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Two Approximations of Solutions 
of Hamilton-Jacobi Equations* 

By M. G. Crandall** and P. L. Lions 

Abstract. Equations of Hamilton-Jacobi type arise in many areas of application, including the 
calculus of variations, control theory and differential games. The associated initial-value 
problems almost never have global-time classical solutions, and one must deal with suitable 
generalized solutions. The correct class of generalized solutions has only recently been 
established by the authors. This article establishes the convergence of a class of difference 
approximations to these solutions by obtaining explicit error estimates. Analogous results are 
proved by similar means for the method of vanishing viscosity. 

Introduction. The main results of this paper concern the approximation of 
solutions of the Cauchy problem for first-order partial differential equations of 
Hamilton-Jacobi type. Most of the presentation here will be in the context of 
problems of the form 

(IVP) Jau/at 
+ H(Du) = 0 in RN X (0, oc), 

u(x,O) = uO(X) in RN, 

where H E C(RN) (the continuous functions on RN), uo E BUC(RN) (the bounded 
and uniformly continuous functions on RN), and Du = (uX1,... , uXN) is the spatial 
gradient of u. The problem (IVP) is technically simpler than the "general case" in 
which the Hamiltonian H may depend on x, t and u as well as Du, and we prefer to 
keep the ideas clear and constants simple by dealing primarily with (IVP). (See the 
comments in Section 4 regarding more general equations.) Two sorts of approxima- 
tions of (IVP) will be considered here-finite difference schemes and the method of 
vanishing viscosity. Before describing these approximations, we briefly review some 
basic facts concerning (IVP). 

Analysis by the method of chacteristics shows that if H and uo are smooth and uo 
is compactly supported, then (IVP) will typically have a unique C2 solution u on 
some maximal time interval 0 < t < T for which lim ( t T U(x, t) exists uniformly, but 
this limiting function is not continuously differentiable. Thus Du "becomes discon- 
tinuous" at t = T (or "shocks form"). If one insists upon a solution of (IVP) which 
is defined for all t > 0, it is therefore necessary to deal with functions which are not 
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smooth. On the other hand, it is relatively easy, in the above circumstances, to 
produce Lipschitz continuous functions u on RN x [0, ox) which satisfy (IVP) if the 
equation is understood in the "almost everywhere" sense. However, "generalized" 
solutions in this sense are not unique. 

Recently, a way of identifying a uniquely existing solution for a class of problems 
which include (IVP) as a special case was given by the authors in [2], [3] (see also [1]). 
The relevant solutions of scalar nonlinear first order equations are called " viscosity 
solutions", and they are known to be the solutions of primary interest in many areas 
of application (e.g., optimization, control theory, differential games, etc.). See, e.g., 
[6], [10], [11]. The term "viscosity solutions" refers to the fact that all solutions 
obtained via the method of vanishing viscosity are in this class. The main properties 
of viscosity solutions relevant for the current work are recalled, in the context of 
(IVP), in Section 1. 

In this paper we will approximate the viscosity solution of (IVP) by solutions of 
the general class of finite difference schemes introduced below. Indeed, explicit error 
estimates are given relating the viscosity solution of (IVP) and the solutions of these 
finite difference approximations. We also show, under suitable hypotheses, that if 
e > 0, u` is the solution of the problem 

l (uE/at + H(Due)-eAuE = i in RN x(,O ), 

uE(x, 0) = u0(x) in RN, 

and u is the viscosity solution of (IVP), then Iu'(x, t) - u(x, t)l < cVEi for x E RN 
and t > 0. This is done in Section 5. Estimates like this have also been obtained in 
W. H. Fleming [7] and P. L. Lions [10] by indirect arguments involving stochastic 
differential games. 

We now describe the class of difference approximations to be considered here. For 
notational simplicity only, we will assume that N = 2 in most of the presentation. 
The corresponding definitions and results for general N will be clear from this 
special case, and we will not explicitly formulate them. A generic point in R2 will be 
denoted by (x, y), and we will write Du = (ux, u,). Given mesh sizes Ax, Ay, At > 0, 
the value of our numerical approximation at (xj, Yk' tn) = (jAx, k Ay, n At) 
(j, k, n E Z) will be denoted by U nk Capital letters U, V,... will denote functions 
on the x, y lattice A = {(Xj, Yk): j, k E Z} and their values at (Xj, Yk) will be 
written Ui, ki V k . Thus Un represents the state of our numerical approximation 
at the time level n At, and it is a function on A with values UL/nk. The notations 
kx = At/A x, XY= At/Ay AY 'k=b? LS, and AyLS = j, k? Ax~~~~~~~ = txA /t/y + Uj k = Uj+l, k - Uj, k, ad/+ Uk =Uj, k+l Uj, k 
will be used. 

The discrete approximations of (IVP) of interest here are explicit marching 
schemes of the form 

(1) 1jk= G(kJ-p k-r9'* U+q+1,k+s+.). 

where p, q, r, s are fixed nonnegative integers and G is a function of (p + q + 2) 
(r + s + 2) variables. (At this stage we are ignoring the dependence of G on 

Ax, Ay and At.) To simplify notation, (1) will also be written as 

(2) n + G(U") 
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We say that (1) has "differenced form" if there exists a function g such that 

(3) G(UL-p k-r ...* Uj+q+l,k+s+l) =Ujl,k 

\tgA vx p, k-r ' AX Uj+q,k+s+l; 

iv y j-p , k-rg ... * +t Uj +q+l1, k +s - 

In order that the scheme (1), (3) be consistent with the equation ut + H(uX, u ,) = 0 

occurring in (IVP), we must have 

(4) g(a, ..,a; b, ... ,b) = H(a, b) fora, b E R. 

When (3) holds we call g the numerical Hamiltonian of the scheme. Finally, we will 
say that (2) (or (3)) is monotone on [-R, R] if G(Uj-p,k-r... uj+q+lk+s+l) is a 
nondecreasing function of each argument as long as I A+ Ul m I/Ax, I Ay U1, m I/A Y < R 
for] -p j + q, k - r <, m <, k + s + 1, j-p p< 1' < j + q + 1, k - r < m' 
< k + s. Roughly speaking, R will be an a priori bound on ux, u, I for the solution 
of (IVP). 

Our main result is 

THEOREM 1. Let H: R2 R be continuous and uo be bounded and Lipschitz 
continuous on R2 with L as a Lipschitz constant. For AX, AY > 0 and fixed, let the 
scheme (2) have differencedform, be monotone on [-(L + 1), L + 1] and be consistent 
with (IVP). Assume the numerical Hamiltonian g is locally Lipschitz continuous. Define 
U0 by Ujok 

= uO(Xj, Yk) and then Un, n = 1, 2 ... ., by (2). Let u be the viscosity 
solution of (IVP). Then there is a constant c depending only on suplu0l, L, g and NA t 
such that 

(5)Uj k - u(xj, Yk n At)| < c(At) 

for O < n < N and allj, k. 

The body of the paper is structured in the following way: Section 1 is devoted to a 
review of the properties of viscosity solutions as needed herein. Examples of 
difference schemes satisfying the assumptions of Theorem 1 are presented in Section 
2. Theorem 1 is proved in Sections 3 and 4, with Section 3 consisting of preparatory 
lemmas on the mapping U -* G(U), while Section 4 contains the proof of (5). 
Section 4 concludes with remarks on variations of Theorem 1. The approximation of 
(IVP) by (IVP)E is treated in Section 5. 

We bring this long introduction to a close with some remarks: First of all, some 
convergence results are given in S. N. Kruzkov [8] for convex Hamiltonians H, using 
some estimates available only in this special case. Next (see, e.g., P. L. Lions [10, 
Chapter 16]) problems like (IVP) are closely related to hyperbolic systems satisfied 
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by Du. If N = 1, this relation is quite simple, since if u solves (IVP), then v = ux 
solves a scalar conservation law: 

at + 
- 

(H(v))=O inRX(O,xo), at ax 

v(x,O) = vo(x) = d?O (x) in R. 

In this case the schemes presented here are related to those studied by M. G. 
Crandall and A. Majda [4], and N. N. Kuznetsov [9] via the corresponding 
substitution: 

1 n Uk +l - Uk~ 
Vk = A+Uk= k+1 k 

Ax ~~Ax 

We refer the reader interested in other aspects of Hamilton-Jacobi equations to 
M. G. Crandall and P. L. Lions [2], P. L. Lions [10], and M. G. Crandall, L. C. 
Evans and P. L. Lions [1]. Finally we remark that, in an ongoing investigation, 
P. Souganidis [11] has formulated general- approximation results which appear to 
apply alike to dimensional splitting, max-min representations, approximation by 
(IVP)E and numerical schemes. His arguments are related to those given herein. 

1. Viscosity Solutions of (IVP). As recalled in the Introduction, one cannot solve 
(IVP) in a classical way on RN x (0, ox) in general, while Lipschitz continuous 
"generalized solutions" in the almost everywhere sense exist under mild assumptions 
but are not unique (examples are given, for instance, in [2]). The resolution of these 
difficulties is given in [2], the results of which imply, in a roundabout way, the 
theorem stated below. This theorem is proved directly in [1]. (We use x to denote 
points in RN below.) 

THEOREM (EXISTENCE AND UNIQUENESS). Let H E C(RN), uo E BUC(RN). Then 
there is exactly one function u E BUC(RN x [0, T]) for all T > 0 such that u(x, 0) = 

uo(x), andfor every 4 E Cl(RN X (0, ox)) and T > 0: 

If (xo , to) is a local maximum point of u - 4 on RN x (0, T], then 
(1.1) ( a 

a11 (xo, to) + H(Do (xo0 to)) < 0; 

and 

If (xo, to) is a local minimum point of u - p on RN x (0, T], then 
(1.2) {if( 

(Xo)to) + H(DL (xo0 to)) > ? 

The function u whose existence and uniqueness is asserted by the theorem is called 
the viscosity solution of (IVP). A continuous function u on RN x [0, T] which satisfies 
(1.1), (1.2) is called a viscosity solution of the equation ut + H(Du) = 0 on RN x 
[0, T]. See [1], [2] for the appropriate notions for more general equations. There are 
also useful equivalent ways to formulate the notion of viscosity solutions [1], [2]. 
Among the desirable properties of the notion of viscosity solutions is its consistency 
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with the classical concept. That is, if u is a classical (i.e., C') solution of Ut + H(Du) 
= 0, then it is a viscosity solution, and if u is a viscosity solution, then u,(xo, to) + 
H(Du(xo, to)) = 0 at any point (xo, to) where u is differentiable. 

The other information we want to recall consists of various estimates on the 
behavior of solutions of (IVP). To record these, for each t > 0 let S(t): BUC(RN) -* 

BUC(RN) be the time t map associated with (IVP). That is, S(t)uo(x) = u(x, t) 
where u is the viscosity solution of (IVP). We also put 111 f 1 = supRNIlf(x) I and 
f+ = max(f, 0). The next result follows from [2], see also [1]. 

PROPOSITION 1.1. Let H E C(RN) and S(t) be as above; uo, vo E BUC(RN), and 
t > 0. Then 

(i) 11(SMtuo - S(t)vo)+Il -< 11(uo - vo)+11. 
(ii) IIS(t)uo - S(t)vo01 < IIuO - vOIJ. 

(iii) infRN Uo < tH(O) + S(t)u0 < SUpRN Uo. 

(iV) IS(t)UO(X + y) - S(t)U0(x)I < SUpZERNIUO(Z + y) - u0(z)I,fory E RN. 

(v) If L is a Lipschitz constant for uo, then it is also a Lipschitz constant for 

S (t) uo and 1 S (t) uo- S( T) uo ||I |t - T sup {H(| |P|p < L} 
RN 

The key point here is (i). The estimate (i) implies (ii) upon using (i) with uo and vo 
interchanged. Clearly (i) also implies S(t)uo > S(t)vo if uo > vo, which in turn 
implies (iii) since v = c - tH(O) is a classical (and so the viscosity) solution of (IVP) 
with the constant initial datum c. Choosing vo = sup uo or inf uo and using the order- 
preserving property yields (iii). Next (iv) follows from (ii) because S(t)uo(. + y) is 
the solution of (IVP) for the initial datum uo(. + y). Since (iv) shows that a modulus 
of continuity for uo is also a modulus for S(t)uo(.), the first assertion of (v) is clear. 
The Lipschitz property in the time is easily deduced from the equation ut + H(Du) 
= 0 in the viscosity sense (see [2]) or in other ways. 

2. Examples. We begin with N = 1 and write (IVP) in the form 

(2.1) ut + H(u_) = O, for t > 0, x E R, 

\u(x,0) = uo(x), for x E R, 

in this case. As the first example, we consider the scheme 

(2.2) U n+l =un _L1) _ +L-A H Uij+-2L ) 

where 0 > 0 is given. The relation (2.2) may be rewritten as 

_ _ _ _ _ _ _ _ _ _ _ + 1+ - 1~ 
(2.2)' Un+l = U_n_+ _ - _ - 

making the differenced form clear. The numerical Hamiltonian is given by 

g(a,,B)=H((a+,B)/2)-(f,_a)0/Xx fora,,EftR. 

Cleariy g(a, a) = H(a) and so (2.2) is consistent. The scheme (2.2) is monotone on 
[-R, R] if 1 - 20 > 0 (monotonicity in -j5) and 0- XIH'(a)I/2 > 0 for IaI < R 
(monotonicity in UL+, U(J) 1). These two relations are achieved by first choosing 
0 < 0 < 1/2 and then Ax sufficiently small. This scheme is analogous to the 
Lax-Friedrichs scheme for conservation laws; see [4]. 
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In a similar way, the schemes 

(2.3) un+1 = Un A ( tH 1 ) Ax J 
or 

(2.4) un+1 = - AtH x 
j 

have the desired properties if H is nonincreasing (for (2.3)), if H is nondecreasing 
(for (2.4)), and 1 > VXIH'(a)l for lal < R. Those are simple "upwind" schemes. 
Next, let aO E R, and assume H'(a)(a - ao) > 0, so H' changes sign at a = aO. Set 
0(s) = 1 if s < ao, 0(s) = 0 if s > ao. We consider the scheme 

(2.5) n+1= un AtI0( +1 j H )H(j + 
j 

)H(a Ui iAx A\L X J 0J 

+ 1- i j\x ))(H Ui 1 1) -H(ao)} + H(ao)}. 

The numerical Hamiltonian is now 

g(a,/P) = O(/P){H(/) - H(ao)} +(1 - 0(a))(H(a) - H(ao)) + H(ao), 

and thus (2.5) is consistent. Remarking that g(a, /3) may be written as g(a, /P) = 

H(/P A ao) + H(a V aO) - H(ao), where "A"" and " v " denote "maximum" and 
" minimum", it is clear that g is locally Lipschitz if H is locally Lipschitz. Finally, one 
checks that (2.5) is monotone on [-R, +R] if 1 - XxlH'(a)I > O for lal < R. 

In fact, all the above examples are merely adaptations to Hamilton-Jacobi 
equations of well-known schemes for conservation laws via the remarks in the 
Introduction. As explained in, e.g., M. G. Crandall and A. Majda [4], there is a class 
of schemes for the conservation law v, + (H(v)), = 0, called "monotone, in con- 
servation form" with the following structure: Vjn+1 = Jn - XxA+g(Vfp..jn+q) 

now the function g is called the "numerical flux". Consistency then means, as 
before, g(a.. . ,a) = H(a) and monotonicity means that the map (Vn Vn+l) is a 
nondecreasing function of each VnI. Then we may write the corresponding scheme 
for the approximation of (IVP), 

U n+ 1 = U n - Atg ( 
j 

U- P AX+ Ui + q 

Ax Ax+j+ 

which is in differenced form and consistent. 
Next,if N > 1, the relation between (IVP) and conservation laws disappears. For 

N = 2 (to simplify, as always) we mention the analogue of the Lax-Friedrichs 
scheme, i.e. 

(2.6) unl n Unk - At H U)+l,k - ?l,k Ujk+l - j,k- (2.6) M j, At H 
2 Ax ' 2Ay J 

O( +llk + UjLl,k 2Lj, k) 
AXX Ax 

o ( k k+l + b7k1-1 2Uj) 
A-'' \ i\Ay J 
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which is consistent, in differenced form. It is also monotone on [-R, RI provided 
that 0 < 0 < 1/4, 0 - AxIHi(a, /3)I > 0, and 0 - AYIH2(a, /3)I > 0 for lal, III < R, 
where Hi' denotes the derivative of H in its ith argument. 

As a last example, let 

V/cktl = (Vj-p,k-r' *.* 9Vj+q+l,k+s+l) 

Ax vn n~ V 
=v - Atgl + J-pk-r Y+ V+q,k+s+1 

/+ -1,k-r \+ j+ q+l,k+s 

A\y '.' 
. 

y J 
and 

WjIk+l= G2 Wjp-p k-r 9 Wx+q+l,k+sfl) 

= 
A-\tg( 

+ J-p_k-r +.+x 
j+q,k+s+l 

_+ Wj-p,k-r + j+q+l,k+s 

Ay '.' .y J 
be differenced form, monotone on [-R, RI schemes consistent with Vt + 
a-'Hi(vx v,.) = 0 and wt + (1 - a)-1H2(wx, wy) = 0, respectively, where a E (0, 1). 
Then the scheme 

U, k = aG, (U7_p,k-r ...U 9)U+q+l,k+s+l) 

+ (1 - a) G2 (Lj-Pk-r, * **fUj+ q+ 1,k+s+ 1) 

has differenced form, is monotone on [-R, RI and is consistent with: au/at + 
H1(ux, uy) + H2(ux, uY,) = 0. E.g., we could build schemes in this way for 

au au ta 
at (aX) 2, ay) 

from schemes for 
au (au\ aw (aw + H1 )= 0 and at a = 0. 

3. Stability Properties of the Schemes. The notation in this section assumes two 
space dimensions, but everything herein easily generalizes to arbitrary dimensions. 
By capital letters U, V, etc., we denote bounded bi-infinite double sequences 
{ Uj(k }(j,k)eZ2, i.e. bounded functions on Z2, the set of all such being 1?(Z2), which 
we equip with the norm 

|Ull 00 = sup IUj,k 
j, keZ 

Let G be the self-map of 1,(Z2) defined by (3), i.e. 

(3.1) G(U)j,k = Uj k - Atg + J-p+k-r . +]U+q, k+s+1 

?y- Uj-p,k-r + Uj+q+1,k+s 

Ay 
@@ 

Ay 
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We now investigate the properties of G. By definition (2), (3) is monotone on 
[-R, R] if the restriction of G to 

C=~ ~~ <U R?(2 AlXUlIRx, JAY U'm I <R Ay, for1, m E- Z} 

preserves the natural ordering of 1,(Z2). We identify X E R with the constant 
function A on Z2. From the form of G, it is clear that 

G(U + A) = G(U) + A for all U E /(Z2) andA E R, 
that is, G commutes with the addition of constants. Now, it is a simple fact that 
order-preserving mappings commuting with the addition of constants are nonexpan- 
sive in 1,(Z2) (M. G. Crandall and L. Tartar [5]). Indeed, if U, V e C, then 
U < V + A with A = Il(U - V)+IIO.. But V + A E C, and thus (using monotonicity) 
we deduce 

(3.2) 

G(U) < G (v+ A) = G(V) + A, so ||(G(u) - G(v)) 1100 Ijj(u- v) +j00, 
which implies, in particular, the nonexpansiveness on C. 

Another simple property of G is that it commutes with translations, i.e. if 1, m E Z 
are fixed and Ti, m is the linear mapping defined by (T, mU)j k = Uj+ k+m then we 
have Tl,mG(U) = G(T,imU) for all V E /??(Z2). Using this property in conjunction 
with (3.2), we can deduce 

(3.3) 11 AX+ G(U) 11 0 '1 YI^+ U||OO 11Ay+G(U)110'0 <IIAY+0U|| 
for all U E C. For example, 

IIAX+(U) 1100 = 1IT1m O(U) - (U)II0 = (1 OU)-G(U)II 
< 11T, 0u - UKlr = IIAX+ ull 

since T/ m leaves invariant C for any 1, m E Z. An immediate consequence of (3.3) is 
that G leaves C invariant (G(C) C C). 

The last property we observe is the following: If n, j > 0 and U E C, then 

IGn+j(U) - G"(U) 1100 < lRG'(U) -U lo00 
j-1 

=E 0IGI-'(U) - G-|(u+)I 0 j <j|G(U) - u||00, 
l=0 

and from the explicit form (3) we finally obtain 

(3.4) jj&1 '(U)- &(U) 11 0 j?itK forn, j > 0, UE C, 

where K is given by 

(3.5) K-=supf lg(t)J; O < I < p + q + 1, 0 < m < r + s + 1, (1' mI < RI}, 

and ( denotes a vector with components {, m. 
We record all these properties in 

PROPOSITION 3.1. Let R > 0 and C be defined as above. Let the scheme be monotone 
on [-R, R] and G: C - 1? /(Z2) be given by (3) with g bounded on bounded sets. Then 
we have: 

(i)G(U) < G(V)for U,Ve C, U < V; 
(ii)G(U+ A)= G(U)+AforUE C,Ae R; 
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(iii) IIG(U) - G(V)II0 < IIU - VIIj for U, V E C; 
(iv) IIAL G(U)1IIo JJAx+ Ull IKAY G(U)11K <, IIA' U11,for U E C; 
(v) G(C) C C; 
(vi) IIG +'(U) - G (U)II< jl\ttKfor U E C, n, j > O, 

where K is given by (3.5); 
(vii) IIGn(U)1I1K < IhUlK00 + n At A, for U E C, 

where A = Ig(O, ... .,0)I = IH(O,O)I. 

The only new property is (vii),which is easily proved by first observing that 
G'(O) = -n l t g(O, O,. . ., O) and so 

JIGn(U)IJo, -<|Gn(U) - Gn(O)II +||Gn(O)||1o <||Ullo, + n AtA. 

4. Proof of Theorem 1. The proof of Theorem 1 given here is related to the proof 
of uniqueness of viscosity solutions of (IVP) presented in [1] and it also involves 
estimates introduced in [2]. Throughout this section we will assume the hypotheses 
and notation of Theorem 1. In addition, we will at first assume that 

(4.1) 
u(x,y, t) O asIxI+ly Ioo 
7U n --> asIj I+ Ik I x 

hold uniformly for bounded t, n l\t > 0. This assumption allows a simplified 
presentation and is easily relaxed later. Moreover, (4.1) holds if uo -- 0 as IXI + IYI 

* x. 

It will be convenient to define 

(4.2) Q = R2 X [O, ), QT = R2 X [O, T], 

and the discrete analogues 

(4.3) Qd = A X (AtZ+) ={(Xj 
. 

Yk n At)):j, k = O, +1, . ; n = 0O 1 } 
... }, 

QN = {(Xj, Yk, n At) E Q : n < N}. 

Hereafter T > 0 and N E Z+ satisfying 

(4.4) (N -1) l\t < T < NA\t 

are fixed. We seek to estimate u(xj, Yk' n lt) - j k. To this end, we will assume 

(4.5) sup (u(xj, Yk n t) - )j k >O 
j ke Z 

0 < n, < N 

and then produce an upper bound on a. In exactly the same way, if 
inf(u(xj, Yk' n lt) - Lj?) = -k <0, we could estimate a and the conjunction of 
these estimates bounds (u(xj, Yk' n lt) - j,k 

We are going to define a function #: Q x Qd -- R which is a principal ingredient 
in the proof. This function depends on a and T above as well as 

(4.6) M = sup Ouo(() + TIH(OO)1) + 1, 
felJR2 
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a positive parameter e, and a function ,B: R2 x R -* R as follows: For (t, t) E Q 
and (q, s) e Qd, 

(4.7) 4(t, t,q, s) = u(t, t) - Uj- (t + s) +(M + 2)lje(t - 7, t -s 

where (q, s) = (xj, Yk, n At) and f3 ((, t) = (/E, t/e) 

We remark that (4.6) guarantees 

(4.8) uj < M onQT and IIU"tk0 , M forO s< n < N; 

see Proposition 1.1(iii) and Proposition 3.1(vii). The function /B of (4.7) will satisfy 

B Pis smooth on R2 x R, O < P, < 1f, 3(O,O) = 1, 
2 

as well as other conditions imposed later. The next step is to maximize 4 over 

QT,N = QT X QN 

LEMMA 4.1. Under the above assumptions there is a point ((0, to, 710, so) G QT,N 

such that 

(i) 4'(t, I to1o1, SO) >-( t, 71, s)for (~, tt,i s) e QTN and 
(ii) fe(l o - qO, to - so) 3/5. 

Proof. The existence of (40, to, q, so) follows from the fact that if (a', t', q', s') E 

QT,N and 

(4.10) 41(" ', t'q', s') -) sup4', 
QT,N 

then (c', t', q', s') remains bounded. Indeed, from (4.5), (4.7), (4.9), one sees that 

(4.11) sup 4 > sup (u(xj, yk, n t) - j,k) + 5M =a+ SM, 
QT, N j, k EZ 

O< n 6N 

while (4.7), (4.8) imply 

'(t,t,q,s) < 2M iffj( - ,q,t- s) = 0. 

Hence (4.10) implies AWe(t' - ', t' - s)> O for large 1, and so (q' - 1)2 + 

(tl - SI)2 < E2. From this, (4.1) and (4.7) we see that if 1'11 + In'I oo, then 

limsup'(t', t', 'q, s') < SM + a/2. 
I-oo 

This contradicts (4.10), (4.11). 
To prove (ii), observe that 

2M + (5M + a/2)3e (to - 7, to - so) > '(4, to, q0, so) > sup I > SM + a, 

so 

fle(t-1 0, to - so) > (6M + 2a)/(10M + a) > 3/5. 

In what follows we will put 

(4.12) E = (Ax + Ay + At)1/4 = (Xx + XY + 1)1/4(t1/4 

although we will not use this relation except at certain points in the argument. 
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There are now several cases to be considered. These are: to so > O; to > 0 so = O; 
and to = 0, so > 0. We begin with the case to, so > 0. 

1st case. to > 0, so > 0. It follows from Lemma 4.1(i) that ((0, to) is a maximum 
point on QT of 

(t, t) u(t, t) -at/4 + (5M + aJ/2)fljt- n0 t -so). 

By the definition of viscosity solutions and the equation solved by u, we therefore 
have 

(4.13) 5M-(S + a) DtAf( - n1, to - so) 

+H(-(5M + 2)Dtf3(jo - n, t - so)) < 

(Here and below, Dt,,f, DtIj, stand for the indicated derivatives of B t) which are 
then evaluated at the point shown.) 

The analogous estimate on the discrete side requires more work. Let 

(4.14) (n10, so) = ((Xjo Yko), noAt); 

then (jo, ko, no) minimizes 

(j, k, n) j-* k + (n At) -(SM + 2)e(to -(xj, Yk) to-n i\ t) 

over (xj, Yk, n At) E Qd. Thus 

(4.15) 1J k jo/ko + (c/4)(no- ) t-(5M+a/2) 

x (3(jo - 1o to - So)- 0) o- - (jA\x, k i\y), to - n L\t)) 

for 0 < n < N and all j, k. We next use the monotonicity of G and (4.15) with 
n = nO - 1 to conclude that 

(4.16) 

jolko =G (Un jo,ko 

U njoko + 5 \t(M +2 ((O 70to 5) e( 70to s+/t 
-/g 4Mv 2/ /+8(#Jo _ (;-p /x, to ko-) /y)'(~ , to-So + I\t)) 

9 (5M+ /2Y )3e(o - ((jo-p) A0x, (ko) - r -y), to - so + \t),) 

5M +~ e(a 4(I 

To guarantee the validity of this step we must show that the arguments of g above lie 
in [-(L + 1), L + 1], since the monotonicity is only assumed in this case. Consider a 
typical argument of g above; e.g., any of the x-differences has the form 

(4.17) I/2 [ 964 - 710-((I + 1) Ax, m Ay), to-sO + 't) 

- (to- 1o -(lLAx, m iy), to - sO + At)] 

where 1, m are bounded integers, 

(4.18) 1 +j/l, |mj< max(p,r,q + 1,s+) + 1 =K. 
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Clearly, the difference between (4.17) and -(5M + a/2)Dl /E(Jo - %0 to - So), 
where D1 denotes differentiation in the first spatial argument, is estimated in the 
form const e-2(LAX + AXy + LAt), where the constant involves bounds on the second 
derivative of P3 but is independent of e. Invoking (4.12), we find these errors to be at 
most 

(4.19) const(/t)1/2, 

so (4.17) differs from -(5M + o/2)Di/lj(to - q1g to - so) by at most 1 if Ait is 
sufficiently small. Using the next lemma and these remarks, we see that the 
arguments of g in (4.16) lie in [-(L + 1), L + 1] if Ait is sufficiently small. (Parts (ii) 
and (iii) of the lemma are used later.) 

LEMMA 4.2. Let (40, to , i, so) be as in Lemma 4.1 and L be the Lipschitz constant 
of uo. Then 

(i) (5M + o/2)IDefiE(jo - qo to - so)l < L. 
Let L1 = max(I H(p) I: I p I < L) and to > 0. Then 

(ii) -(5M + o/2)Dtf/3(jo - qo to - so) < L- /4T. 
If also T > to, then 

(iii) (5M + a/2)IDt3E(jo - 710 t - so)l < L1 + u/4T. 

Proof. By assumption, the mapping 
- u((q to) + (5M + o/2)/3(j - qo ' to - so) 

is maximized at ( = 40. Thus for ( E R2 

(5M + o/2)(fi(t - %r0, to - s0) - /3((o - 710, to - so)) 

< U(toq to) - u(( to) ~<, Llto - 1, 

where the last inequality is from Proposition 1.1(v). The inequality (i) follows at 
once. Similarly, 

t -> u(o, t) - at/4 + (5M + a/2):?(j0 - 'q0, t - so) 

is maximized over [0, T] at to > 0, so for small h > 0 

(5M + a/2)[/J( 0- q0 to - h - so) - E(so - qo, to -so)] 

< (u(tO, to) - u(tO, to - h)) - 
oh 

< L h - h, 

where the last inequality is from Proposition 1.1(v). The inequality (ii) follows at 
once. If also T > tog then one makes the two-sided estimate in the obvious way. 

Now we return to (4.16). In this expression we replace each difference in the 
arguments of g by the corresponding derivative of -(5M + o/2)/3E(j - qog to - so) 
at ( = tog thereby creating errors we can estimate-using the locally Lipschitz 
property of g-by multiples of (Axx + AXy + LAt),-2. Then we use the consistency of 
the numerical Hamiltonian g with H to conclude that 

a 6 (5M + a ) IAe(tO -Qo to - so) So)- J(o - qo 9 to -(s0 - At)) 

+H((5M + Dj(- qo to - so)) + X +2 y+/t) 
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where C is a constant one could easily estimate. Making similar arguments on the 
t-difference above, we further deduce that 

(4.20) - < -(5M + - )Dtflj(?- 10, to - so) 

+H( ( 5M+ D?jO- 'qo, to - so)) + CtX + 2\y + /\t) 

Taken together, (4.13) and (4.20) yield 

a iAx + A\y + A\t) 

(with a new constant C). We again invoke (4.12) so that this becomes 

a < C(Ax + Ay + At)l/2 = C(X_; + XY + 1)1/2(At)1/2 

which establishes the desired estimate. 
We turn to the cases in which one of to or so is 0. In these cases we do not need to 

use the information that u is a solution or the detailed properties of G. We rely on 
(4.11) and simple considerations of continuity. However, we will restrict /8 to satisfy 

(4.21) J /3(t, t) = 1 -(I4t2 + t2) for 1412 + t2 < I 

:(t, t) < 2 ~~for lt2 + t2 > 1 

In the event (4.21) holds we know from Lemma 4.1(ii) that 1to - q012 + (to - So)2 < 

E2. Hence 

E2 
Dtflj(O- 

"o', to -S) = - e2 (to -71), 

DtI3e(et o'B to -5?) = - 2 -t o 

and then from Lemma 4.2 we conclude that: 

(4.22) - < e2L/(1OM + a); 

(4.23) If t = T, then Ito - s 1 < e(L1 -a/4T); 

(4.24) If T > to > 0, then Ito-so I lOM + a 

2nd case. to > 0, so = 0. 
By (4.11), Proposition 1.1(v) and the choice of U?, 

5M + a < s (4 to, to 70) < Iu( o, to) - u(q0, to)I + Iu(qo, to) - u(qo,O)I 

+ (5M + a/2)fi(j0 -7 , to - so) 

< Lto- qoI + L1t0 + 5M + a/2. 

The estimate (4.22) holds and either to = 0 or one of (4.23), (4.24) holds. The above 
thus yields a < const e2, and again we are done. 
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3rd case. to = 0, so > 0. In a manner similar to the above we find (using also 
Proposition 3.1(v)) that 

5M + a (4, 0, 71, so) < LIo - qo I + Kso + 5M + a/2 

and so 

a< 2L|0 - qoI + 2Ks0. 

We now need to estimate so suitably and invoke (4.22) once more to complete the 
proof. 

From 

'P(oo0, 9 t So) = ?(lo , So) > 4(to0, ?o, So - /t), 

we conclude that 

-jo,ko -Tso+ (M + 2)fie(0-0 , -s50o) 

> -LfOs7l 
- 

Lk (so-At) +(5M + 2le(to- o-so + At), 

where the notation (4.14) is being used. Since 

jO - 710 to- s0) = fj - 710 -so) > 3/5 

by Lemma 4.1 and (4.12), (4.21) hold, we can assume that f3 has the quadratic form 
(4.12) by taking At small. The above then becomes 

5M +/2 (So2-(So - At)2) 
U 

jo - u0 - 
- Att j K?At. 

Analyzing this inequality, we conclude that so < const(&2 + At). Using this in the 
estimate on a above yields a < const(e2 + At), and again E = (Ax + Ay + At)1/4 
yields a < const(Ax + Ay + At)1/2. 

Proof of the General Case. The remaining step is to remove the restriction (4.1). 
There are two possible ways to do this. We may, for example, follow the uniqueness 
proof in [1] and replace 4 by 

(F = 4+ 28t(t,t, s), 

where 8 > 0, D = + 40, t + to y + yo, s + so) and D E CO?(R2 x R x R2 x R), 
0 < D < 1, t(0) = 1 and (40, to0, q so) is a point such that 

(to, to, q, S0) > sup 4 - 8. 

Then adapting the above proof, one reaches the desired conclusion. (See also [11].) 
Another argument makes use of the hyperbolic nature of the problem, namely the 
finite speed of propagation. Observe that, without loss of generality, we may assume 
H(O) = 0 (replace u(x, t) by u(x, t) + tH(O), H by H - H(O), g by g - H(O), Un by 
Un + n /t). In the statement of the next result, which was proved in [2], we use the 
notation B(x, R) for the closed ball in RN with center x and radius R and put 
BR = B(O, R). 

THEOREM. Let uo, vo E W1'00(RN), let H E Wjllc(RN), and denote the semigroup 
solving (IVP) by S(t). Then, ifyo CE RN and uo(y) = vo(y) on B(yO, R), we have 

(S(t)uo)(x) = (S(t)vo)(x) on B(yO, R -t) 

where P = IIH'jILx(Br) and r = max(lIDuolIL, IIDvoIILx). 
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On the other hand, it is clear from the definitions that if ULjk = Vj kfor 1i - jo1 < R, 
Ik - kol < R (R E N), then Ui,= k j,k for li-io < R - Kn, k - k0 < R - Kn 
with K = max(p, r, q + 1, s + 1). Thus if u0 v0 in B(t0, R) and 40 = (x0, yo), 
and if Un, Vn are the discrete approximations generated by our scheme, we see that 
U19k = j'7k forj, k satisfying 

ij-xo/AxI < R/Ax-2-Kn, Ik-y0/oAy < R/Ay-2-Kn, 

i.e., 

ljAx - xoI < (R - 2Ax) - -(n At), 

Ik Ay -yoI < (R - 2Ay) - (n At). 

It is then easy to conclude the argument by remarking that, uniformly in z0 E R2 
we may find R large enough and a Lipschitz continuous vo with compact support 
such that: u0 = voonB(zo, R); (S(t)uo)(z) = (S(t)vo)(z) for lz - zoI < 1, 0 < t < 
T; and Ujn, = Vln7 for lAx, k ly) - zol < 1, 0 < n < N. Applying the result 
already proved (as we may, since Vn, S(t)Vo also have compact support), Theorem 1 
is proved. 

We pause to comment on a few of the possible extensions of the preceding results. 
First of all, it is straightforward to treat more general Hamiltonians H(x, t, u, Du). 
For example, in one space dimension, let H(x, t, r) be Lipschitz continuous in 
R x [0, TI x [-R, R] for each T, R > 0. Then an approximation 

+= Un - Atg(xj, t', Ac * Ax + ) 

=G(xj, tn S Ui p~ ... * * Uj+q+l ) 

is consistent if g(x, t, a,. ..,a) = H(x, t, a) and monotone if bj7+ is a nondecreas- 
ing function of UjLp,... U+q)+%1. If the numerical Hamiltonian is also Lipschitz 
continuous on bounded sets of R x [0, TI x RP"2, we can again estimate Ij]- 
u(xj, tn) by a multiple of (At)1/2 if u0 is Lipschitz continuous. (The simple 
Propositions 1.1 and 3.1 need to be appropriately generalized. See [11].) 

Next, we could discuss the corresponding stationary problem u + H(Du) = f(x) 
in RN as well as boundary value problems (see [9]), but we will not formulate any 
precise results here. It is also clear that implicit approximations can be handled 
equally well. 

We conclude this section with some final remarks in the context of the equation 
Ut + H(Du) = 0 (which apply to its generalizations as well). If one reexamines the 
above proofs under the assumption that H and g are globally Lipschitz continuous, 
one sees that the estimate on UL,7k - u(x1, Yk, n At) depends on u0 through its 
Lipschitz constant L = L(uo) (provided that u0 is kept bounded) in the form 

-Ujk U(Xj, Yk, n At)j < C(L2(At)l/2) 

(where we assume L is not small and At is not large). Using this fact and the 
nonexpansive nature of S(t) (Proposition 1.1(ii)) and G (Proposition 3.1(iii)), we 
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conclude that if (nkn u, ?vjkn v, are the discrete and exact solutions for initial data u0 
(possibly not Lipschitz) and v0 (Lipschitz), then 

|Uj, k U (Xj U Yk U tn ) |:| j, k - j k | j k - V ( Xj Yk Z tn) | 

+ |V(Xj, Yk' tn) - U(Xj Yk' tn)| 

< 2||u0 - v01l + C(L(vo ))2(1t)1/2. 

This allows us to conclude the convergence of the numerical scheme for general 
U0 E BUC(RN) with an error estimate. For example, if u0 is Holder continuous with 
exponent a, we can choose v0 above so that the error is at most const(At)a/(2(2-a)). 

5. Convergence of the Vanishing Viscosity Method. It has long been standard to 
attempt to approximate (IVP) by the problem 

(IVP) auE/at + H(Du') - E Au' = O in R X (0, oo), 

uE(X,0) = u0(x) in RN. 

By anology with fluid mechanics, this method is referred to as the method of 
" vanishing viscosity". If H E Wjl,,V??(RN) and u0 E W'l?(RN), standard results and 
methods for quasilinear partial differential equations yield the existence and unique- 
ness of a solution uE of (IVP)E in the class BUC(RN x [0, TI) fl C21(RN x (0, T)) 
(i.e., continuous second order spatial and first order time derivatives) for all T < 0o. 
Our main result is 

THEOREM 5.1. Assume H is locally Lipschitz continuous on RN, uo is bounded and 
Lipschitz continuous on RN and T > 0. Then, if UE denotes the solution of (IVP), and u 
denotes the viscosity solution of (IVP), we have 

(5.1) sup sup juE(X, t) - u(x, t)I < c/, 
O < ts< T x E RN 

where c depends only on the Lipschitz constants of uo, H and T. 

Proof. To simplify the presentation we will only consider the case when H(O) = 0 
and u, uE -- 0 as lxi -> o uniformly in t E [0, T] (T < oc). The general case is 
easily obtained by (now) routine adaptations of this simpler case [1], [2]. 

Assume 
(5.2) a = sup sup (u(x, t) - uE(x, t)) > 0, 

O0<ltsT xeRN 

and let 4: RN x R+x RN x R+-> R be given by 

(5.3) {(x, t, y, s) = u(x, t) - U"(Y, s) - 4j(t + s) 

+ (SM + j)I3a(X -y, t -s) 

where M = Ilull, xa > 0 and Pa' ,B are as in (4.7), (4.9), (4.21). (We now use x, y to 
denote points in RN.) Just as in the previous case, we conclude that there is a point 
(x0, tog0, Y s0) which maximizes 4 over (RN x [0, T])2. Moreover 
(5.4) 4(xo, to, yo, so) > SM + a and 13a(Xo - yo, to - so) > 3/5, 

so that 

(5.5) x0 _Yo12 + (to - So)2 < a2/2. 
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As before,we will consider the cases to, so > 0; to = 0, so > 0; and to > 0, so = 0 
separately. Before doing so, we review a few properties of uW. We have the 
elementary estimates 

(5.6) iu! | M, IDuE I < IDUOIIL-(RN) in RN x (0, mo) 

(see, e.g., [2], [10]). Therefore H(DuE) is bounded independently of e. The following 
lemma will then allow us to estimate the modulus of continuity in time of uE in the 
form 

(5 .7) |u(x, t ) - u -(x s )| < KVe It - s |'/ + K|t - s | 

LEMMA 5.2. Let v E C2,1(RN X (0, oo)) fl Wl,'(RN x [0, om)) satisfy lvt - eAvl < 

Ko in RN X (0, oo). Then there is a constant K depending only on Ko and 

supt>0 11Dv|IL (RN) such that 

lv(x, t) - v(x, s)j < K(Vi t - si1"2 +t t-sl) forx E RN, t, s > 0. 

Proof. Let p E C'(RN) be a standard mollifier supported in the unit ball and 
satisfying fp(x) dx = 1. Put Va =p * v. Clearly Ivat - ev,aI < KO in RN. Thus 

11VatIiLx(RN) < KO + eii&VaiiL-(RN) 

< K0 + -IDvaIiLcE(RN) < Ko + - IDVIIL-(RN) for t > 0, 

where c depends only on p. Therefore 

|v(x, t) - v(x, s)j < |v(x, t) - Va(x, t)| + jv(x, s) - Va(X, s)| 

+ KO + )KE It-5S 

< K(a +It - sI+(e/a)lt - s1), 

where K denotes several constants with allowed dependencies. Setting ax= 
1/2 lt - s1112 yields the result. 

We now turn to the cases to > 0, so = 0, and to = 0, so > 0. Here only continuity 
considerations are involved, as before. If to > 0 and so = 0, we have 

SM + a < 4'(xo, to, yo,0) 

< 5M + a/2 + Iu(yo, to) - u(xo, to)| + u(xO,0) - u(xO, to)j 

< 5M + a/2 + c(xo -Yol + to). 

Now, in a manner similar to (but simpler than) the 3rd case in Section 4, we can 
conclude that lxo - yol and to are bounded by multiples of a2 and so a < ca 2 in this 
case. If a = E1l4" we have the desired estimate. The case to = so = 0 is subsumed 
under the one just treated. If to = 0 and so > 0, we have 

u?(y, so) - (SM + -)/3a(x0 - yo, -So) +-s 
8 Y? 5? t 2 lA o Yo_ T 

< u"(yo,0) -5M + -)/3a(xo -yo, 0) 

From this and (5.5), (5.7) we deduce an estimate 

s 2/a2 < K(Ve so + so) 
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where K is independent of a. This implies that so < K(&'13a 4/3 + a2). Now 

SM + a < +(x0,O, yo, so) < SM + a/2 + Ka2 + KV s + KsO. 

Using the previous estimate and letting a = _1/4, we conclude that a < Ke172. 
The final case, so > 0, to > 0, uses the equations satisfied by u and uE. From the 

fact that u is Lipschitz continuous in x and t we deduce that 

ID 13a(xo - Yo, to - So))I, DtI3a(Xo - Yo, to - So)I 

are bounded, where Dx, Dt refer to the derivatives of /,a(x, t). This implies 

(5.8) Jxo -yo, Ito-s0o < Ka2. 

Using that u is a viscosity solution, we have 
(5.9) a/2T-(5M + a/2)(DtI3a)(Xo-yo, to-So) 

+H(-(5M + U/2)(Dj3a)(xo - yo, to - s0)) < 0. 
On the other hand, using UE E C2'1 and that (yo, s0) minimizes (y, s) 
+ (x0, tog y, s) over RN X [0, T] we also have 
(5.10) uV(yo, so) + a/2T + (SM + a/2)(Dtf3a)(Xo-yo, to 0S) < O, 

(5.11) DUE(yo, so) + (5M + U/2)(Dxf3a)(xo - yo, to - so) = 0, 

and 

(5.12) Au-(yo, so) - (SM + U/2)(A#Ia)(xo - yo, to - so) > 0. 

Now proceed by using u' + H(DuE) - - Au' = 0, and (5.10), (5.12) to deduce that 

c(5M + a/2)(Af/3)(xo - yo, to - So) 
-H(-(5M + a/2)(DxI3a)(xo - Yo, to - so)) 
+ a/2T + (SM + a/2) (Dtf3a) (xo - yo, to - so) < 0. 

Now, using (5.9), we conclude that 

a/2T < c(5M + U/2)(A#Ia)(xo - yo, to -so), 

and this yields a < Kc/a2. Again, if a = -1/4, we have the desired estimate. 
Remark. By contrast with the analysis in Section 4, the Lipschitz continuity of H 

was used only to assert that (IVP)E has a smooth solution. If H is merely continuous, 
one still has uV and AuE in LIoc(RN x (0, oc)) for 1 < p < oc, and the estimate (5.1) 
can still be proved. 
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