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The Mean Values of Totally Real Algebraic Integers
By C. J. Smyth

Abstract. Let M,,(«) be the pth root of the mean absolute values of the pth powers of a totally
real algebraic integer a. For each fixed p > 0 we study the set 9, of such M, (). We show
that its structure is as follows: on the nonnegative real line it consists of some isolated points,
followed by a small interval in which its structure is as yet undetermined. Beyond this small
interval, it is everywhere dense.

0. Introduction. Let o be a totally real algebraic integer of degree d, with
conjugates @ = a,, &,..., a,, and for p > 0 put

1 & »\7”
@=Ll

Since M, () > [Norm a|'/¢, it follows that M,(«) > 1 unless @ = 0, + 1. Let 9, be
the spectrum in (1, 00) of M, ():

M, = {x€(1,0)x = M, (a) for some totally real algebraic integer a).

In this paper we study the structure of %p. Theorem 1 below gives our main
results for certain specific values of p, while Theorem 2 gives corresponding (but
somewhat weaker) results for all p > 0.

THEOREM 1. (1) For the values of p and NMEAS, given in Table 1, the smallest
NMEAS, elements of ")ILP are isolated, and are the only elements of "Jllp in (1,
MBOUND,). These values are the M,(a), where a has minimal polynomial whose
number, read from Table 1, corresponds to the polynomial given in Table 2. | For
instance, for p = 1, O, in (1, 1.18119) consists of M,(2cos2m/5), M,(2cos2x/7),
M,(B,) and M,(2 cos 27 /60).]

2) ")ILP is everywhere dense in the interval (MDENSE ,, c0), where

(0.1) MDENSE, = min(a,, c,),
02) a, = lim M,(4,)
(0.3) ¢, = nlirr:o M,(2cos2m/n).

Here the B, are defined as in [14] by By = 1 and B, > 1 satisfying

(0.4) B=B ' =B (n>1)
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From these results we see that it is only in the interval (MBOUND,, MDENSE )
that the structure of G.)Ilp is undetermined. So the smallest limit point of %p lies
between MBOUND, and MDENSE,. It is, however, tempting to conjecture that it
actually equals MDENSE,.

It is also worth noting that @, = ¢, = V2, and, at least numerically,

a,<c, forO<p<2, and a,>c, forp>2 (seeSectionS5).
For all p > 0 we have

THEOREM 2. Let p > 0 be given. Then

(1) If 0 < p < 0.1, M, in the interval (1, 1 + 0.1459p) consists only of the point
M, (2 cos2m/5) (see Theorem 5). *

(2) Suppose p = 0.1, and let p’ be the largest value < p in the p-column of Table 1.
Then GJKP in (1, MBOUND,)) consists of between NMUSE ;. and NMEAS,, discrete
points, the precise number of points, and to which a they correspond, being calculated
with the aid of Table 1. [ For instance, for p = 2.9, p’ = 2.5 (Run 20), NMUSE . = 2,
and there are 2 elements of GJILP in (1, 1.38872), namely M,(2cos2w/5) and
M, (2 cos2m /7). However, for p = 2.501, p" = 2.5 again, and there are three elements
of @Kp in (1, 1.38872), the third one being M, (2 cos 27 /60), this value being less than
1.38872 for p close to 2.5.]

(3) Forallp > 0, ‘DILP is dense in (MDENSE ,, c0), where MDENSE,, is defined by
0.1).

TABLE 2

This table shows to which polynomials the POLY #’s in Table 1 refer. The
coefficients given are of the minimal polynomials of a, where a has small

measure.
Poly # a Degree Coefficients

3 V2 2 1 0 -2

4 V3 2 1 0 -3

5 2cos2m/5(= By ) 2 1 1 -1

6 2cos2m/16 4 1 0 —4 2

7 2cos2m/7 3 1 I -2 -1

8 1/(2cos2m/T) 3 1 2 -1 -1

9 2cos2m/9 3 1 0 -3 1

10 B, 4 1 -1 =3 1 1

11 2cos2m/60 8 1 0 -7 0 14 0 -8 0 1
12 2cos2m/11 5 1 1 -4 -3 3 1

13 2cos2m/13 6 1 1 -5 -4 6 3 -1

14 Bs 8 1 -1 =7 4 13 -4 -7 1 1

It is easy to translate the above theorems for totally real algebraic integers into
corresponding results for totally positive algebraic integers, using the easily proved
fact that for a totally positive

(05) M,(a) = (M, (Va))’.

Previous Results. In 1945 Siegel [13] showed that the smallest point of 9, is
M,i(1 +V5)) = v3/2 . Recently McAuley, whose thesis [9] stimulated the present
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paper, found one isolated point of 9, for p = 1, 3, two isolated points for p = 2
and all p > 4, and three isolated points for p = 4 and 6. The methods used were
quite different to those used here. Concerning the smallest limit point /, of 9,
Siegel showed /, > 1.3166, and Hunter [7] showed /, > 1.4687. McAuley improved
Hunter’s result slightly, also showed that /, > 1.1515, and got inequalities for /5, /,
lg, 1)y, and [},. He also gave the bound /, < lim,_, , M,(2cos27/n). All these
results are superseded by the present paper.

We note that all isolated points of I, (p > 0) found so far are either of the form
M, ( B,) or M,(2cos2m/n) for some n. It is expected that, for small p (perhaps for
all p < 2) there exist other isolated points of I : these are the points M,(a) where
a is a fixed point of an iterate of H, H being defined by

(0.6) Hx=x—x"".

In fact « = 2cos2w/7 satisfies H(LH(H(a))) = —a, and a = 2cos27/60 satisfies
H(H(H(H(a)))) = a. However not all such fixed points are of the form 2 cos2#/n
for some n; see [14, p. 148].

The proofs of Theorems 1 and 2 are contained in the following sections. In
Section 1 we describe the computation. In Section 2 we show that ")TLP is dense in
(a,, ), and in Section 3 we show that 9, is dense in (c,, ). In Section 4 we find
the smallest element of I, for p < 0.1, a range not covered by the computation.
Finally in Section 5 we obtain a recurrence for the limit points a,,, 2k an even
integer, and show that a, = oo as p — 0.

1. The Computation: Theory and Practice. The computational method used here is
similar to the one used in [15], where we found the four smallest values of
Q(a) = (14, max(1, |a;)'/¢). We make a list of totally positive algebraic integers a’
with minimal polynomials P, P,,..., P, say, with M,(«’) small. Then for any totally
positive a not on the list, the resultant of « and «’ is nonzero, so that

d
(1.1) lj[lle(a,)‘> 1 (j=1,..,n).
Writing p(x) = d~' X number of «, in (0, x], we can express (1.1) as
o0
fo log|P,(x)|dp,(x) >0  (j=1,...,n),

and then also
d
LY ar = [T dp(x).
i=1 0

Suppose that we can solve for a general probability distribution p on (0, 00) the
following optimization problem:

al

. . - ©
Minimize y, =f xP dp(x)
In 0

(12)
subject to /wlog|Pj(x)|dp(x)>0 (j=1,...,n)
Jo

and that m, = inf, y,. Then M,(a)” = T a? = m , for any totally positive a not
on the list.
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As in [15] we solve (1.2) by forming the dual

(1.3) Maximize mmg(x c),
ClyCgheens =0 x>0
where
(1.4) g(x,¢) =x? — Z] ¢, log}Pj(x)‘.
=

By the simple argument of [15, Section 3], the maximum 7, of the dual problem is
< m,, so that M,(a)> T,/?. The method used to solve the dual will not be
discussed here. It is a reflned version of that used in [15], and it is intended that it be
the subject of another paper. Actually the dual is not quite solved, but a near
optimum 7, < 7, is obtained, so that still M,(a) > T,'/? (for « totally positive, «
not on the list). This result is then translated into a result for totally real a using
(0.5) to yield

(1.5) M, (@) = M, ,(a*)"”* > (T;,,)”" = MBOUND,
for a totally real, a? not on the list.
TABLE 3

These polynomials are used as ‘resultant constraints’ in the computation.
Polynomials 3 to 14 are the minimal polynomials of o?, for the a in Table 2.
The labels e.g. 5c refer to Robinson’s list [12], while SALEM 1 + 2 refers to
6 + 6~ + 2, where 0 is the smallest known Salem number (see Boyd [1]) and
CYC n **2 = (2cos27/n)>.

FOLY$ FOLYMAND LEGREL ,COCFFICLIENTS
X

1 1 1 [

2 X-1 1 1 -1

3 X-2 1 1 -2

4 X-3 1 1 -3

S CYC S x»2 2 1 -3 1

& CYC 16 x#2 2 1 -4 2

7° CYC 7 %x2 K 1 -5 -3 -1

8 CYC 7%%-2 3 1 -6 S -1

9 CYC 9 *x2 3 1 -é ? -1

10 RETA 2 #x2 4q 1 -7 13 -7 1

11 CYC 60 %*x2 4 1 -7 14 -8 1

12 CYC 11 %x2 S 1 -9 28 =38 15 -1

13 CYC 13 %*x2 6 1 -1 4% -84 70 -1 1

14 PRETA I %x2 8 1 -19 83 -220 303 -270 83 -195 1
15 L£YC 24 %xx2 2 1 -4 1

16 CYC 20 %2z 2 1 -5 5

17 CYC 36 %*x2 3 1 -6 9 -3

18 CYC 28 *x2 3 1 -7 14 -7

19 CYC 60x%-2 4 1 -8 14 -7 1
20 CYC 1S =x2 4 1 -9 26 -24 1

2 SALEM1 +2 S 1 -9 27 =31 12 -1
22 So xx2 S i -10 33 -40 16 -1

23 Sc *n2 S 1 -1 43 =71 42 -1

24 Si *%2 S 1 -11 43 =72 49 -9

25 6m *x2 6 1 -11 43 =72 91 -14 1

25 CYC B4 xx%2 6 1 -11 44 =78 60 -16 1
27 6F *%2 é 1 -13 64 -147 153 -54 1
28 7f *x22 7 1 -13 64 -152 182 -104 24 -1
29 Bo *%2 8 1 -15 89 -269 441 -383 158 -I4 1
30 CYC 17 *x2 8 1 -15 Q1 =286 495 -462 210 =36 1
31 CYC120 »x*2 8 1 =16 105 =344 714 -7034 440 -9¢6 1
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The 31 polynomials P, finally used in the computation are given in Table 3. The
table of optimal ¢,’s for each of the 54 runs has not been included in the paper, but
is obtainable from the author. For example, in Run 1, p/2 = 0.05 and

g(x,¢) = x°%5 — 0.047912906 log x — 0.001244003 log|x — 1|
—0.000004535 log|x — 2|

— ... — 0.000040703 loglx* — 8x® + 14x2 — Tx + ||

is the function whose minimum for x > 0 is (1.01822)%!, this value being read from
Run 1 of Table 1.

For the purpose of proving Theorem 1, how the ¢,’s were obtained is irrelevant.
All that is necessary is to verify that, for the given ¢,’s for a particular run, the
function

(1.6) g(x,¢) = x?/? = Y ¢, log|P,(x)|

has its minimum at or above (MBOUND,)”, where MBOUND, is given by the
corresponding run of Table 1. This can be done by a straightforward program which
uses calculus to find the local minima of g(x, ¢), for ¢ fixed.

For Theorem 2, we use the results of Table 1, combined with the following result
(following McAuley):

LEMMA 1 ([6, p. 26] or [10, p. 76]). For fixed x,, X5,..., x4 = 0, (X4, xF)"/? is an
increasing function of p, for 0 < p < co.

From the lemma it follows that for fixed @, M,(a) is an increasing function of p,
and also easily that a, and c, defined by (0.2-0.3), are increasing functions of p.
The values of p in Table 1 are chosen so that, if for two consecutive runs we have

Run # 4 MBOUND NMEAS NMUSE
i P, bx m, n,
i+1 P+ b1+l m; n

then at p = p,.,, the smallest n, measures are all < b,. Now suppose for p €
[p., p,+1]), there is an @ with M, (a) < b;. Then by Lemma 1, M, (a) < b, also, so
must be one of those with M, (a) < b;, i.e. a must be a zero of one of the m,
polynomials whose polynomial numbers appear on row i. The number p, , , is simply
chosen as the largest p, with three digits after the decimal point, such that r, of these
m, measures M, (a) remain less than b,. In principle it is possible to take n, = m, (i.e.
NMEAS = NMUSE). However, when this is done p;, , may be only slightly larger
than p,, so that a very large number of runs would be required to cover [.1, 30]. In
practice, therefore, NMUSE was usually chosen smaller than NMEAS, in order to
keep the amount of computation reasonable. It is this that makes the numbers of
isolated points obtained in Theorem 2 generally smaller than the numbers obtained
in Theorem 1. NMUSE is the smallest number of isolated points in the interval
concerned. For p towards the left of the interval, the number of isolated points may
be larger. Note also that some values of p are chosen to be smaller than necessitated
by the above discussion, so that results for particular round values of p, e.g. p = 1,
p = 2, etc., are shown.
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Let us now look briefly at how, for a fixed p, the results obtained could possibly
be improved. Look, for instance, at the solution to (1.2) obtained for p = 1 (Table
4). The optimal p is an atomic measure, with weights at the following points:

TABLE 4
The optimal ( atomic) measure for p = 1.

X=-VALUE WEIGHT

0.13121 0.06534
0,13313 0,09436
0.30190 0.10743
0.46361 0,03007
0.594601 0.13408
1.40390 0.07690
1.70937 0.11160
2.,13317 0.,10593
3.,00562 0.04129
3.65058 0,12435
4.84044 0,0937%
4.88644 0.014%90

From this measure it may be possible to guess a polynomial (which of course
corresponds to an atomic measure with all nonzero weights equal) for which M, (a)
is the smallest measure of an a with & ‘not on the list’. However, there seems to be a
limit to how effective this method will be. One reason for this may be that there
seems to be no way of making use of the fact that the nonzero weights of measures
corresponding to polynomials are all equal. It may be necessary to use constraints
other than the resultant constraints (1.1) we have used. For example, the discrimi-
nant constraints
(1.7) [Tl —a|>1

i)
were used by Siegel [13] and later authors. Were we able to somehow use the
constraints

rj[ j@? — o, = 2[> 1,
(1.8) !—/[ |a,.2 +a - 2|> 1,

H la, + | > 1,
ij

we could exclude all « of the form 2 cos2m/n. Also, we could exclude all the B, by
the constraint

(1.9) [T |ee; +1{>1,
iJj
and perhaps all fixed points of iterates of H by using, fore = +1,
(1.10) Il Ia,.2+£a,aj— 1|> 1.
LJ
It is then conceivable that (somehow?) one could show that, apart from the M,(a) of

the a’s mentioned just above, M,(a) would be > min(a,, c,). The basic problem
with such an approach is that these constraints translate into constraints quadratic
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in p—for instance (1.10) becomes
o0 [e¢]
f dua(X)f dpo(y) loglx? + exy — 1| > 0.
0 0

It is not clear to me how a minimization problem with such constraints could be
successfully tackled numerically.

2. Everywhere Denseness in (a,, 0). Let F,(x) be the distribution function of the
absolute values of the conjugates of 8,

(2.1) F(x)=27"X # of conjugates of 8, in [ —x, x]
(see [14, Section 3]). When both the integral and the limit exist, put
(22) a(g) = lim [“g(x) dF,(x)

n—oc Y(

for a given function g: [0, 0) — R. Then a, = (a(x?))'/?. Let 9N(g) be the set of
all means

d(a)

(2.3) M(a) =d(a) " ¥ g(la)

i=1

for a a totally real algebraic integer, with conjugates a = a,..., a ). Then
M, = (x'/7: x € M(x?)}. Note also that

o0
(2.4) M,(B,) = [ &(x) dF,(x).
0
In this section we prove

THEOREM 3. Let g: R, — R, be a monotonic increasing function, zero on (0, 1], such
that

(2.5) lim g(x+1)/g(x)=1
and

4
the values of log,g(2k + 1) mod 1 (k=0,1,2,...) are every-

(2.6) where dense in (0, 1).

Then the limit a(g) exists, and 9N(g) is dense in (a(g), ).

COROLLARY 3. The set OM.(g) is dense in (a(g), ) for p > 0 fixed and

(1) g(x) = x?,

(2) g(x) = (log, x)*.

(3) 8(x) = log x|”.

As in [14], we need to define B§?’ = b, where b is an odd positive integer, and B’
(n>1)byB®» > 1and

(2.7) B — (B®) ' = B,

Let B(® have conjugates of absolute values B(% (i = 1,2,..., 2"), with (% = B(».
Put 8,, = B{? and note that B, = B(". Let

(2.8) R = { pB)i = 1,2,..., 2"}
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and B, = B". First we need

LEMMA 2. The elements of B’ alternate with those of {0, 0} U B, U B, U --- U
B,_, on the nonnegative half-line.

Proof. We shall actually prove more: that

(1) The elements of B, alternate with {0, 0} U B, U B, U---UB, _, (=,
say), and '

(2) Suppose we are given three consecutive elements of AU, U B, u; < B,, < u,
with B, , € B, one of u; and u, in AU, _,, the other in B, _,. Then for all b > 1, and
the same n, i, the elements B{" all lie in

(ul’ Bn,z) iful <€ Gu’n—l’
(Bn,x’u2) ifuZEC’?‘l’n—l'

The truth of these statements follows by induction on n. They are true for n = 1
since U, = {0, 00} and

0< (,Bl”’))_l <B'<By=1<B <B?< 0.
Now define H and H™' by

(2.9) Hx=x—x""
and
(2.10) H'x =4(x + (x2+4)'7?),

as in [14]. Then, assuming the truth of (1) and (2) for n, we can prove them for
n + 1, using the result that, from (2.7),

(2.11) BB = H 'R (H—l%f’b))_l

and the fact that H ™! preserves order on (0, o).
Let F(x) be the continuous function defined in [14], and satisfying

(2.12) F(x) = lim F,(x).

LEMMA 3. Let g: [1,00) — R be monotonic increasing, such that a(g) exists, and
such that

(2.13) g(x) = 0(A4%") forsomeA:1 <A <V2.
Then a(g) is finite, and
(2.14) a(g) = lim [“&(x) d,(x).

Proof. We have, for some constant 4,,

(2.15) [Prgar
Bx

< sup |g)f"dF < A, 4P,

xe[ﬁrnﬁn-{»l] B"
using the fact [14, Lemma 7] that f§»+1 dF = 27"~ Since, again from [14, Eq. (5.1)]
(2.16) b<B®<V2n+b><b+n/b,



672 C.J. SMYTH
B2, < 2n + 3, and hence from (2.15),

(2.17)

f dF) A, 43(422)".
B,
Since 4% < 2, the whole integral [{* = E_, [f+1 is finite.
To prove (2.14), note that, from [14, Lemma 7],
(2.18) bra 4F = 27,
Bill+|

and so, since g is assumed to be monotonic, Igry., g dF lies between 27 "g(B, . )
and 27"g(p, ). Since fB,,, +8dF, =27"g(B, ), we have

Bl.l -n
(2.19) o</ 8d(F = F)<27(3(8,.) = 8(B.-1)).

n,i+1
Now let e =2"""+1, so that 8,, <1<, ,_,. Then, from (2.19), (2.16) and
(2.13),

(220) [ sdlh = F) <27g(8) < 4y(47/2)".
Since g = 0 for x < 1, fﬁ gd(F, — F) =0, and trivially /5°, gdF, = 0, and from
Q17), [, g dF < A4(A2/2)" Thus | [ gd(F, — F)| < As(A%/2)" > 0asn — .

We can now prove Theorem 3. The method is essentially that of [14, Theorem 2],
except that we need the more detailed information on the position of the B,
provided by Lemma 2.

Let g be as in the statement of the theorem, and r > a(g) and & > 0 be given. We
shall exhibit an odd integer b, and an N such that

(2.21) M, (BP) —r|<e

1

for infinitely many n > N. The idea of the proof is that the conjugates of B{*) are
distributed on the real line almost exactly as the conjugates of B8, are, apart from the
largest conjugate of B{?, B(* itself. The values of n and b are chosen so that the
277B" term in M, (B{"") makes M,(B”) approximate r.

From Lemma 3, we have

(2.22) M,(8) = (1 - ¢)a(g),
where e, = 0 asj — co. Then using Lemma 2,

bXl

(223) M,(BP)=2""L g(BY) > 2‘”(3(/3""”) + X g(x))

i=1 Xe%,,\{waﬁn-—l)

= 2—"(g(0) + n)_: Y g(8.)—8(B,-)+ g(ﬁ,f"’))

J=0 =1

n—1

= L2700 - g)ale) +27(2(A") ~ 8(By-1)

>a(g)+27"(g(BP) - g(B, 1) — alg)) -

where T, = a(g)L]Z52"" e > 0asn > co.
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Similarly, in the other direction,

n—1

(2.24) Mg(ﬂ'gb)) < E 2—(n—j>Mg(l;ng>) + 2—ng(’3'5b))
J=1

=(1-2"")a(g) + T, + 27"(BP").
Combining (2.23) and (2.24), and using (2.16)
(2.25) M (B") - (a(g) +27"8(BP))| < T, + 27"(a(g) + g(v2n — 1)).

Since the right-hand side tends to 0 as n = oo, we have for n > N, say,

(2.26) |Mg(,8,f")) - (a(g) + 2_"g(,8,f")))l <e/3.

The next task is to arrange for a(g) + 27 "g(B{") to be close to r. From (2.6) we can
choose increasing sequences {n,), {b,} of integers, with the b, odd, such that

(227)  log,(5(b,)) — logy(r = a(g)) = n| < ‘°gz(‘ * T—“‘Cé‘ﬁ)

from which we readily get

(2.28) 127g(b,) = (r—a(g))| < /3.

Finally, it remains only to estimate 2~ "(g(B{”) — g(b)) forn = n,, b = b,. To do
this, we note that (2.5) implies easily that log(g(b)) = o(b), so that n, = o(b,) from
(2.27),i.e.n,/b, > 0 as i = oo. Now from (2.16), g(B{"’) < g(b + 1) for b = b,, and
i sufficiently large, and so

27"(g(BP) — (b)) < 27"g(b)(g(b + 1)/g(b) = 1) > 0

forn=n,, b =5, i — oo, using (2.28) and (2.5). Hence we can choose an I, such
that

(2.29) 27"(g(B®) — g(b)) <e/3 forn=n,b=0b,i>1I,.
Now, combining (2.26), (2.28) and (2.29),
(2.30) |M(B®) —r|<e forn=n,b=0b,i>1I,

provided also that n > N,. This proves the theorem.
Proof of Corollary 3. We will need the fact [14, Eq. (3.4)] that F(x) + F(x~ ') =1,
so that

(2.31) dF(x~ ') = —dF(x).

For later use also note that [14, Egs. (3.5), (3.6)]

(2.32)
(2.33)

11+ F(x—x7"), 1,

F(x) 2
x =
1(1-F(x'-x)), 0<x<l.

Let p > 0 be fixed. The result for (log, x)? is immediate from the theorem, since
this function is monotonic, and zero on [0, 1]. Now let g(x) = x”. Then, since
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(£B")""is a conjugate of B{*) (+ denoting ‘+ or —’, not ‘+ and —),
2"
B _ - P
g(B")=2""% (B")
i=1

2n—l
=27 % ((BE) +(B) ") = M (BP),
i=1
where
_[xP+xP, x>1,
g*(x)—{o, 0<x<l.

Since g* is increasing, and 0 on [0, 1], we can apply Theorem 3 to it. The values of
M ( B(?) are therefore dense on (a(g*), ). Further,

a(g*) =fl°°(x" + x7?)dF(x) =j:ox” dF(x)=a(g)

using (2.31), which proves the corollary for g(x) = x?.

Now put g(x) = [log x|”. Then it is easily shown that M,(B{") = 2M,(B{"),
where g*(x) = (log, x)?, and that a(g) = 2a(g™). Hence, applying Theorem 3 to
g%, we have the values of Mg(,B,f”’) dense on (a(g), ).

3. Everywhere Denseness in (c,, ). We prove

THEOREM 4. Let g: R, — R be a function such that

(3.1 lim g(x) = o
X =00
and which satisfies a Lipschitz condition
(32) lg(x) — g(y)] < B(A)|x - y|
for x, y € [0, A}, for each X > 0. Then I, is dense on (c(g), o), where
(33) e(g) =2 [ g(2c0s0) db.
mJ0

COROLLARY 4. I, is dense on (c,, ), where c, = (c(xP))\/P.

The proof is basically an extension of the proof of Robinson [11, p. 309] showing
that for each ¢ > 0 the interval [—2 — ¢, 2 + €] contains infinitely many conjugate
sets of algebraic integers; see also Ennola [2]. Robinson’s result is essentially
Corollary 4 above for p = oo. His basic lemma can be stated as

LEMMA 4. Given a rational number N\ > 1, there is an infinite sequence {n,} of
increasing even integers and corresponding totally real algebraic integers o) (i =
1,2,...) with deg a” = n, whose conjugates o\ (j = 1,..., n,) satisfy

(3.4)  2Acos(jm/n) < al? <2Acos((j— V)w/n)  (j=1,2,...,n).
Heren = n,.
For convenience define

2 n/2
(35) g =75 L 8(2Acos(jm/n)),
j=1
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_E /2
(3.6) g = W[) g(2Acos 8) db.

Then one has easily
LEMMA 5. For g as in Theorem 4,
(37) g}\ = llm gn,)\.
n—oo
Further both g, , and g, are continuous functions of A, and g, tends to o as A = oo.

Proof of Theorem 4. Let r > ¢(g) and € > 0 be given. By Lemma 5 there is a real
A, > 1 such that

(3.8) & =T,
and by the same lemma we can choose N such that
(3.9) lgn,x, - 8A,| <e/3

for n > N. By the continuity of g, , as a function of A, we can choose A > 1 rational
and such that

(310) Ign,}\ - gn,}\,| < 8/3

Let B = B(2A + 2), as in (3.2), and choose a'” as in Lemma 4. Then from (3.4), for
n=n,

0 < o' = 2Xcos( jm/n) < 2N(cos((j — 1)m/n) — cos( ju/n))

(j=1,...,n).
Hence, by (3.2),

Zg(la“’l) Ba| < ;l;g

(‘a(’)|) |2>\COS(]77/H)|)‘

tu

2B z": (cos((j — 1)m/n) = cos( jn/n))

n

—M<8/3

for n > [12AB/e] = N, say. That s, for n = n, > N, we have
(3.11) IMg(a(i)) - gn,,\‘ <e/3.
Hence (3.8), (3.9), (3.10) and (3.11) together give, for n, > max(N, N,),

|Mg(a(i)) - r| <e.

4. The Case of Small p: 0 < p < 0.1. The computational methods described in
Section 1 did not cover p in the interval 0 < p < 0.1, so we now consider this case.

THEOREM 5. For 0 < p < 0.1, the smallest element of 9]1 isM (2(1 +V5) =1+
0.1158p, and all other elements of@TL liein (1 + 0. 1459p, Q).
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For a given a (with conjugates a;) and p small

(4.1) (M, (a))” = % L exp(plogle)

P d P2 d
=1+ B % togle| + £ B toglla] + -
= =1
Now

= Z logla,| = log|Norm af,

which can be 0. However, one can show by the methods of Section 1 that
(1/d)X log?|a,| is bounded away from 0 (and indeed find its first 3 or 4 isolated
values). But this information is not sufficient to bound M,(«) away from 1, as the
following example shows (the x, corresponding to log|a, |):

Takex, =x,= -+ =x,_, =s(d— 1)7"%, x,= —s(d — 1)'/%. Then L x, = 0,
(1/d)X x? = 52, but on taking d = N*/( p’s?),

1 , o1 1 e )
EZexp(x,p)=l+sp X_ﬁ—*-? +o(p?).

Thus, by taking A as large as we please, we have shown that (1/d)X, exp(x;p)
cannot be bounded away from 1, given ¥ x, > 0 and (1/d)Z x? = s* > 0.

We can however use the fact that (1/d)X; log,|a,| is bounded away from 0 to
prove Theorem 5. To do this we need the standard

LEMMA 6 ([6, p. 72)). If the function ¢ is convex upwards, then
1 ¢ 1 ¢
(4.2) (—11§1¢(X,) >¢(31§1xl)-
Next, the simple

LeMMA 7. If X4_ x; > O and (1/d)Z, 5 X; = ¢, then

(4.3) z Z x, > -C,
x,<0
(4.4) L Y x>
d x,20
(4.5) = Z exp(x,p)=>1+ —c2p forp > 0.

Proof. The first result is immediate. Further, on applying Lemma 6 with ¢(x) = x?
to the nonnegative x;’s, padded with an appropriate number of zeros,

(4.6) —Z ( Zx)z/c

x,zO x>0
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For (4.5), use the fact that

exp(x) > {1 txtit, x>0,
1+ x, x <0,
and (4.4).
We now prove a stronger version of (4.5), with the asymptotically (as p \ 0) best
possible coefficient of p2. (To see this, take half of the x, equal to 2¢ and the rest
equal to —2c¢.)

LEMMA 8. If 2 x, > 0,(1/d)E, .o x, = cand 0 < 2¢p < 1, then
1 & 2¢p)’
(47) P Z exp(x,P) =1+ 202p2 - _—('—"’L)—?
=1 3(1 - (2¢p) )
Proof. Suppose that of the d x,’s, yd are < 0and (1 — y)dare> 0.Letk = 2¢p <
1. Then, applying Lemma 6 to e?* and using (4.3), we get (ignoring the trivial case

y=20)

0573 & e(xp) > exp(ik/(1 =)
x,20

1
—7 2 exp(x,p) > exp(—ik/y).
y x,<0
Hence
d

(48) 5 ¥ ep(x,p) > (1= y)esp(ik/(1 =) +y exp(—4k/7) = /()

say. We now estimate the minimum of f( y) in (0, 1). We have

(4.9) () = (1 +3k/y) exp(—dk/y) + (=1 + 3k/(1 = y))
xexp(3k/(1 - y))
and it is easily checked that f”(y) > 0 in (0, 1). So f has at most one minimum in
(0, 1), with f(0 + ) = exp(3k), and f(1 — ) = co. We shall show that f does in fact
have a minimum, and it occurs for y between 4(1 — k) and 1.
Firstly f'(3) = (1 + k) exp(—k) — (1 — k) exp(k) >0, as (1 + k)/(1 — k) >
exp(2k) for 0 < k < 1. Next, put y = 3(1 — k). Then
1+ 1k/y _1+k
1 - 1k/(1—y) 1 -k
<exp(2(k + k* + -+ )) = exp(2k/(1 — k?)),
which shows that f’(3(1 — k)) < 0.

Suppose the minimum occurs at y = 3(1 — §), where 0 < § < k. Then, since for
all x

=exp(2(k + K3 /3+Kk%/5+ )

exp(x) > 1+ x+ x2/2 + x3/6,
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we have
f(3(1 = 8)) = 3((1 = 8) exp(—k/(1 = 8)) + (1 + 8) exp(k/(1 + 5)))
> 1+ 3k2/(1 - 82) — k%/(3(1 - 8%)%)
> 1+ 4k2 = k*/ (3(1 - k2)).
We can now prove the theorem. From [15, Eq. (9)] we know that, with four
exceptions,
ﬁ; log, |a;| > log(1.31040) = 0.2703.

We can thus apply Lemma 8 with ¢ > ¢, = 0.2703. Since the function 1 + x /2 —
x?/3(1 = x)* is increasing for 0 < x < 4, it follows from (4.7) that, for (2¢p) < 3,
with at most four exceptions

1 P 2¢op !
(4.10) M,(a)? = y Ylaf =1+ 2(cop) - (2¢0p) -
i 3(1 = (2¢op) )
However if 2¢p > 1, then from (4.5)

(4.11) Mp(a)p > % =1.03125> 1 + 0.3125p for0 <p < 0.1.

Hence we can assume 2¢p < 4, and then from (4.10)
0.08541p2
3(1 - 0.2922p%)°
> 1+ 0.1458p% for0 <p < 0.1.
Then,as (1 + x)"> 1+ rxforr > 1,
(4.12) M,(a) > (1 +0.1458p?)"7 > 1 + 0.1458p.

Of the four exceptions to which (4.11) and (4.12) do not apply, calculation reveals
that it is only for @ = + 4(1 + V/5) that (4.12) is actually violated.

P 2
M,(a)? > 1+ p20.1461 —

5. The Limit Points a, and c,. The limit point ¢, is easy to evaluate from its
definition (0.3), giving

(5.1) ¢, = 2(%/0%(cos 6)" d0)l/p =2[T(3(p + )= 2/T(1 + 4p)]"”

by [4, Section 3.261].

Further,asp - 0

2 1/p 2
- p- 2 (2 o R R - ..

(52) ¢, (1+ > vr/o log2(2cos 8) d6 + ) l+(24)p+
(see Lewin [8, p. 298, Eq. (40)]). However, note that the same formula is misprinted
on p. 170, although it is correct in the first edition).

For small p,

2 1/p
(53) a,= (l + %foo(logx)zdF(x) + ) =1+4+0.19233p + - --
0
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on computation, so that a, < ¢, for p small enough. We show below that a, = ¢,
=2, and a, —> o0 asp — o, whﬂe ¢, > 2 as p = co. We have found no formula
for a, corresponding to (5.2) for ¢,. However, we have obtained a recurrence relation
which enables us to recursively evaluate a, for p an even integer. In fact

THEOREM 6. Defining ag = 1 we have
k+j
(5.4) aZk—ZZ k+j(k j)azj (k=1,2,...)
sothat a3 = 2, aj = 10, al = 80, a’ = 874, and so on. Further
(5.5) ay, > (2k/e) (k=1,2,...).

Proof. Putting y = x — x~ ' into (2.32), we get

(5.6) dF(y) = 24F(3(y + {2 +4))). vz,
and putting y = x~' — x into (2.33),

(5.7) dF(y) = —2dF(3(/(»" + ) —y)), y>0.
Hence

(58) ar = (fo' + flw)xp dF(x)

+wa Yy + (y2+4)))dF(%(y+ (y2+4)))
= EIOT 8 =)+ (ST +5)) ] @,

the last line using (5.6) and (5.7). Now let 7, be the Chebyshev polynomial of degree
n defined by T,(x + x~') = x" + x~". Then, as is well known (see e.g. [11, p. 309]),
Ty(x)=2and forn > 1

(5.9) T,(x) = (4(x + [(x* -9 ) +(4(x- x2—4)))"

tn/2l nfn—j—1
— J n— 2]
x" + Z -1) J( i )x

Hence the integrand of (5.8), for p = 2k > 2 an even integer, is equal to

1
(5.10) ¥y (—iy) = y** + Z 2k(2k /- )yz"“”
PRV
k .
_ k+j\ 2k 2
Z%(k—j)k+/y

Thus from (5.8)

k .

k+j\ 2k

(5.11) azy ng'o(k—j)k‘f'jaz’ (k>1),
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from which (5.4) follows. Then, from (5.4), aZf > 2ka3k=2, so a3f > 2*k!, from
which, with Stirling’s formula, we obtain (5.5).

Finally we take another look at the sequence {a2¥} = (1,2, 10,80,... ). We note
that {a3¥} satisfies another recurrence, ‘dual’ to (5.4):

(5.12) a2 = (= )k—l(Zkk)+2kil(_l)k—j—|(k2kj) a2,

j=1
This can be obtained from the fact that, from (2.32-2.33),

dF(x) = {
from which one gets easily that
o0 o0 P
(5.13) [ xP dF(x) =f |x — x~ ' dF(x).
0 0

Then (5.12) follows readily for p = 2k on expanding (x — x~')?, and using (2.31).
We now give a brief explanation of the connection between (5.4) and (5.12) in
terms of inverse relations between pairs of sequences; see [5, p. 9].

—1dF(x'—x), 0<x<l,
1dF(x — x7"), x> 1,

THEOREM 7. Given a sequence { A, }>_, and defining B, = A, and

~on +k
(5.14) B,= Y m(: _k)Ak (n=1,2,...),
k=0

there is an inverse relation
n
— (_1\"[2n 2n ) 1\ k _
(5.15) 4,=(-1) (n)BO+ §2(n_k( )" B, (n=12...).

The sequence {az"} is an eigensequence of this relation (i.e. if A, = a37 (n=0,1,...),
then B,=A,(n=0,1,...)).

The inverse relationship is a consequence of the binomial identity

! +J 2j _
(5.16) Z(Z-—j‘)nz_—:j(j—jk)(‘l)jk=8"" O<k<nns1).
J=k

This identity can be proved by applying (5.10) to the identity
(-1D)"T,(—i(x — x7")) = x2" + x72".

Theorem 7 characterizes the sequence {1, 2, 10, 80, 874,...} in a manner
independent of the function F.
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