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The Mean Values of Totally Real Algebraic Integers 

By C. J. Smyth 

Abstract. Let Mp(a) be the pth root of the mean absolute values of the pth powers of a totally 
real algebraic integer a. For each fixed p > 0 we study the set P of such MP(a). We show 
that its structure is as follows: on the nonnegative real line it consists of some isolated points, 
followed by a small interval in which its structure is as yet undetermined. Beyond this small 
interval, it is everywhere dense. 

0. Introduction. Let a be a totally real algebraic integer of degree d, with 
conjugates a = a,, a2,..., ?ad, and forp > 0 put 

M (a) =(di )J/P 

Since M (a) > INorm alIl/d, it follows that M (a) > 1 unless a = 0, + 1. Let pT be 
the spectrum in (1, ox) of M (a): 

X = x E (1, co)Ix = M (a) for some totally real algebraic integer a). 

In this paper we study the structure of Gp. Theorem 1 below gives our main 
results for certain specific values of p, while Theorem 2 gives corresponding (but 
somewhat weaker) results for all p > 0. 

THEOREM 1. (1) For the values of p and NMEASp given in Table 1, the smallest 
NMEASp elements of 9Rp are isolated, and are the only elements of 9DTh in (1, 

MBOUNDp). These values are the Mp(a), where a has minimal polynomial whose 
number, read from Table 1, corresponds to the polynomial given in Table 2. [For 
instance, for p = 1, D1R in (1, 1.18119) consists of Ml (2 cos 2 r/5), Ml (2 cos 27r/7), 

M1l( 2) and Ml (2 cos 2X/60).] 
(2) 9Rp is everywhere dense in the interval (MDENSEp, cx), where 

(0.1) MDENSEp = min(ap, cp), 

(0.2) ap =hlm Mp ( Bln) n -*oo 

(0.3) cp= lim MP(2cos2 T/n). 
n -*0oo 

Here the f3n are defined as in [14] by Po = 1 and f3n > 1 satisfying 

(0.4 AXn fn-1 
r) = z n 1). 
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From these results we see that it is only in the interval (MBOUNDP, MDENSEp) 
that the structure of cp is undetermined. So the smallest limit point of '1p lies 
between MBOUNDp and MDENSEP. It is, however, tempting to conjecture that it 
actually equals MDENSEP. 

It is also worth noting that a2 = c2 = V2, and, at least numerically, 

ap < cp for 0 < p < 2, and ap > cp forp > 2 (see Section 5). 

For all p > 0 we have 

THEOREM 2. Let p > 0 be given. Then 
(1) If 0 < p < 0.1, 6')TP in the interval (1, 1 + 0.1459p) consists only of the point 

Mp(2 cos 2 r/5) (see Theorem 5). 
(2) Suppose p > 0.1, and let p' be the largest value < p in the p-column of Table 1. 

Then 9Th in (1, MBOUNDP) consists of between NMUSEP, and NMEASP, discrete 
points, the precise number of points, and to which a they correspond, being calculated 
with the aid of Table 1. [For instance, for p = 2.9, p' = 2.5 (Run 20), NMUSEP, = 2, 
and there are 2 elements of 91Lp in (1, 1.38872), namely Mp(2 cos 27r/5) and 

Mp (2 cos 2 7/7). However, for p = 2.501, p' = 2.5 again, and there are three elements 
of D1p in (1, 1.38872), the third one being MP(2 cos 27r/60), this value being less than 
1.38872 for p close to 2.5.] 

(3) For all p > 0, 91Lp is dense in (MDENSEP, Xo), where MDENSEP is defined by 
(0.1). 

TABLE 2 

This table shows to which polynomials the POLY #'s in Table 1 refer. The 
coefficients given are of the minimal polynomials of a, where a has small 
measure. 

Poly a a Degree Coefficients 

3 r 2 1 0 -2 

4 r 2 1 0 -3 
5 2cos2 v/5(=f3V') 2 1 1 -I 
6 2cos 2 /16 4 1 0 -4 0 2 
7 2cos2 v/7 3 1 1 -2 - 1 
8 1/(2cos27T/7) 3 1 2 - I - 1 
9 2cos27T/9 3 1 0 -3 1 
10 f2 4 1 -I -3 1 1 
1 1 2 cos 2 T/60 8 1 0 -7 0 1 4 0 - 8 0 1 
12 2cos2v/1 1 5 1 1 -4 -3 3 1 
13 2cos2 v/13 6 1 1 -5 -4 6 3 - I 
14 /3 8 1 -I -7 4 13 -4 -7 1 1 

It is easy to translate the above theorems for totally real algebraic integers into 
corresponding results for totally positive algebraic integers, using the easily proved 
fact that for a totally positive 

(0.5) Mp (a) = a 
)) 

Previous Results. In 1945 Siegel [13] showed that the smallest point of 9T2 is 
M2('(1 + )) = /2. Recently McAuley, whose thesis [9] stimulated the present 
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paper, found one isolated point of P for p = 1, 3, two isolated points for p = 2 
and all p > 4, and three isolated points for p = 4 and 6. The methods used were 
quite different to those used here. Concerning the smallest limit point lp of p, 
Siegel showed 12 > 1.3166, and Hunter [7] showed 14 > 1.4687. McAuley improved 
Hunter's result slightly, also showed that 11 > 1.1515, and got inequalities for 13, 16, 

1', 110, and 112. He also gave the bound lp < lim,+,Mp(2cos27r/n). All these 
results are superseded by the present paper. 

We note that all isolated points of )TP (p > 0) found so far are either of the form 

MPA(fl) or Mp (2 cos 2 7/n) for some n. It is expected that, for small p (perhaps for 

all p < 2) there exist other isolated points of DTp: these are the points Mp (a) where 

a is a fixed point of an iterate of H, H being defined by 

(0.6) Hx = x-X- 1. 

In fact a = 2 cos 2 7r/7 satisfies H(H(H(a))) = -a, and a = 2 cos 2 7r/60 satisfies 

H(H(H(H(a)))) = a. However not all such fixed points are of the form 2 cos 2lr/n 
for some n; see [ 14, p. 148]. 

The proofs of Theorems 1 and 2 are contained in the following sections. In 

Section 1 we describe the computation. In Section 2 we show that p is dense in 

(ap, xc), and in Section 3 we show that 9p is dense in (cp, oo). In Section 4 we find 

the smallest element of O1Lp for p < 0.1, a range not covered by the computation. 

Finally in Section 5 we obtain a recurrence for the limit points a2k, 2k an even 

integer, and show that ap -x ooas p xc. 

1. The Computation: Theory and Practice. The computational method used here is 

similar to the one used in [15], where we found the four smallest values of 

i2(a) = (Hld 1 max(1, Jaia)l/d). We make a list of totally positive algebraic integers a' 

with minimal polynomials P1, P2,..., Pn say, with MP(a') small. Then for any totally 

positive a not on the list, the resultant of a and a' is nonzero, so that 

d 

(1.1) H J~P(aRi)I 1 (j = 1 n). 

Writing Ma(X) = d- x number of a, in (O, x], we can express (1.1) as 

flog|PJ(x)|dPa(x)?0 (1= J,.., n), 

and then also 

d 
00 

dEl a xP da(x). d = 

Suppose that we can solve for a general probability distribution / on (0, xc) the 

following optimization problem: 

Minimize yp =fxP d(x) 

(1.2) 0 

{subjecttof log|Pj(x)|dp(x) O (1= l,..., n) 

and that m= = 
inf, yp. Then Mp(a)P = Ed 1 aP > mp for any totally positive a not 

on the list. 
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As in [15] we solve (1.2) by forming the dual 

(1.3) Maximize ming(x, c), 
'2, 'n > 0 X > O 

where 
n 

(1.4) g(x,c) = xp - EC log1p (x) I 
J= 1 

By the simple argument of [15, Section 3], the maximum Tp of the dual problem is 
< mp, so that Mp(a) > TpIP. The method used to solve the dual will not be 
discussed here. It is a refined version of that used in [15], and it is intended that it be 
the subject of another paper. Actually the dual is not quite solved, but a near 
optimum Tp < Tp is obtained, so that still Mp(a) > TpI/P (for a totally positive, a 
not on the list). This result is then translated into a result for totally real a using 
(0.5) to yield 

(1.5) M (a) M /2(2)/2 > (Tp72)1P = MBOUNDp 

for a totally real, a2 not on the list. 

TABLE 3 

These polynomials are used as 'resultant constraints' in the computation. 
Polynomials 3 to 14 are the minimal polynomials of a2, for the a in Table 2. 
The labels e.g. 5c refer to Robinson's list [12], while SALEM 1 + 2 refers to 
6 + - 1 + 2, where 0 is the smallest known Salem number (see Boyd [1]) and 
CYC n **2 = (2cos27r/n)2. 

FOLY FPOLYNAMr' IEGREE COrFF XC1EWSJ1S 
1 x 1 1 c 
2 X-1 1 1 -1 
3 X-2 1 1 -2 
4 X-3 1 1 -3 
J CYC 5 *2 2 1 -3 1 
6 CYC 16 **2 2 1 -4 2 
7 CYC 7 **2 3 1 -5 6 -1 
8 CYC 7**-2 3 1 -6 5 -1 
9 CYC 9 **2 3 1 -6 9 -1 

10 BETA 2 **2 4 1 -7 13 -7 1 
11 CYC 60 **2 4 1 -7 14 -8 1 
12 CYC 11 **2 5 1 -9 20 -35 1 , -1 
13 CYC 13 **2 6 1 -11 4 5 -84 70 -21 1 
14 BETA 3 **2 8 1 -1J E)3 -2 20 303 -220 83 -15 1 

15 CYC 24 *X2 2 1 -4 1 
16 CYC 20 * * 2 n 1 -5 J 

17 CYC 36 **2 3 1 -6 9 -3 
18 CYC 28 **2 3 1 -7 14 -7 
19 CYC 60**-2 4 1 -8 14 -7 1 
20 CYC 1 5**2 4 1 -9 26 -24 1 
21 SALEM1 +2 5 1 -9 27 -31 12 -1 
22 5o **2 5 1 -10 33 -40 16 -1 
23 5c **2 J 1 -11 43 -71 42 -1 
24 5 5 1 -11 43 -72 49 -9 
25 6m **2 6 1 -11 43 -72 51 -14 1 
26 CYC 84 **2 6 1 -11 44 -78 60 -16 1 
27 6f **2 6 1 -13 64 -147 153 -54 1 
28 7f * * 7 1 -13 64 -1J52 182 -104 24 -1 
29 Bo **2 8 1 -1i 89 -269 441. -383 1 8 -24 1 
30 CYC 17 **2 8 1 -15 91. -286 495% -462 210 -76 1 
31 CYC120 **2 8 1 -16 105 -364 714 -7(s4 440 -?6 1 
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The 31 polynomials PJ finally used in the computation are given in Table 3. The 
table of optimal cj's for each of the 54 runs has not been included in the paper, but 
is obtainable from the author. For example, in Run 1, p72 = 0.05 and 

g(x, c) = X0-05 - 0.047912906 log x - 0.001244003 log x - 1 
-0.000004535 loglx - 21 

- - 0.000040703 logjx4 - 8x3 + 14X2 - 7x + Ij 

is the function whose minimum for x > 0 is (1.01822)0.1, this value being read from 
Run 1 of Table 1. 

For the purpose of proving Theorem 1, how the c 's were obtained is irrelevant. 
All that is necessary is to verify that, for the given cj's for a particular run, the 
function 

(1.6) g(x, c) = Xp2- C, loglP9(x)l 

has its minimum at or above (MBOUNDp)P, where MBOUNDp is given by the 
corresponding run of Table 1. This can be done by a straightforward program which 
uses calculus to find the local minima of g(x, c), for c fixed. 

For Theorem 2, we use the results of Table 1, combined with the following result 
(following McAuley): 

LEMMA 1 ([6, p. 26] or [10, p. 76]). For fixed x1, X2 ., Xd 0 (I Ed I xP)I/P is an 

increasing function of p, for 0 < p < xo. 

From the lemma it follows that for fixed a, Mp(a) is an increasing function of p, 
and also easily that ap and cp defined by (0.2-0.3), are increasing functions of p. 

The values of p in Table 1 are chosen so that, if for two consecutive runs we have 

Run ? p MBOUND NMEAS NMUSE 
i p, b, ml n, 

+ 1 P1+1 b,+I Ml+I n,+I 

then at p = p, the smallest n, measures are all < b,. Now suppose for p E 

[P,', P+l], there is an a with Mp(a) < bi. Then by Lemma 1, Mp (a) < b, also, so a 
must be one of those with Mp (a) < bi, i.e. a must be a zero of one of the m, 
polynomials whose polynomial numbers appear on row i. The number p, + l is simply 
chosen as the largest p, with three digits after the decimal point, such that n, of these 
m, measures MP (a) remain less than bi. In principle it is possible to take n, = m, (i.e. 
NMEAS = NMUSE). However, when this is done Pi+ I may be only slightly larger 
than pI, so that a very large number of runs would be required to cover [.1, 30]. In 
practice, therefore, NMUSE was usually chosen smaller than NMEAS, in order to 
keep the amount of computation reasonable. It is this that makes the numbers of 
isolated points obtained in Theorem 2 generally smaller than the numbers obtained 
in Theorem 1. NMUSE is the smallest number of isolated points in the interval 
concerned. For p towards the left of the interval, the number of isolated points may 
be larger. Note also that some values of p are chosen to be smaller than necessitated 
by the above discussion, so that results for particular round values of p, e.g. p = 1, 
p = 2, etc., are shown. 
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Let us now look briefly at how, for a fixed p, the results obtained could possibly 
be improved. Look, for instance, at the solution to (1.2) obtained for p = 1 (Table 
4). The optimal y is an atomic measure, with weights at the following points: 

TABLE 4 
The optimal (atomic) measure forp = 1. 

X-VAiLUE WEIGHT 
0.13121 0.06534 
0.13313 0.09436 
0.30190 0.10743 
0.46361 0.03007 
0.59601 0.13408 
1.40390 0.07690 
1.70937 0.11160 
2.13317 0.10593 
3.00562 0.04129 
3.650'58 0.12435 
4.84044 0,09375 
4.88644 0.01490 

From this measure it may be possible to guess a polynomial (which of course 
corresponds to an atomic measure with all nonzero weights equal) for which Mp(a) 
is the smallest measure of an a with a2'not on the list'. However, there seems to be a 
limit to how effective this method will be. One reason for this may be that there 
seems to be no way of making use of the fact that the nonzero weights of measures 
corresponding to polynomials are all equal. It may be necessary to use constraints 
other than the resultant constraints (1.1) we have used. For example, the discrimi- 
nant constraints 

(1.7) H[la - aj > 1 

were used by Siegel [13] and later authors. Were we able to somehow use the 
constraints 

H a2_ aj-2 >1, 

1,j~~~~1 (1.8) ~ ~ ~ ~ 111 A al lA A- 21 >, 1, 

I rl al + ajl > 1, 
Vi,j 

we could exclude all a of the form 2 cos 2gr/n. Also, we could exclude all the Ij by 
the constraint 

(1-9) H lala?+ II> 1, 
i,j 

and perhaps all fixed points of iterates of H by using, for E = + 1, 

(1.10) H la2 + ealaj - 1|> 1. 

It is then conceivable that (somehow?) one could show that, apart from the Mp( a) of 
the a's mentioned just above, Mp(a) would be > min(ap, cp). The basic problem 
with such an approach is that these constraints translate into constraints quadratic 
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in p- for instance (1.10) becomes 

f di,Ia(x) f d/I.(y) log|x2 + exy - I > 0. 

It is not clear to me how a minimization problem with such constraints could be 
successfully tackled numerically. 

2. Everywhere Denseness in (ap, x). Let Fn(x) be the distribution function of the 
absolute values of the conjugates of fin: 

(2.1) F (x) = 2-n x # of conjugates of fi in [-x, x] 

(see [14, Section 3]). When both the integral and the limit exist, put 
t00 

(2.2) a(g) = lim Jg(x) dJn(x) 
n -coo 

for a given function g: [0, xo) -- R. Then ap = (a(xP))""P. Let 9T(g) be the set of 
all means 

d(a) 

(2.3) Mg(a) = d(a)-' g(lail) 
i=1 

for a a totally real algebraic integer, with conjugates a = a,,..., ad(a). Then 
'1p - {x'IP: x E 9T(xP)). Note also that 

(2.4) Mgg(/n) = jg(x) dJF(x) 

In this section we prove 

THEOREM 3. Let g: R, -* R, be a monotonic increasing function, zero on [0, 1, such 
that 

(2.5) lim g(x + l)/g(x) = 1 
x 00 

and 

(2.6) the values of log2g(2k + 1) mod 1 (k = 0, 1, 2,... ) are every- 
where dense in (0, 1). 

Then the limit a(g) exists, and AD(g) is dense in (a(g), oo). 

COROLLARY 3. The set 91h(g) is dense in (a(g), oo) for p > 0 fixed and 

(1) g(x) = xp, 
(2) g(x) = (log, x)P. 
(3) g(x) = log xIP. 

As in [14], we need to define ,8(b) = b, where b is an odd positive integer, and fi(b) 

(n > 1) by /(b) > l and 

(2.7) /3(b) - (fi(b)Q) = n(b)1 

Let ,8(b) have conjugates of absolute values 3n,i (i - 1, 2 .. ., 2n), with ,n(b) = ,8(b) 
Put /n3, = Iln(,) and note that fin = 3,n(I). Let 

(2.8) Jbn = { )Ji - 1,2,... 2n) 
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and 3, = 6-3( ). First we need 

LEMMA 2. The elements of (%(b) alternate with those of (0, xc) U 'B U '3 U ... U 

I)n- 1on the nonnegative half-line. 

Proof. We shall actually prove more: that 
(1) The elements of ?In - alternate with (0, oo) U 930 , U 633k U ... U ?)- 1 (- = 6,n 

say), and 
(2) Suppose we are given three consecutive elements of Qi,n U , u1 < 13nJ < U2 

with 3n,, ES ,n, one of u1 and u2 in tn - 1I the other in $n- . Then for all b > 1, and 
the same n, i, the elements ,8(b) all lie in 

( U , fln , ) if u l E tn-1' 

l(/3,n, U2) if U2 E ,n-,1 

The truth of these statements follows by induction on n. They are true for n = I 
since G?o = (0, xc) and 

0 < (#|(b))- < #-I < /30= < #I < ,8(b) < X0. 

Now define H and H-' by 

(2.9) Hx-=x-x ' 

and 

(2.10) H-x = x + (X2 + 4)1/2), 

as in [14]. Then, assuming the truth of (1) and (2) for n, we can prove them for 
n + 1, using the result that, from (2.7), 

(2.11) n+ = H-'635( U (H- 
I J - 

and the fact that H- ' preserves order on (0, cc). 
Let F(x) be the continuous function defined in [141, and satisfying 

(2.12) F(x) = lim FnJ(x). 
n 00 

LEMMA 3. Let g: [1, oc) -* R+ be monotonic increasing, such that a(g) exists, and 
such that 

(2.13) g(x) = O(AX2) for some A: 1 < A < 12. 
Then a(g) is finite, and 

(2.14) a(g) = lim fg(x) dJn(x). 
n - oc 

Proof. We have, for some constant A2, 

(2.15) f1ln+'gdF < sup jg fln+IdF < A2AO2- n 

using the fact [14, Lemma 7] that Jk4~n+ dF = 2n2. Since, again from [14, Eq. (5.1)] 

(2.16) bS A,b)s /2n +b2 < b +n/b, 
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,2+ l 2n + 3, and hence from (2.15), 

(2.17) gdF < A2A3(A2/2) 

Since A2 < 2, the whole integral Jf = En J 
/,O+ I is finite. 

To prove (2.14), note that, from 14, Lemma 7], 

(2.18) dF= 2- , 
f3f,I+ I 

and so, since g is assumed to be monotonic, f#;+,g dF lies between 2 -ng(,Bn" 1) 
and 2-ng(,,,1,). Since J141. + dFn = 2 -ng(fn ,), we have 

(2.19) 0 < gd(Fn -F) < 2 n(g(fn3l) - ln,1) 
I+ 

Now let e = 2n-I + 1, so that /lne < 1 < I3n,e-l. Then, from (2.19), (2.16) and 
(2.13), 

(2.20) | gd(Fn - F) < 2-ng(/3n) < A3(A2/2)" 
Isn,e + 

Since g = 0 for x < 1, f gd(Fn - F) = 0, and trivially f'??+ gdF,n = 0, and from 
(2.17), J;?,?+ g dE < A4(A2/2) . Thus J f gd(Fn - F)l < A5(A2/2yt - 0 as n -* oo. 

We can now prove Theorem 3. The method is essentially that of [14, Theorem 2], 
except that we need the more detailed information on the position of the /ln3, 
provided by Lemma 2. 

Let g be as in the statement of the theorem, and r > a(g) and e > 0 be given. We 
shall exhibit an odd integer b, and an N such that 

(2.21) Mg(/,n(b)) - rl < e 

for infinitely many n > N. The idea of the proof is that the conjugates of 1gb) are 
distributed on the real line almost exactly as the conjugates of fn are, apart from the 
largest conjugate of 1n(b)q ,8(b) itself. The values of n and b are chosen so that the 
2-n13b) term in Mg(f3(b)) makes Mg(I,n(b)) approximate r. 

From Lemma 3, we have 

(2.22) Mg(,fj) = (1 -e)a(g) 

where e-* 0 as]j -x c. Then using Lemma 2, 

2' 

(2.23) Mg(f,b)) = 2-n g(fi,b)) > 2-n(g(/3,b)) + 

2-n (g(0)+ E(1i) g(n1) + g(/n3b)) 
J=O 1=1 

11- 1 

= 2-(n-i)(l - ej)a(g) + 2-n(g(pf,b)) -g(pn_1)) 
j=O 

> a(g) + 2n(g(In3b)) - g(/n3 1) - a(g)) - Tn, 

where Tn a(g)>Z>- 2-(' Vj 0-*0 as n -* oo. 
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Similarly, in the other direction, 
n-I 

(2.24) M2(1:()) < 2 2-(fJ)M( (b)) + 2-ng(fn(3)) 
j=1 

= (1 - 2 n)a(g) + T7 + 2 - n(I(h)) 

Combining (2.23) and (2.24), and using (2.16) 

(2.25) |Mg(:n(b)) - (a(g) + 2 - ng(,'b))) I <Tn + 2 n(a(g) + g( 2n - 1)). 

Since the right-hand side tends to 0 as n -* oo, we have for n > N, say, 

(2.26) |Mg(:n(h)) - (a(g) + 2-ng(In("))) < E/3. 

The next task is to arrange for a(g) + 2-ng(/,3()) to be close to r. From (2.6) we can 
choose increasing sequences (ni), (bi) of integers, with the b, odd, such that 

(2.27) 1log2(g(b1)) - log2(r - a(g)) - nil < log2(I + 3(r -()) 

from which we readily get 

(2.28) 12-n,g(b,) - (r - a(g))| < 

Finally, it remains only to estimate 2-n(g(3,(b)) - g(b)) for n = n1, b = bi. To do 
this, we note that (2.5) implies easily that log(g(b)) = o(b), so that n, = o(b,) from 
(2.27), i.e. nl/b, -* 0 as i x-* . Now from (2.16), g(ft(b)) < g(b + 1) for b = bi, and 

i sufficiently large, and so 

2-n(g(,$(b)) - g(b)) < 2--ng(b)(g(b + l)/g(b) - 1) -O 0 

for n = nl, b = bi, i x-* , using (2.28) and (2.5). Hence we can choose an I, such 
that 

(2.29) 2- n(g(p3(b)) - g( b)) < E/3 for n = n 1, b =bl, i> II. 

Now, combining (2.26), (2.28) and (2.29), 

(2.30) |M >/(b) ) - rl < E for n = n, , b = bi, > II, 

provided also that n > N1. This proves the theorem. 
Proof of Corollary 3. We will need the fact [ 14, Eq. (3.4)] that F(x) + F(x-) = 1, 

so that 

(2.31) dF(x-)= -dF(x). 

For later use also note that [14, Eqs. (3.5), (3.6)] 

(2.32) ('(1 + F(x - x-')), x > 1, 

(2.33) X (1 - F(x-' - x)), 0 < X < 1. 

Let p > 0 be fixed. The result for (log+ x)P is immediate from the theorem, since 
this function is monotonic, and zero on [0,1]. Now let g(x) = xP. Then, since 
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(+f(bi))- lis a conjugate of (b)(+ denoting'+ or -',not'+ and -'), 
2n 

g(3(b)) = 2n (fn(b))P 
i= 1 

2n -l 
- n 

((n l )P + (nl) 
) Mg*(, ), 

1= 1 

where 

g*(X) xP + XP, X >, 
g 0O, 0 < x < 1. 

Since g* is increasing, and 0 on [0,1], we can apply Theorem 3 to it. The values of 
Mg(,tb)) are therefore dense on (a(g*), oc). Further, 

Mg(O0 
n 

a(g*) j (xP + x-P) dF(x) = jxP dF(x) = a(g) 

using (2.31), which proves the corollary for g(x) = xP. 
Now put g(x) -log xIP. Then it is easily shown that Mg(1,(b))= 2Mg+(f3^)), 

where g+(x) = (log+ x)P, and that a(g) = 2a(g+). Hence, applying Theorem 3 to 
g we have the values of Mg(I3(b)) dense on (a(g), ox). 

3. Everywhere Denseness in (cp, oo). We prove 

THEOREM 4. Let g: R+ -+ R+ be a function such that 

(3.1) lim g(x)= X 
X --+ 0 

and which satisfies a Lipschitz condition 

(3.2) ig(x) - g(y)l < B(X)jx - yl 
for x, y E [0, X], for each X > 0. Then 'Xg is dense on (c(g), oo), where 

(3.3) c(g) = 2f /22g(2 cos90) dO. 

COROLLARY 4. 1ltp is dense on (cp, oo), where cp = (c(xP))1/P. 

The proof is basically an extension of the proof of Robinson [11, p. 309] showing 
that for each e > 0 the interval [- 2 - , 2 + e] contains infinitely many conjugate 
sets of algebraic integers; see also Ennola [2]. Robinson's result is essentially 
Corollary 4 above for p = oo. His basic lemma can be stated as 

LEMMA 4. Given a rational number X > 1, there is an infinite sequence (n,} of 
increasing even integers and corresponding totally real algebraic integers a(i) (i= 

1, 2,... ) with deg a(i) = ni whose conjugates a(i) (j = 1,..., ni) satisfy 

(3.4) 2Xcos(fjr/n) < aji) < 2Xcos((j - 1)>/n) (j = 1,2, ... , n). 

Here n = nil 

For convenience define 
n/2 

(3.5) gn,A = n g(2Xcos(fj/n)), 
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(3.6) 2= 2 /2 g(2X coso) dO. 

Then one has easily 

LEMMA 5. For g as in Theorem 4, 

(3.7) g> = lrm gn . 
n f oo 

Further both gn x and g, are continuous functions of X, and g, tends to 0o as A x . 

Proof of Theorem 4. Let r > c(g) and E > 0 be given. By Lemma 5 there is a real 
XI > 1 such that 

(3.8) g, = r, 

and by the same lemma we can choose N such that 

(3.9) Ign,X- g ,I < -/3 

for n > N. By the continuity of gn x as a function of X, we can choose X > 1 rational 
and such that 

(3.10) Ign,- gn,II < E/3. 
Let B = B(2X + 2), as in (3.2), and choose a(') as in Lemma 4. Then from (3.4), for 
n = n,, 

0 < a') - 2Xcos(j7T/n) < 2X(cos((j - 1)7T/n) - cos(jr/n)) 

(j= 1,...,n). 

Hence, by (3.2), 

i 
g1a l)gn,X g(a5)|)-g(12Xcos(js7/n)I) 

2XBn 
< n (cos((j - 1) vln) - cos(jvlnn)) 

nj=I 

_4XB< 3 
- n 

for n > [ 12X B/E] = N1 say. That is, for n = ni > N, we have 

(3.11) JMg(a(i)) - 
9n,Xl < E/3. 

Hence (3.8), (3.9), (3.10) and (3.11) together give, for ni > max(N, N1), 

lMg(a(')) - rl < E. 

4. The Case of Small p: 0 < p < 0.1. The computational methods described in 
Section 1 did not cover p in the interval 0 < p < 0. 1, so we now consider this case. 

THEOREM 5. For 0 < p < 0.1, the smallest element of 9Ylp is MP(4(1 + V3)) 1 + 
0.1 158p, and all other elements of 9Y&p lie in (1 + 0.1459p, Xe). 



676 C. J. SMYTH 

For a given a (with conjugates ai) and p small 

(4.1) (MPda))exp(plogla,I) 
d 

d 2 d 

=1 + d , loglaJ + P 
E log2Ja,J + d gIaI 

Now 
I 

' loglail = loglNormal, 

which can be 0. However, one can show by the methods of Section 1 that 
(l/d)E log2 a,I is bounded away from 0 (and indeed find its first 3 or 4 isolated 
values). But this information is not sufficient to bound Mp(a) away from 1, as the 
following example shows (the x, corresponding to logla,1I): 

Take xl = X2 = * = Xd-l = s(d - 1)-1/2, Xd = -s(d - 1)1/2. Then Ex, = 0, 
(l/d)E X2 = s2, but on taking d = V1(p2S2) 

d exp(x,p)= 1 +sp e ) +?(P) 

Thus, by taking X as large as we please, we have shown that (l/d)E, exp(xip) 
cannot be bounded away from 1, given E x, > O and (l/d)E-x72 = 52 > 0. 

We can however use the fact that (l/d)2i log+JaJ is bounded away from 0 to 
prove Theorem 5. To do this we need the standard 

LEMMA 6 ([6, p. 72]). If the function k is convex upwards, then 

(4.2) dE (P(X') dExI) 

Next, the simple 

LEMMA 7. IfE2= xi> 0 and (l1/d)x>o xi= c, then 

(4-3) d E <xO 

(4.4) d x7 c2, 

(4.5) d exp(x,p) > I + c2p2 forp > O. 

Proof. The first result is immediate. Further, on applying Lemma 6 with J(x) =x2 

to the nonnegative xi's, padded with an appropriate number of zeros, 

(4.6) A L X2 > ( x,X, )> C2 
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For (4.5), use the fact that 

exp(x) >{j+ x+ x>O. 

and (4.4). 
We now prove a stronger version of (4.5), with the asymptotically (as p \, 0) best 

possible coefficient of p2. (To see this, take half of the x, equal to 2c and the rest 
equal to -2c.) 

LEMMA 8. If Ed, x1>, 
0,(l/d))2x>0XI 

= candO < 2cp < 1, then 

1 d 
~~~c2p2 -.(2cp )4 

(4.7) d exp(x,p) > I + 2 31 - ( ( p)2)2 

Proof. Suppose that of the d x 's, yd are < 0 and (1 - y) d are > O. Let k = 2 cp < 
1. Then, applying Lemma 6 to ePx and using (4.3), we get (ignoring the trivial case 

y = 0) 

1 _ )6g , exp(x,p) > exp(4k/(l -y)), 
(-y)d 20 

- exp(x,p > exp(- 'kly). 

Hence 
ld 

(4.8) d exp(xip) > (1 - y)exp(4k/(l - y)) + y exp(- 'k/y) = (y) 

say. We now estimate the minimum of f(y) in (0, 1). We have 

(4.9) f'(y) = (1 + 'k/y) exp(- 'k/y) + (-1 + jk/(l - y)) 

xexp(2k/(l - y)) 

and it is easily checked that f"(y) > 0 in (0, 1). So f has at most one minimum in 
(0, 1), with f(O +) exp(-k), and f(1 - ) = x. We shall show that f does in fact 
have a minimum, and it occurs for y between 4(1 - k) and . 

Firstly f'(2) = (1 + k) exp(-k) - (1 - k) exp(k) > 0, as (1 + k)/(l - k) > 
exp(2k) for 0 < k < 1. Next, put y = 4(1 - k). Then 

l ++1k/y I l+k 2-4k/(l-y) 1-k = exp(2(k + k/3 + k15 +.)) 

< exp(2(k + k3 + ** )) = exp(2k/(l -2)), 

which shows that f'(I(1 - k)) < 0. 
Suppose the minimum occurs at y = 4(1 - 8), where 0 < 8 < k. Then, since for 

all x 

exp(x) > 1 + x + x2/2 + x3/6, 
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we have 

f(2(1 - 8)) = I((I - 8) exp(-k/(l - 8)) + (1 + 8) exp(k/(l + 8))) 

> 1 + 4k2/(l - 82) - k38/(3(1 - 82)2) 

> 1 + 2k 2k3/(3(1-k)) 

We can now prove the theorem. From [15, Eq. (9)] we know that, with four 
exceptions, 

dI) E log+ahil > log(1.31040) = 0.2703. 
d(a)i 

We can thus apply Lemma 8 with c > co = 0.2703. Since the function 1 + x/2 - 
x2/3(1 - x)2 is increasing for 0 < x < 4, it follows from (4.7) that, for (2cp) < 
with at most four exceptions 

(4.10) M (a)P = I , lailp > I + 2(cop )2 (2cop )4 d ii 3(1 - (2c0op)2)2 

However if 2cp> 4, then from (4.5) 

(4.11) Mp (a)P > 33 = 1.03125 > I + 0.3125p for O <p < 0.1. 

Hence we can assume 2cp < 2, and then from (4.10) 

M (a) P -> I + p2 (0.1461 - 
3 0.8541 p2 2 

> I + 0.1458p2 for 0 < p < 0.1. 
Then, as (1 + x)r> 1 + rx for r> 1, 

(4.12) Mp(a) > (1 + 0.1458p2)'/P > 1 + 0.1458p. 

Of the four exceptions to which (4.11) and (4.12) do not apply, calculation reveals 
that it is only for a = + 4(1 + V5) that (4.12) is actually violated. 

5. The Limit Points ap and cp. The limit point cp is easy to evaluate from its 
definition (0.3), giving 

(5.1) cp = 2(-]' (cos O)pd) = 2[F(4(p + ) -/2/( + p)]/P 

by [4, Section 3.261]. 
Further, asp -* 0 

(5.2) cp = (I + P -I/ log2(2cosO) dO + * ) = 1 + (j )p + 

(see Lewin [8, p. 298, Eq. (40)]). However, note that the same formula is misprinted 
on p. 170, although it is correct in the first edition). 

For small p, 

(5.3) ap = (I + P2 | (logx) dF(x) + ) = I + 0.19233p + 



MEAN VALUES OF TOTALLY REAL ALGEBRAIC INTEGERS 679 

on computation, so that a < cp for p small enough. We show below that a2 = C2 
- 2, and ap -* oo as p -* oc, while cp- 2 as p -* oc. We have found no formula 
for ap corresponding to (5.2) for cp. However, we have obtained a recurrence relation 
which enables us to recursively evaluate ap for p an even integer. In fact 

THEOREM 6. Defining aO = 1 we have 

(5.4) a 2k 
= 2 k: + j( .a2j, (k = 1, 2,) 

so that a2 = 2,a4 = 10, a6 = 80,a8 = 874, and so on. Further 

(5.5) a2k > (2k/e) (k = 1,2,...). 

Proof. Puttingy = x - x-1 into (2.32), we get 

(5.6) dF(y) = 2dF(4(y + (y2 +4) )) y Y > , 

and puttingy = - x into (2.33), 

(5.7) dF(y) = -2dF ?( /(y2 + 4) -Y) y Y > 0 

Hence 

(5.8) aP = (f0 + f00 XPdF(x) 

- f0(~( (y2+4) -Y)) dF(4( (Y2+4) -Y)) 

+ 10 ((Y+ (Y2+4)))dF(y+ (y2+4))) 

=-,|f[(2((y + 4) -y))p + ({( (y + 4) ?y))P dF(y) 

the last line using (5.6) and (5.7). Now let Tn be the Chebyshev polynomial of degree 
n defined by Tn(x + x-1) = Xn + x-n. Then, as is well known (see e.g. [1 1, p. 309]), 
To(x) 2 and for n > 1 

(5.9) T__(x) = (,(x + (X2 -4) )) + I 
- (X2 -_4) )) 

[n/2] j nn- 
=xn + E (-l)J (nJ )xn2J. 

Hence the integrand of (5.8), for p = 2k > 2 an even integer, is equal to 

(5.10) i2kT2k(iy) y2k + E -( - )y2(k-) 

=E (-) +jy2J 

Thus from (5.8) 

(5.11) a (k1 )k 2J (kk 1), 
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from which (5.4) follows. Then, from (5.4), a2k > 2a2k-2 so a 2k k from 
which, with Stirling's formula, we obtain (5.5). 

Finally we take another look at the sequence {a2k ) = (1, 2, 10, 80,... ). We note 
that {a)2k} satisfies another recurrence, 'dual' to (5.4): 

2k k i 2k k-I 
kj k I (5.12) a(- ( )k I) + i ) 

j=I 

This can be obtained from the fact that, from (2.32-2.33), 

(-4dF(x-'-x), 0 <x <, 

dF(x) (dF(x-x') x2l, 

from which one gets easily that 

(5.13) f xPdF(x)= |I|x-x-'IPdF(x). 

Then (5.12) follows readily forp = 2k on expanding (x - x- 1)2k, and using (2.31). 
We now give a brief explanation of the connection between (5.4) and (5.12) in 

terms of inverse relations between pairs of sequences; see [5, p. 9]. 

THEOREM 7. Given a sequence {An )n'=o and defining Bo = AO and 

(5.14) Bn = E, nk (n k +kAk (n = 1,2,...) 
k=O 

there is an inverse relation 

(5.15) A,, = (-I)n(2nn)BO + E 2(n-k)(-1) Bk (n = 1,2,...). 

The sequence {a2n}) is an eigensequence of this relation (i.e. if An = a2n (n = 0, 1,... 
then Bn = An (n = O, 1, . . . )). 

The inverse relationship is a consequence of the binomial identity 

(5.1) n n-j n )+j(j- k) I)j- = Snk (? < k < n ,n 1) 

This identity can be proved by applying (5.10) to the identity 

(_-I)n T2n(-i(X - X-l)) = x2n + x-2n. 

Theorem 7 characterizes the sequence (1, 2, 10, 80, 874,... ) in a manner 
independent of the function F. 
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