + ( ) + {1)( + E ddk(i)k} 

Identifying coefficients of Am on both sides of (2.2), we get 

(2.3) dm(n + 1) = (4 + dm(j)I-Om E 
j=m 
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The obvious advantage of knowing Theorem 3 is that in order to calculate E(X') 
we only have to know the numbers A, If 1/g(x) may be expanded as 1/g(x)= 

Ek1 CkX, then 
00 1 

(2.4) An= E Ck+k+I 
k=1 

Putting A(x) = (x - 1)(x - 2) ... (x - n) in Theorem 1, we may state the follow- 
ing theorem for the factorial moments, viz. 

THEOREM 4. Put 4 (x) = fH n l (x - i). Then 

E( (X)) 11 Ek=Onnl(Xi i=1 dx + e xP(x) dx, 
'o ~g(x) Jog(x + 1 

where 
00 n 

n=O n!(x + n) 

e xx + x() + x(x + 1)(x + 2)+ 

(Concerning the function P(x) see, e.g., Lindhagen [11, pp. 21-22].) 
We note the special case n = 1, which yields 

(2.5) a= 1 + X1 + e ( x()) dx. 
.Ig(x +1) 

From Theorem 2 we obtain a1 = 2 + A, - X0. We conclude that 

(2.6) e xP(x) dx = 1 - X 
Jog(x + 1) 

o 

b. The Special Case. In this case we put 

1 f00 xn 
n F F(x) 

and define yn as yn = FXn, i.e., 

(2.7) Yn xF ) dx. 

The recurrence relation in Theorem 2 then becomes 

(2.8) an=1 + F + L ~k)ak-1; ao 1 
k=1 

When considering the moment generating function E(e-tX) the numbers /3n =ann! 
are more interesting. Thus we get, from a numerical point of view, the more useful 
recurrence relation 

(2.9) 8n = !1 + yn;-Yo)+ 1: k( /k-1' P3o=1 (2.9) n! ( i ) k=1 k(n -k)! 

To obtain the moments an we first calculate f3n using (2.9) and after that we use the 
identity an = n!fln. 
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When calculating the numbers yn we use the expansion 
1 =k+10 

F (x) k-O 

The coefficients ak+1 converge very fast towards zero and are tabulated by Fransen 
and Wrigge [4] with addendum by Fransen [3], in both cases to 80D. From (2.4) we 
get the formula 

00 

(2.10) k= n+k+2E n = 0,1,2,.. 

The values of an j,n and yn are presented in Table I for n = 0, 1, 2,..., 15 to 30D. 
We also deduced a formula for the coefficients an using the Euler-Maclaurin 

summation formula and applied it for checking purposes. 
Therefore consider the function 

(p(t) = FE(e-tX) = f r( ) dx. 

The Euler-Maclaurin summation formula with step-length h = 1 yields (B2k are 
the ordinary Bernoulli numbers) 

(2.11) qp(t) = F (-)'aj = e ' + 00 (- t)' E 2k -l-, 
j=O J! j=0 JO k=[(j+1)/2]+1 2k 

(Cf. Section 3a.) 
A remaining problem is how to calculate the coefficients Sj in the expansion 

00 

(2.12) e-t+e-'= Q(t)= E 
j=0. 

Differentiating (2.12) with respect to t we get Q(t) = -(1 + e-)Q(t), which after 
identification of coefficients yields the relation 

(2.13) i( + (1)()6k)k So = e. 

From (2.11) we get the relation 
00 B 

(2.14) Faj =(-1) j + 2 
a2k 1-J j- = 0,1,2. 

k=[(j+ 1)721+1 1 

Formulae (2.13) and (2.14) were used to check the numerical values of aj calculated 
by (2.9) for small values of j (j = 0, 1, 2,..., 6). 

From Hardy's lectures on Ramanujan [8, p. 196] or from his collected works, 
Volume IV [9, p. 544], we learn that 

X0 sx S X -le-sx 
(2.15) f 0(ls2x)dx= es 2 - X 2 dx, s>0. 

Differentiating (2.15) n + 1 times with respect to s and putting s = 1, we get a 
formula for the factorial moments 

(216 Hn(x -i) n - x 

(2.16Jo F(x dx = e + _kil 212 dx 
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Putting s = e-t in (2.15), we get, after differentiation with respect to t, the formula 

-tx -t-xe-t 

(2.17) <p(t) = ( dx = e7t+e +j l2 dx. 

(See also Section 3.) 
To obtain an analytical expression for the moments an in this case, we must first 

consider a certain generating function, viz. 

(2.18) exe= k=E Ck(X)(-1) k! 

For the functions Ck(x) we easily obtain the relations 

nk 
(2.19) Ck(X) = n! 

n=O 

(2.20) Ck(x) = xCk_l(x), k > 1, 

(2.21) Ck(x) = exPk(x), 

where Pk(x) is a polynomial of order k with positive integer coefficients, 
k 

(2.22) Pk(x)= E S(k, j)xj; 
J=0 

S(k, j) denotes Stirling's number of the second kind (Riordan [14, p. 192]), 

(2.23) Cn(u + v) 
n 

(k)Ck(u)Cnf_ k(v) 
k 

Differentiating (2.17) n times with respect to t and putting t = 0, we obtain 

(2.24) Fa n n() + f k0)Ck(X) dx. 

The value of Ck(l) is ebk, where bk is the Bell number of order k (see Riordan [14, p. 
193]). We note also that the numbers Sj defined by (2.12) are related to Ck(l) in the 
following way 

(2.25) an = (-1) E (n)Ck(l) = (_1) ebn+1. 

Finally, comparing (2.14) and (2.24), we obtain 

__ 00 no(n)Ck(_X) 
(2.26) 2k a2k-1fln 2 2X dx. 

(2.26) ~ k=[(n+ 1)/2] + I2k lo T7 +-In 

Gautschi [5] considered polynomials orthogonal with respect to the reciprocal 
gamma distribution. Let the polynomials be ({xk(X)), normalized so that the 
coefficient of xk equals 1. Gautschi tabulated the coefficients ak and jk (k = 0(1)39, 
18D) of the three-term recursion formula 

(2.27) 7k+1(x) = (x - ak)7rk(X) - fkTk-1(X); 'r0(X) 1 (X ) 0. 

These polynomials could be used either to calculate or to check the moments of the 
reciprocal gamma distribution. No discrepancies were found. 



RECIPROCAL GAMMA DISTRIBUTION 607 

c. Some Population Characteristics in the Special Case. For the sake of complete- 
ness only we give the numerical values of the population characteristics mentioned 
above to 30D. The moments around zero, an, are given in Table I, and from these we 
get 

mean value = a1 = 

1.93456 70421 47884 72118 37147 04369, 
variance = a2 = 2 = 

(2.28) 1.09393 63340 68611 31547 97434 13155, 
skewness coefficient = Yl = 3/ 3 = 

0.81591 45786 35844 85691 78575 43121, 
coefficient of kurtosis = V2 = 4/0 4 - 3 = 

0.80230 15983 14383 56469 69336 12202 
and the moment-ratios 

(2.29) 93 = X = 0.90327 99004 93664 73043 08181 09121, 

94 = '2 + 3 = 3.80230 15983 14383 56469 69336 12202. 

3. Further Analysis of the Function p(t). 
a. Some Analytical Expressions. Consider the function p(t) = FE(e-tX)= 

Jf0?(e-tx/F(x)) dx. Ramanujan, as mentioned by Hardy in [8], proved the formula 
oc y 

x 
x ~~~_i sin(v~~) dx 

(3.1) f Y ) dx + J x1e-Yx{ cos(v) - lnx) 7 + n2x e, 

when y > 0 and t > 0, using an ingenious method. Putting t = 1, we get 
Xo yX _ e-yx 

1 r(1 + x) Jo T2 + ln2 X 

which may be written 
oo yX-1 X' e-yx 

(3.2) I - Y dx- ey + e dx. 
F(x) ej 2 +I2X 

We proved (3.2) from scratch showing that the Laplace transform of the L.H.S. 
equals the Laplace transform of the R.H.S. Thereby we used probability, as well as 
residue, calculus. 

Settingy = e-t in (3.2) yields 

o -tx o -t-xe-t 
(3.3) (p(t) = )dx e- + 7- +j I dx. 

We will return to some different forms of Eq. (3.3) in Section 3c. 
Several interesting analytical expressions of sp(t) may be obtained using the 

Euler-Maclaurin summation formula. Thus we calculate 

(3.4) .pi(t) = 
= e- t 

= e- 
t 

k=1 r(k) 

and 

(3.5) P2(t) = _ = + (2N(21/2e'e2)- 
kOr(k +) V1 



608 ARNE FRANSEN AND STAFFAN WRIGGE 

where N(.) denotes the standardized normal distribution function, i.e. 

N(t)= -J' f x2/2 d 

A formal use of the summation formula yields the equations 

(3.6) (p(t) = e-t+e + E (_)i )J 2k a2k-1-j 
j=O J* k=[(j+1)/2]+1 

and 

1 _____~~~~O 
0 

B2k ( \2k 
(3.7) (p(t) = 2 (T1(t) + p92(t)) + E a! k-[(jj1)/2]?1 2 ) 

2 ~~~~j=O ilk[j1211k2 

(Cf. Section 2b.) The more complicated case with the step-length h = 4 is treated in 
a short note (Wrigge [16]). 

We may generalize these results in 

THEOREM 5. Let f(x) = 1/g(x) be a generalized reciprocal gamma probability 
density function such that f(O) = 0, f(O) is finite and nonzero and suppose that 
1/g(x) = Ek=l CkXk. Define Ki(t) = E(e-tX). Then formally we have, if f (nx) - 0 

forn = 0,1,2,..., 

x (-t)j x 2k 

j=O k=[(j+1)/2]+1 

and 

1 ~ ~~~~0 (-t)j B2k (1I2 
K(t) = 2 (KI(t) + K2(t)) + j 2k C 2) 2k-1-j' 2 ~ ~~~~jO K=[(j-I1)/2]-lI-1 

where 

i(1(t) = et?e- and K2(t) = 
e- 

+ _ 

7 
(2N(21/2e'/2) - 1)e-t+e-. . 

Using Theorem 1, we may establish the following result. 

THEOREM 6. Let f(x) = 1/g(x) be a generalized reciprocal gamma probability 
density function. Define K(t) = E(e-tX). Then 

i etu 1F1(1; u; e-t) 

g(u) 

where IF,(a; y; x) denotes the confluent hypergeometric function (see Sneddon [15, p. 
35]). An alternative expression is 

I e-tu I e-t~~u + Ie-tu 
K(t) = J 1e du du + e1te e u + e-t+e- G(u) du, 

og(u) Jog(u + 1) e 0g(u) 

where 
G( ( e) ktk 

G(u) = kEl!(+k 
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The function sp(t) is related to the beta function in a natural way. Consider the 
well-known identity 

(3.8) f11x-1(1 t)Y_1dt -I(x)F(y) 
0 J'~~~~(x+ y) 

We divide both sides by 1i(x)r(y), multiply by e-s(x+y) and integrate with respect 
to x and y between 0 and xo. Formally we get 

(3.9) p -(s-ln(t))p(s- ln(I - t)) dt=j0000 
e (-?) + dxdy = 

The last part of (3.9) will be proved using Eq. (3.12). 
We will prove that 

?? ?? e -t(x +Y) 
(3.10) p()1f e(?) dx dy ) oJo Jr(x +y + 1) 

Therefore consider the auxiliary function 

e- t(x+Y) 

(3.11) G,(s)= ff r(x+y+1) dx dy. 

Using the mean value theorem of integral calculus, we get 

G(s + As) - G(s) =r(s + fS + 1) SX+YS+s dxdy; [0,1]. 

This easily yields 
d ~~se -ts e ts 

ds G()=r(s + 1) r(s) 
We finally get 

oG e-txd ? ?o et(X +y) 
(3.12) G(o) =p(t)= (0dx= ] r(x+y+ 1) dxdy. 

The last part of (3.9) may now be proved using similar methods or simply by 
differentiating (3.10) with respect to t. 

b. Some Interesting Inequalities. We start with Weierstrass' formula for 1/r(x), 
i.e. 

(3.13) - I e x i (i + )e-x/n. 

However, since (1 + x/n)e-x/n 1, we get 

1 k k 

(3.14) 1(x) < e - XVk L CjkXj+l, where Vk = -n , 

and the numbers Cj,k are related to the Stirling numbers of the first kind, viz., 

CJ,k = (s(k + 1, j + 1)/k!)(-1)I+k. (See e.g. Riordan [14, p. 90].) This yields the 
estimate 

(3.15) p(t) < E C k j+ 2 
j=0 II (t + k=j( 

In Table II we give the values d'f the upper limit for k =24 and t = 0.0(0.1)5.0. 



610 ARNE FRANSEN AND STAFFAN WRIGGE 

Another inequality for p(t) may be obtained using the multiplication theorem for 
the gamma function. We see that 

e-nix 
(3.16) p(t) = nJ 

r( dx, n = 1,2,3,.... 

But it is known that r(nx) = (2.)(ln)/2nnx-l/2r(x)H%l n Ir(x + k/n). This yields 

00 e- x(nt+n log n) 
p()-n3/2f dx. 
(t)=n3/X0 (2)1 

2(x)Hn_lr(x + k/n) 

Putting 17(xo) = minx>0 r(x) and c = 1(xo)/ 2vT, we may write 

cn-1 
(3.17) :p(nt + n logn)> 3/2 C (t), n = 1,2,3,... 

Similar inequalities may be deduced for the more general transformation 

g(a, t) = J axf(tx) dx. 

Before continuing the analysis of cp(t) we note the obvious inequality (from (3.3)), 

(3.18) p(t) > e-? 

We will now deduce a different lower limit for c(t) using a variant of Jensen's 
inequality, viz.,exp( J+1 ln(f(x)) dx) < Jf7+1 f(x) dx, where f(x) is supposed to be 
continuous and positive. 

We put 

G(t,u) = u+ln ( dx 

and get 

(3.19) G(t, u) = t(u + 2) - Iun u + u - ln4-v. 

But 

eG rx) dx. 

Summing over u = 0,1, 2,..., we obtain 

e- t12 X0 ek(i -t) 

(3.20) (t) 1 + k= k . 
k k=1 

The simpler inequality (3.18) is slightly better in the interval (0, 0.6), see Table III. 
We may easily generalize the result in (3.20), viz., 

THEOREM 7. Let f(x) = 1/g(x) be a generalized reciprocal gamma probability 
density function. Define K(t) = E(e-tx). Then 

K(t) > Ke t(1 + E kkl) 

where K= e-fln(g(x))dx [1 
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An interesting example, which includes (3.20) as a special case, is given by the 
density function 

f2n(X) = sin2 (X) 

(c2n is a normalization constant and co = 1/F), n = 0, 1,2,.... Define K2n(t)= 

E(e-tX) in this case. Then 

e -l/2 ?? e k(l-o 

(3.21) K2n(t) > C2n 22n 
( k=l e k k . 

Proof. Simply note that fOl ln(sin(vx)) dx = - ln 2. El 
c. Numerical Calculation of p(t). We set ourselves the task to compute sp(t) to 6D 

for t = 0.0(0.1)5.0. In all we considered more than 10 different methods to compute 
sp(t) to the required accuracy. The methods used could roughly be divided into 
Gaussian quadrature rules and series expansions. 

For small values of t there are several useful expansions. We may, e.g., consider 

s9(t) = r(x) dx + e-tJ r(e ) dx, 

from which we get the expansion (cf. Section 2b) 

(3.22) .p(t) = ( ) + _e'(F- yo) + Fet' E n_1nn- 
n=O n=1 

More rewarding from a computational point of view was to use the Euler-Maclaurin 
expansions with step-lengths h = 1 resp. h = 2 (formulae (3.6) and (3.7)). These 
expansions may in this case be regarded as the Taylor series expansions in disguise. 
Thus, (3.6) gave p(t) correct to 6D in the interval [0, 2.0]. Note that the somewhat 
complicated coefficients which occur in (3.6) may be calculated from or checked 
against (2.14). Equation (3.7) gave p(t) correct to 6D in the entire interval [0, 5.0]. 
The coefficients in (3.7) were truncated with an upper limit equal to 30 and 
calculated using high-precision techniques. (Note that we only know the numerical 
values of a,, a2,..., a6l; see [3] and [4].) The achieved numerical results of p(t) 
using the Euler-Maclaurin methods are presented in Table IV. 

For larger values of t it is useful to use Watson's Lemma. Applied to ep(t),the 
lemma yields 

00a 00 
(P(t) n- 1! whr 1na~1 n-I (3.23) n(t) where an- 

n=2 17(x) n=2 

Values of p(t) correct to 6D were obtained from t = 3.8. 
Finally,we turn our attention to the Gaussian quadrature rules. To be able to use 

a Gauss-Laguerre quadrature rule we rewrite (3.3) in the following two ways, viz. 

(3.24) c(t) = e-+e-' +f edu 
?T2 + (t + ln( u))2 

and 

(3.25) cp(t)=e-1e-'+f0 e dz+f0 e+ze2zez dz. 
0 7T2+ (t Z)2 0 2 + (t + z) 
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We evaluated numerically the integrals occurring in (3.24) and (3.25) using Gauss- 
Laguerre quadrature rules. However, none of the formulae were sufficient to yield 
6D even when using a 15-point formula. The best result was achieved using (3.25) 
and a 15-point formula. The maximum absolute error was then about 4 x 10-4 in 
the required interval. 

We considered the Gauss-Christoffel quadrature rule with respect to the weight 
distribution w(x) = 1/r(x) on [ 0, x), which is also mentioned by Gautschi [5]. In 
Table V we give weights pi (n) and abscissae x, (n) together with the remainder term 
coefficients cn for n = 14, 15. Thus we get 

(3.26) f f (x) dx = E p(n)f(xi(n)) + Cnf(2n)() 0< < < oo. 

When calculating the weights and abscissae we used the well-known methods 
presented by Golub and Welsch [6] and Gustafson [7]. 

Using (3.26) with f(x) = e- x, n = 14 and 15, and comparing the results with 
each other (and with other results), we could determine cp(t) to 6D in the required 
interval. The numerical result for n = 15 appears in Table VI. 

Note that the data in Table VI are subject to a progressively increasing error 
(beginning with T(2.8)) so that the final entry is correct only to 6D. On the other 
hand, comparing Table IV with Table I in [16], we see that Table IV is correct to 
IOD. 

The discrepancies between Table IV and Table VI may be interpreted in the 
following way. The function sp(t) does not behave like an exponential polynomial 
for large values of the argument t. When using (3.26) with f(x) = e-'X we in fact 
put 

n 

(3.27) p(t) Epi(n)e`jn), 
i=l 

and it is obvious from a comparison of Table IV and Table VI that this approxima- 
tion is good only for "small" values of t. Therefore we think it is valuable to give 
Table VI with 10 decimals even if only 6 are correct throughout. 

4. Tables. In this section we present the tables previously mentioned, i.e., 
I. The values of 

I = X)_dx, X = an, y iX dx, 

Fn FJF(x) n JoF(x) 
forn=0,1,2,...,15to30D. 

II. Tabulation of the upper limit 

ULk(t)= ECjk (j + 1)! 
j=O 

J 
(t + Vk )j 

of p(t) for k = 24 and t = 0.0(0.1)5.0 ((3.15)). 
III. Tabulation of the lower limits 

e-t/2 ?? e k(l-lt) 

LL1(t) = &t?e and LL2(t) = + k1 ek 

of p(t) for t = 0.0(0.1)5.0 ((3.18) and (3.20)). 
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TABLE I 

Values of a?, 8n and Yn to 30D for n up to 15 

Alfa ( 0) = 1.00000 00000 00000 00000 00000 00000 
Beta C 0) = 1.00000 00000 00000 00000 00000 00000 
Gamma( 0) ? 0.54123 57343 28670 53014 95373 28880 

Alfa ( 1) 1.93456 70421 47884 72118 37147 04369 
Beta ( 1) 1.93456 70421 47884 72118 37147 04369 
Gammaa( 1) 0.35751 50224 23594 90711 31309 21362 

Alfa ( 2) 14.83648 59746 33426 89473 63606 92321 
Beta ( 2) = 2.41824 29873 16713 44736 81803 46161 
Gamma( 2) = 0.26584 66316 55185 73050 08966 15849 

Alfa C 3) = 14.52263 23631 36764 25202 21329 96340 
Beta C 3) = 2.42043 87271 89460 70867 03554 99390 
Gamma( 3) = 0.21116 90393 30388 04296 03094 51101 

Alfa C 4) = 50.34552 58868 24648 33058 26933 58920 
Beta C 4) = 2.09773 02452 84360 34710 76122 23288 
GammaC( 4) = 0.17495 47281 85158 64133 35562 67979 

Alfa ( 5) = 196.52960 95489 46802 68500 46071 32870 
Beta ( 5) = 1.63774 67462 41223 35570 83717 26107 
Gamma( 5) = 0.14924 76440 33000 57064 19815 32525 

Alfa ( 6) = 849.04403 89161 01902 55653 61461 70944 
Beta ( 6) = 1.17922 78318 27919 30910 63002 03015 
Gamma( 6) = 0.13007 56150 34949 37665 14166 11576 

Alfa ( 7) = 4008.05067 83135 15751 45650 77329 55599 
Beta ( 7) = 0.79524 81504 59030 90306 67674 07332 
Gamma( 7) = 0.11523 86555 19321 63140 50448 25187 

Alfa ( 8) = 20473.02093 44326 72186 66432 03391 11034 
Beta ( 8) = 0.50776 34160 32556 35383 59206 43331 
Gamma( 8) = 0.10342 11446 83890 73215 80751 09877 

Alfa ( 9) = 1 12278.68745 79147 99966 36906 13390 83314 
Beta ( 9) = 0.30940 99632 32789 90290 55584 80322 
Gamma( 9) = 0.09379 13992 27884 14684 90322 19711 

Alfa (10) = 6 56942.77694 75960 16930 75176 45786 40082 
Beta (10) = 0.18103 58181 62366 62724 06172 19075 
Gamma(10) = 0.08579 41856 48139 30346 42449 43023 

Alfa (11) = 40 79302.42315 67110 12970 46671 96004 30938 
Beta (11) = 0.10219 51264 41916 96260 64831 52948 
Gamma(11) = 0.07904 84426 07206 82303 34826 57878 

Alfa (12) = 267 63361.94933 30895 88698 48695 73219 27461 
Beta (12) = 0.05587 32203 59458 27652 49604 32193 
Gamma(12) = 0.07328 25617 57236 85865 02003 52079 

Alfa (13) = 1848 15036.57385 64721 49672 31971 02966 00716 
Beta (13) = 0.02967 95277 40433 51070 06021 75556 
Gamma(13) = 0.06829 80580 98503 72710 45091 76512 

Alfa (14) = 13388 81303.23715 11770 64912 67976 41416 82370 
Beta (14) = 0.01535 79668 14990 18848 70268 33118 
Gamma(14) = 0.06394 65552 27707 72516 40691 75135 

Alfa (15) = 1 01461 22183.57558 18409 17108 15898 20647 91856 
Beta (15) = 0.00775 89057 58085 16714 83684 75292 
Gamma(15) = 0.06011 49366 30457 01942 63331 98573 
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TABLE II 

Upper limit of p (t) to 6D 
t UL 24 t UL24 t UL24 

0.0 3.104091 1.7 0.307953 3.4 0.092232 
0.1 2.545533 1.8 0.281396 3.5 0.087315 
0.2 2.111334 1.9 0.257935 3.6 0.082767 
0.3 1.769449 2.0 0.237128 3.7 0.078553 
0.4 1.497054 2.1 0.218605 3.8 0.074642 
0.5 1.277650 2.2 0.202057 3.9 0.071006 
0.6 1.099143 2.3 0.187224 4.0 0.067621 
0.7 0.952553 2.4 0.173885 4.1 0.064465 
0.8 0.831128 2.5 0.161855 4.2 0.061519 
0.9 0.729740 2.6 0.150973 4.3 0.058764 
1.0 0.644448 2.7 0.141103 4.4 0.056184 
1.1 0.572196 2.8 0.132128 4.5 0.053766 
1.2 0.510592 2.9 0.123946 4.6 0.051497 
1.3 0.457746 3.0 0.116470 4.7 0.049364 
1.4 0.412154 3.1 0.109623 4.8 0.047358 
1.5 0.372611 3.2 0.103338 4.9 0.045468 
1.6 0.338142 3.3 0.097559 5.0 0.043687 

TABLE III 

Lower limits of c (t) to 6D 
t LL1 LL2 t LL1 LL2 t LL 1 LL2 

0.0 2.718282 2.625200 1.7 0.219300 0.266516 3.4 0.034506 0.079644 
0.1 2.236333 2.163212 1.8 0.195011 0.243837 3.5 0.031123 0.075135 
0.2 1.856570 1.800680 1.9 0.173699 0.223793 3.6 0.028081 0.070935 
0.3 1.553978 1.513054 2.0 0.154948 0.206001 3.7 0.025342 0.067016 
0.4 1.310384 1.282521 2.1 0.138409 0.190140 3.8 0.022877 0.063353 
0.5 1.112412 1.095987 2.2 0.123787 0.175944 3.9 0.020656 0.059926 
0.6 0.950100 0.943715 2.3 0.110832 0.163189 4.0 0.018654 0.056713 
0.7 0.815940 0.818377 2.4 0.099333 0.151685 4.1 0.016850 0.053698 
0.8 0.704215 0.714106 2.5 0.089107 0.141273 4.2 0.015222 0.050865 
0.9 0.610528 0.627526 2.6 0.080000 0.131817 4.3 0.013754 0.048200 
1.0 0.531464 0.554424 2.7 0.071877 0.123202 4.4 0.012429 0.045692 
1.1 0.464344 0.1492513 2.8 0.064623 0.115328 4.5 0.011233 0.043328 
1.2 0.407055 0.439753 2.9 0.058136 0.108112 4.6 0.010153 0.041098 
1.3 0.357912 0.394525 3.0 0.052329 0.101479 4.7 0.009178 0.038993 
1.4 0.315561 0.355534 3.1 0.047125 0.095367 4.8 0.008298 0.037005 
1.5 0.278909 0.321739 3.2 0.042458 0.089721 4.9 0.007502 0.035127 
1.6 0.247065 0.292296 3.3 0.038269 0.084494 5.0 0.006784 0.033350 

TABLE IV 

Values of m (t) to IOD by the Euler-Maclaurin formula 

t Z) (t) t F) (t) t (p (t) 
0.0 2.8077702420 1.7 0.3009335120 3.4 0.0914210330 
0.1 2.3262370474 1.8 0.2753948016 3.5 0.0865816184 
0.2 1.9467718218 1.9 0.2527806955 3.6 0.0821024199 
0.3 1.6443584989 2.0 0.2326807977 3.7 0.0779495893 
0.4 1.4008236962 2.1 0.2147517803 3.8 0.0740930688 
0.5 1.2027934333 2.2 0.1987050126 3.9 0.0705061033 
0.6 1.0403059617 2.3 0.1842967120 4.0 0.0671648226 
0.7 0.9058566158 2.4 0.1713200562 4.1 0.0640478828 
0.8 0.7937313323 2.5 0.1595988329 4.2 0.0611361584 
0.9 0.6995357300 2.6 0.1489822986 4.3 0.0584124762 
1.0 0.6198584141 2.7 0.1393409958 4.4 0.0558613851 
1.1 0.5520275472 2.8 0.1305633342 4.5 0.0534689567 
1.2 0.4939329844 2.9 0.1225527820 4.6 0.0512226118 
1.3 0.4438950131 3.0 0.1152255491 4.7 0.0491109691 
1.4 0.4005665647 3.1 0.1085086674 4.8 0.0471237134 
1.5 0.3628597079 3.2 0.1023383935 4.9 0.0452514796 
1.6 0.3298899227 3.3 0.0966588753 5.0 0.0434857514 
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TABLE V 

Abscissae x, ( n ) and weights pi ( n ) to 25S for n = 14 and 15 

n i xi Pi 

14 1 1.622858744052096654480454E-01 4.66693630872300395o0so625E-o2 
2 5.229208541663484816942969E-01 2.646109639584808299341717E-01 
3 1.051449279617592254069644E+00 6.215442051821438630110274E-01 
4 1.726854794707082013337275E+00 8.142350693171694265817131E-01 
5 2.537139970455747796982883E+O0 6.414191022297807547724504E-01 
6 3.477139770547848558819249E+00 3.099598643455755089011735E-01 
7 4.547183105381307655844180E+00 9.148075324998564823913511E-02 
8 5.752809248184422223580066E+00 1.6129282410)47227855479475E-02 
9 7.105517354977053201482566E+00 1.630797462009361385772756E-o3 

10 8.624916011709722666870543E+00 8.84984955791566226950068oE-o5 
11 1.034350430938327785568881E+01 2.317750836324959203635878E-06 
12 1.231779194476028260112930E+01 2.446556157452933003045058E-08 
13 1.465920463327447787732363E+01 7.366805939154725353566559E- 11 
14 1.765918673901601163881919E+01 2.653882898025302661903184E-114 

15 1 1.490070588640254308122436E-01 3.924675165725691451042447E-02 
2 4.819351400658091188356546E-01 2.260891662923499176678823E-01 
3 9.723272335870747628473832E-01 5.527923916882637016023382E-01 
4 1.601001667819464486376536E+00 7.759201771782941429763990E-01 
5 2.356286743334194675877424E+00 6.757927480583987655263235E-01 
6 3.232350782165203111136036E+00 3.736746571000929295131507E-01 
7 4.227983287203939526165386E+00 1.312282470710664383753163E-01 
8 5.346137300427159830530296E+00 2.885258016254480346810935E-02 
9 6.594175177757317293887338E+oo 3.860321080491039705432555E-03 

10 7.984927181287134330907394E+00 3.002822090665240753851297E-04 
11 9.539032836474949476943656E+00 1 .265843407897613382797982E-05 
12 1.128985951391608900789341E+01 2.589555120399712100012903E-07 
13 1.329475808401580688647499E+01 2.136113605313739301854631E-09 
14 1 .566620236805261061598493E+01 4.988209679385246841957279E-12 
15 1.869771150641537821275855E+01 1.356702577187496841722868E-15 

C14 = 3.8031842E-16 C15 = 1.3723708E-17 

TABLE VI 

Values of ?p (t) to 1OD by Gaussian quadrature rule 

t (p (t) t (p (t) t (p (t) 
0.0 2.8077702420 1.7 0.3009335120 3.4 0.0914210319 
0.1 2.3262370474 1.8 0.2753948016 3.5 0.0865816168 
0.2 1.9467718218 1.9 0.2527806955 3.6 0.0821024175 
0.3 1.6443584989 2.0 0.2326807977 3.7 0.0779495857 
0.4 1.4008236962 2.1 0.21)47517803 3.8 0.0740930635 
0.5 1.2027934333 2.2 0.1987050126 3.9 0.0705060958 
0.6 1.0403059617 2.3 0.1842967120 4.0 0.0671648119 
0.7 0.9058566158 2.4 0.1713200562 4.1 0.0640478678 
0.8 0.7937313323 2.5 0.1595988329 4.2 0.0611361378 
0.9 0.6995357300 2.6 0.1489822986 4.3 0.0584124481 
1.0 0.6198584141 2.7 0.1393409958 4.4 0.0558613473 
1.1 0.5520275472 2.8 0.1305633341 4.5 0.0534689064 
1.2 0.4939329844 2.9 0.1225527819 4.6 0.0512225456 
1.3 0.4438950131 3.0 0.1152255490 4.7 0.0491108830 
1.4 0.4005665647 3.1 0.1085086671 4.8 0.0471236023 
1.5 0.3628597079 3.2 0.1023383931 4.9 0.0452513376 
1.6 0.3298899227 3.3 0.0966588746 5.0 0.0434855716 
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IV. (p(t) = fO0(e-tx/J(x)) dx tabulated to lOD for t = 0.0(0.1)5.0 by means of 
the Euler-Maclaurin expansion in (3.7). 

V. The values of the numbers pi(n) and xi(n) corresponding to the weight 
function 1/F(x) (cf. (3.26)), n = 14 and 15. 

VI. T(t) tabulated to lOD for t = 0.0(0.1)5.0 by means of Gaussian quadrature 
(cf. (3.26)). 

Comparing the values of Tables IV and VI,we thus may rely on all of them up to 
6D. 
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