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Numerical Analysis of the Exterior Boundary Value 
Problem for the Time-Harmonic Maxwell Equations 

by a Boundary Finite Element Method 
Part 2: The Discrete Problem 

By A. Bendali 

Abstract. With the help of curved and mixed finite elements, we introduce an approximate 
surface on which the discrete problem is defined and construct surface currents and charges 
which approximate the solution of the continuous problem studied in a previous part. We 
study the existence and uniqueness of the solution of the discrete problem and give estimates 
for the error between currents, charges, corresponding fields and their calculated approxima- 
tions. 

1. Surface Approximation and Finite Element Spaces. 
1.1. Introduction. The numerical method to be introduced must be a realistic one. 

Therefore, one has to consider an approximate surface which can be effectively 
handled by the computer. In the numerical analysis of the boundary finite element 
methods (see e.g. [12]), the introduction of a surface approximation resembles 
numerical integration. So, in order to avoid inessential complications in the proofs 
and notation, we assume that there is no error coming from numerical quadrature. 
Nevertheless, the subsequently developed analysis, which takes into account both the 
approximations of the surface and of the tangent plane, deals with the case where 
numerical quadratures are used and leads to the same inferences and error estimates. 

Considering an approximate surface and using the mixed finite elements intro- 
duced by Raviart and Thomas [17] for a domain in the plane, we define mixed finite 
element approximation of tangent fields to a surface of R3. A suitable mapping 
insures the link between the fields defined on the surface and corresponding fields 
defined on the approximate surface. This leads to a discrete problem which has an 
easily computable solution. 

The numerical analysis of this problem needs a generalization of Thomas' results 
for the coercive case [19] to that of a "Fredholm alternative" discussed in the first 
part of this work. To keep the presentation short, we do not introduce an "abstract 
framework". However, as in the first part, we shall give the study in a form which 
can be easily adapted to other problems of the same type. In particular, our 
approach leads to a slight generalization (when one also considers numerical 
integration) of the Fix and Nicolaides results [5] with the improvement that there is 
no need to introduce the adjoint problem. 
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Here, we retain the notation and the definitions introduced in the first part of this 
work. We refer to formulas, theorems, etc. of the former part by giving their 
numbers and specifying that they are given in Part 1. C indicates, as usual, various 
constants not necessarily the same in all instances. 

1.2. Geometrical Approximation. Let { Wi, Di, J }(ii be a "triangulation" of the 
surface F introduced in Part 1; i.e. { wig, (i }=P is an atlas for F and Di is a closed 
polygonal domain contained in wi such that 

i =P 

(1.1) F = U i(Di) 
i=1 

(1.2) i (Di) n IDj (Dj) for i #j, is either a common vertex, empty 

or a common "curvilinear edge". 

Such a triangulation always exists, since F is an oriented compact manifold (cf. 
[3]). Following Nedelec's ideas (cf. [12]), we introduce a triangulation Y* = UY yh 

such that Yh, for each i E {1,9. . ,p }, is a common regular triangulation of Di, i.e. as 
used in finite element discretization (cf. e.g. [4]). We partition each Di into a 
collection of triangles T satisfying 

(1.3) hT = diameter of T < h, 

(1.4) T S c, c constant independent of T and h, 

PT is the diameter of the largest circle which can be inscribed in the triangle T. We 
also assume the following compatibility conditions between the different triangula- 
tions ,Yh if T1 and T2 are any triangles belonging respectively to yh and jh then if 

aT's, denotes the s,th edge of the triangle T,, i(aTls1) nq I(aT2,S2) is either a 
curvilinear edge, a vertex, or empty for any edge aT1 51 of T1 and any edge aT2, S2 of 
T2. We denote this triangulation by ,h* because it is just used to define a 
triangulation yh which will be the basis of subsequent constructions and which is 
defined as follows. Let IT7, i = 1,... ,p, be the linear interpolant of (I on T lying in 
Di. Then, at least for h small enough, the juxtaposition yh of the triangles 

(1.5) K = (i (T)g Ts , =E1..,p 

defines a polyhedral surface denoted by Fh. Fh is a closed Lipschitzian surface in the 
sense of Necas [11]. 

For the lowest-order geometrical approximation, we take Ph as the approximate 
surface Fh. For closer approximations, we proceed as follows. Fix an integer 1 > 1. 
For all K E 7h, we introduce a C0 finite element { K, 1K' Pi} of Lagrange type (cf. 
e.g. [4]). In the sequel, P, will denote the space of complex coefficient polynomials of 
two variables of degree / or less. EK is the corresponding set of degrees of freedom 
leading to a finite element of class C?. EK actually consists of the values taken by p 
in P, on a finite set N, of nodes contained in K. Let us denote by 4 the orthogonal 
projection defined in a neighborhood of F (cf. e.g. [12]). Using the fact once again 
that h can be taken sufficiently small, we can assume that 4 establishes a bijection 
between Ph and F. Hence, we can consider the mapping FK, defined for all K E h, 
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as the interpolant of OIK through the finite element previously introduced. The 
approximate surface rh is then defined by 

(1.6) rh = U FK(K). 
Ke7h 

It is clear, since the different interpolants meet at the edges of Fh, that rh is a 
closed Lipschitzian surface in the sense of Necas [11]. 

Notice that the previous construction keeps Fh unchanged if 1 = 1. In the sequel, 
we shall introduce other geometrical approximations and, when needed, we shall 
recall the error estimates given in [12]. 

1.3. Some Finite Element Spaces. For each triangle K belonging to 7h, we 
introduce an orthonormal frame { OK, f(K), f2(K)} of the triangle plane. For an 
integer m > 1, we consider the following space Dm introduced by Raviart and 
Thomas (cf. e.g. [17] and [20]): 

pE Dm if and only if there existsqo, q1, q2 E Pm-(K) 

such that qo homogeneous of degree (m - 1) 

(1.7) p )po(() 
' 
(K), 

P (0) = qj) + aaq0((); a = 1,2; 
( = 1 42) in the frame {OK, A(K), A(K)}. 

With the above space, we associate the following set of degrees of freedom 

(1.8) f(p, -j)wdl; j = 1,2,3 Vw E Pm,(aKj), 
AKj 

Pv 

where i) denotes the unit normal to the edge aKj outwardly directed to the triangle 
K, forj = 1, 2, 3, 

(1.9) f paw d; a = 1,2VwE Pm 2(K) 
K 

(this latter condition is omitted if m = 1). 
The dimension of Dm is m(m + 2). The space Dm, the degrees of freedom (1.8) 

and (1.9), and the domain K constitute a (mixed) finite element; see [20] or [17]. 
The essential generalization will be to suitably define a corresponding finite 

element over F or Fh. In this section, we only define finite element spaces over F. 
The corresponding definitions over Fh will follow later and will be related to suitable 
approximations of the sesquilinear and linear forms which are used to formulate the 
-roblem. To this end, we recall some differential geometry notation (cf. [3]). 

The parametrization of the curvilinear triangle 

(1.10) K = + o FK(K) 

of F leads to the definition of the basis of the tangent vectors to F 

(1.11) eae a (aPFK) 
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which provides the expression of such vectors from their contravariant components. 
The Riemannian metric is defined through the tensor 

(1.12) gap ( e.0 e ) - 

The determinant g = det(g,,) of this tensor leads to the 2-form T, having V/i as 
strict component and giving the surface measure in a neighborhood of K. 

Now, let T and vi be respectively a C? function and a C' tangent vector to F. 
v = Ve,C4 in local coordinates near K. Stokes' formula yields 

(1.13) fdivr((Pi)T =fi(q9V)T, 
K aK 

where i(p17)T is the 1-form defined as the interior product of the form T and the 
vector TV'. The covariant components of i(v)r are given by 

(1.14) (i(TO )T)fl = TVaE2 g 

where EaY is the Kronecker tensor (cf. [3]). 
Returning to less general but more familar notation, the previous equality (1.13) 

may be written 

(1.15) f { divr V + ( v` ,grad r.p )}dy = | (RK Uj 
j=1 K 

where grade p is the surface gradient of p and dy is the surface measure of F. RKV is 
a vector in the triangle K plane given by 

(1.16) RKi= xva( ) f(K). 

This review makes clear the following definition of the finite element approxima- 
tion Xh of the space X introduced in the previous part: 

(p E Xh if, and only if, RKP E Dm VKEf K 

(1.17) ( KRK1 S K11) + (RK2 P vK2S2 

on each curvilinear edge aK = (i? FKj) (8aKjsj), j = 1,2. 

We have written -K, for the unit normal to the sjth edge aKj sj of Kj outwardly 
directed to Kj. The last 'equality in (1.17) is defined as that of two polynomials of the 
real variable t defining the usual parametrization of the edge aK1 - 

Clearly, denoting by m a C' function defined on F and by v a tangent vector field 
to F which belongs to Xh, definitions (1.13) and (1.14) yield 

(1.18) ir fdiv(13d,y+ ( ,gradrw)d.y = 0, 

where divr j is a function lying in the finite-dimensional space 

(1.19) Wh (AE L ();l{ q((); q(4) E Pm_(K) vKE$h} 

If we choose T 1 in (1.18), we see that divrpj actually belongs to the subspace 
Mh of M (cf. Part 1 for the definition of M) defined by (cf. (1.19)) 

(1.20) Mh (XEWh; I f()d =O 
KEYhK 



TIME-HARMONIC MAXWELL EQUATIONS. PART 2 51 

We also need to describe a subspace of Xh containing divergence-free elements. To 
this end, we introduce another finite element space: 

(1.21) Sh-= {V E- C (F); vIR E Pm(K) VK EY5h)}. 

We have written v I k for the function v o 
It is well known (cf. [13]) that this space is a subspace of H1(T) and that, for 

v E Sh, the tangent vector field to F defined by 

(1.22) crrl k 'E12 e. 

belongs to Xh and satisfies 

(1.23) divr(3 rv) = 0. 

1.4. Approximation Properties of Finite Element Spaces. First, we recall Thomas' 
[19] results on the approximation of plane fields: 

PROPOSITION 1.1 (THOMAS). For all K of gh and s > 2, one can define an 

interpolation operator ilh: { Hs(K )}2 -} H(div, K), where 

(1.24) H(div, K) = - E { L2(K) }2 ; divp Ee L2(K)}. 

For - E { Hs(K )}2, Hh is given by 

(1.25) IhP E Dm; 

(1.26) f (11h5,i))wdl =f(-, p))wdl Vw E Pm_i j 1,2,3; 

(1.27) f(1lhi3)awdf =fIpawd ; a = 1,2 Vw E Pm-2 

Moreover, we have the estimates: 2 < s < m, 

(1.28) IP 11hPO,K < CshSIIPIIs,K VP Ee {Hs(K))2 

where Cs is a constant independent of h and K. 

Proof. The proof is given in Thomas [19] for s an integer. Since K has the strong 
m-extension property, the proof for real s, 1 < s < m, follows from interpolation 
theory (cf. [10]) which gives intermediate estimates between those obtained in the 
cases where s = 1 and s = m (cf. [1]). The proof for 2 < s < 1 has not yet been 
published. Therefore, we reproduce it below. 

Clearly, trace theorems (cf. [10]) show that the interpolation operator Ilh is well 
defined. Then, we have to estimate 

(1.29) IP = - _h d= PIIO,1 K "K - 

Consider the affine mapping defined by 

(1.30) B" + b, 



52 A. BENDALI 

which maps the unit reference triangle K (cf. [4]) into the triangle K: 

(1.31) K E R; (1 (2 > ?; 41 + 42 < 

Then, we define 

(1.32) J =det B, 

(1.33) p = JB-1j( ). 

A linear variable change yields 

(1.34) llP - rlhPjl 0K = J IBll2IP - PIIo,k' 

where Ii is the interpolation operator over K built in the same way as 1h. 

The Bramble-Hilbert Lemma leads to: 

(there exists a constant C, depending only on s and m, such that 

(1.35) [P - HfVo, K CslPIsk. 

We have used the following notation 

(1.36) 
A 

1 v sk Kxk ix-y Y2?2sdxy 

Returning to the previous variables and using the well-known estimates given by 
regularity assumptions on the mesh (1.3) and (1.4), we obtain 

(1.37) lIP - hPlOK C s,K 

where Cs is again a constant independent of p, h and K. This completes the proof of 
the proposition. O 

PROPOSITION 1.2. For any s > 2, one can define an interpolation operator Ih from 
THs(F) into Xh by 

(1.38) RK(1h p) =HhRKI VK E -h. 

(We also denote by 1h the interpolation operator from THs(P) into XJ.) For 2 < s < m, 
the following estimate holds 

(1.39) [P - H,Ifo,r -< CshSlPlIls,r VP3 E THs(r). 
Proof. The first part of the proposition is clearly a direct consequence of the 

previous definitions. Since the partial derivatives of 4 o FK up to the order m are 
uniformly bounded on K by a constant not depending on K or h, the estimate (1.39) 
easily follows from (1.28). 0 

Remark 1.3. Green's formula and the definition of 1h P give 

(1.40) div(R P)w = |Kdiv( R )-w d, K' 
KK 

for all w E Pmi-(K), all K E yh and allp E TH1(r). This may also be written as 

(1.41) fWdivr(HhP)dY = P Vw Pm_i(K); 
'v/K 

- 
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In other words, defining the projection operator Ph from L2(r) onto Wh by 

(1.42) f 
w(PhX)Jgdt = fVwJgdt 

Vw e 
Pmi-((K); 

VK E K K 

we can write 

(1.43) Phdivrp = div,(11h1) for allpi E THS(r); s > 1. 

Moreover, we have 

(1.44) Ph X E Mh for all X E Mn LL2(r). 
The arguments developed by Nedelec [12] yield 

ffor 0 <s s, t < m, there exists a constant C independent of h: 
(1.45) 

t lIX-Ph XlI S r <Chs + tIlXlIt,r VA E Ht( r) . 

Hence, it results from (1.43) that 
( for 0 < s, t < m, there exists a constant C independent of h: 

(1.46) Ildivr - 
divp(HIh)II|s,r < Chs+tllpllt+l, Vf3 E THt+1(r). 

We shall also use the so-called inverse inequalities: 
Let 0 < s < t < 1, there exists a constant C such that 

(1.47) hsIjAI Sr < h- ||AN -t,Ir VX E Wh, 

(1.48) IIpII 11s r < h[II P--II-t r Vf E- Xh. 

These latter estimates can be obtained in the same way as in [121, using the regularity 
property of the mesh (1.4). o 

The operator C (cf. (2.42) in Part 1) is a bounded mapping from Ht(r) into 
Ht l(r) for all real t. Hence, for t > 0 and p E THt(F), we can define the affine 
subspace of Xh: 
(1.49) Vh(-) {q E Xh; b(P, q) = b(P, p);Vp E- Mh} 

(cf. Part 1 for the definition of the sesquilinear form b. We recall that b(v, p) 
= (CP, divrpi)). 

The subsequent error estimates need a bound of the quantity inf4E VA(f)lip qsr 
for some values of s. 

First, we treat the case s = 0. To this end, we introduce the following problem: 
(Find h E Xh, Eh e Mh, such that 

(1.50) (h -p,) + b(Xh, )=O Ve Xh,* 

b(,Ph -p-) = 0 VX E Mh 

Ph is actually the orthogonal projection of p over the affine subspace Vh( p); Xh plays 
the role of the associated Lagrange multiplier. 

THEOREM 1.4. The problem (1.50) has one and only one solution (Ph, Xh). Moreover, 
forO < t< mand0 a < !,we have 

(1.51) IP - pIIo r Cht-l/2-alIIIt, r 
where C is a constant independent of h and of p Ee THt(T'). 

* We have denoted by (p, q) the scalar product of - and q lying in the Hilbert space TH0(r). 
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Proof. It will be carried out in several steps. 
Step 1: inf-sup condition. Fix X in Mh. Classical results on elliptic problems and 

standard properties of the Laplace-Beltrami operators Ar on F lead to: there exists 
one and only one w E H2(F) n M such that 
(1.52) A]pw = div]p(grad] w) = X in.9'(F), 

and for a in the interval 0 < a < 2, W satisfies the estimate 

(1.53) 11W113/2+a,F < CjjXjj-1/2+a, 
where C is a constant only depending on a and F; cf. [21]. 

We set p = grad]w. The interpolant 1h p of p is then well defined and, in view of 
(1.43), satisfies 

(1.54) divp(Llh ) X. 

The coercivity of the operator C (cf. (2.43) in Part 1) yields 

(1.55) b(X, ihp) = (cx, x) > a| I 1/2,r, 

where a > 0 only depends on F. 
The estimate (1.28) and the inverse inequality (1.47) give 

(1.56) sup { qi, Ib(X, q)l) > ah /2?aIIXIIo ,p 

where again a > 0 depends on 0 < a < 2 and on the surface F. 
Step 2: the case t = 0. Since Xh and Mh are finite-dimensional spaces, Brezzi's 

theorem (cf. [2]), by (1.56), insures the existence and the uniqueness of the solution 
of the problem (1.50). Moreover, we have the following estimate: 

(1.57) ahl/2+aIIXhIIoF - lIP-PhllO,r 

Therefore, since Ph E Vh ( P) 

(1.58) [II2x ]r IIPIIO,PIIPhIIO,r + Ch-112-Ill-Io1r,Fp - PhIor. 

The estimate (1.51), for t = 0, is then an easy consequence of the inequality 

(1.59) labI < -a2 + 2b2 for all a, b E R and e > 0. 2 2 e 

Step 3: the general case. Letp3 E TH'(F). The solution (P-h, Xh) of problem (1.50) 
satisfies 

(1.60 f(ph hpq) +b(Xh, q)= (b- X,h ) V4E Xh, 
(1.60) tbr h IhP = (,p-HP) vEM \b(v,3h1h1)b(v, -lI PMh. 

Following the lines of the proof given in the previous step and using the estimates 
(1.39) and (1.46), we obtain (1.51) for t = m. The intermediate case results from the 
standard techniques of interpolation between two estimates (cf. [10]). El 

In order to deal with the case s < 0, we prove the following lemma: 
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LEMMA 1.5. For 2 < t < m + 1 and - 2 < s < m, there exists a constant C, 
independent of h and of p Ee THt(t), such that the solution (Plh, Xh) of the problem 
(1.50) satisfies 

(1.61) IldivrA - diVrpj--Ils < Chs tpr- 

Proof. The sesquilinear form defined for X and 1i E H-1/2(P) by (CX, /), C 
being the previously introduced operator, is a scalar product on H-1/2(F). Denote 
by wrh the orthogonal projection operator from H-1/2(r) onto Wh associated with 
this scalar product. The orthogonal projection with respect to this scalar product 
also leads to an operator oh acting from Wh onto Mh. Standard techniques which 
now are well-known (cf. [81, [12]) lead to the estimates 

(1.62) / . 2for2 sm,2 tm +1, 
IIX - ghXlI-s-lr <- Chs+tfIIXIt-,1p, 

where C is a constant independent of h and of X E H`(r). 
Let h be fixed. Consider the function y0 E Wh defined in local coordinates by 

(1.63) g4- t= 1 on each K E .h. 

It follows that 

(1.64) fIdy KE8 dK >, C1 > 0, 
r KSh K 

and also 

(1.65) KEh dy E dt < C2, 

where C1 and C2 are constants independent of h. 
The function 14h is used to write 

(1.66) A A (T + hX, 1) (ah - ) 

Using (1.64), we arrive at 

(1.67) ||h7ThX - 'AII-s-1l, ll[hX - XII-s-1,T' + C (70T/A,1)| IGhLo - ILtII0 -0 r 

Let X E M. It follows that 

(1.68) Ifhl\,1)l =IK'hX - X,1)I < CllThX - X11m--1,Ir. 

Therefore, using (1.62), (1.65), (1.68), we easily obtain 

(1.69) jJa,,hhX - X11-s-1,r < Chs+tfIXII,t-1r, 

where C is a constant independent of h and of X E Ht`(r) n M. 
To complete the proof, we have only to remark that 

(1.70) divrph = ah7rhdivrP. [ 
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Following the lines of the proof given in [12] for s - - 2, one can establish that 
the orthogonal projection operator 

(1.71) Sh:L 2(r) -_ Sh 

satisfies the estimates 

(1.72 Jfor -(m + 1) < s < 1; 0 < t < m + 1 and s < t, 
(1.72) lShV - 

Vllsr < Cht-SIvjj|t,r Vv E Hf(r). 

Using the fact that a tangential derivative defines a bounded mapping from Hs(17) 
into Hs-'(P) for all real s, we immediately deduce 

( Let s and t satisfy the conditions of (1.72); 

(1.73) i lcur Shv - irVIIs.i,r < Cht sllvllt,r Vv E Ht(F). 

We have now laid the groundwork for the following theorem: 

THEOREM 1.6. Let there be given s, t and a satisfying 2 < t < m; 0 < s < m and 
O0< a s 2 . Then, there exists a constant C independent of h and of p E THt(') such 
that, if( Uhl Xh) denotes the solution of the problem (1.50), we have 

(1.74) IIP - P 11 r 1 Ch5+t l/2-<cllPll r. 

Proof. The proof is based on the following Hodge decomposition (cf. e.g. [21]). 
The mapping from {Hs+I(F) n M}2 X C2n into THs(F), which assigns to each 
(u, v, { ai )i=-2n) in the former space the tangent vectorp to I, defined by 

2n 

(1.75) p= gradru + Trv + E+ ai 
i=1 

is an (algebraic and topological) isomorphism. The surface F is supposed to have n 
"holes". We denote by {6 

* 
i-=2n a basis of the harmonic 1-forms of r. Therefore, for 

s 0 0, there exists a constant C not depending onp E THt(F) such that 

(1.76) [P - Phl-sF 

< C sup J(P h-p,gradru)l 
uE=MmHs+l(r) IIuIIs+i,r 

+ sup |P Ph ) + E (+ Ph * 
) ) 

ve MnHs+1(r) ||v||5+I,r .i= 1 h'I 

Integration by parts yields 

(1.77) J(jP P h, gradru)j =|(divrp - divrph, u) 

< Ildivr 4 - divr Ph115s_l1rllulls+1,r. 

divp(Hshv) divivFIlho' = 0 leads to 

(1.78) I(fi - Pih, iv)I =I(P - Ph, ]V - curshv)l 

< Chsllp - PhllO,FIIVlls+l,r, 

(1.79) ( 
)| I(P jh, - 

hO')| < ch'||j - I, 

The end of the proof is then achieved by (1.51) and (1.61). O 
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2. The Discrete Problem. In this section, we set up the discrete problem and show it 
to be well-posed (under the assumption that k2 is not an eigenvalue of the interior 
problem). A realistic way to discretize the equations is to define the problem on the 
approximate surface. Moreover, in the present case, we are faced with sesquilinear 
forms (for instance, a and r) which not only involve the surface but also its tangent 
plane. The natural way of doing the approximation consists of replacing the tangent 
plane to the surface r by the tangent plane to the approximate surface rh. This 
consists in replacing the tangent plane basis e' (cf. (1.11)) by a FK/ata (cf. (1.5)). 
The following analysis shows that, in this case, there is a loss of one convergence 
order. In the case of the lowest-order method (i.e. 1 = m = 1), which is the method 
proposed by Rao et al. [16], there is even danger of loss of consistency. In order to 
overcome this defect, we propose the following treatment. For all K E Yh, a 
Lagrange finite element { K, KI Pt I}I of order 1 + 1 is introduced. If OK denotes 

the interpolation operator associated with this finite element, the approximation of 
the basis e' is carried out as follows: 

(2.1) a F 

This basis can be computed using only the coordinates of the surface points 

(2.2) oFK(() V GE NK 

where NK is the set of nodes defining ,2K 
For instance, if the surface is approximated by the juxtaposition of planar 

triangles, the vectors eah are calculated from the coordinates of the vertices and the 
orthogonal projections of the midpoint of the edges. 

We give the study only in the case where approximation (2.1) is used. In the case 
where 1 > 1 and e - aFK/ a, the same analysis leads to similar results with a loss 
of one convergence order in the geometrical (consistency) error. 

2.1. Formulation of the Discrete Problem. We now introduce approximate sesqui- 
linear forms ah, bh, etc., of those a, b, etc., defining the continuous problem. This 
will be achieved by suitably relating finite element spaces defined in the previous 
section to finite element spaces defined on the approximate surface Fh. We recall 
that, in order to simplify the notation, we do not distinguish between an element 
defined on the surface F and the corresponding one defined on the approximate 
surface Fh through a suitable mapping. 

Let p Ee Xh be given in local coordinates by 

(2.3) PIK par, 

where RKP = pafa(K) (cf. (1.16)) lies in D,. Then, the corresponding vector is 
defined on Fh by 

(2.4) P1 Kkh = g P ea. 
grh 

We have written 

(2.5) Kh = FK (K) 

and gh for the strict component of the 2-form defining the surface measure 
associated with the parametrization (2.5) of Kh. 
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In the same way, if X e Wh is given in local coordinates by 

(2.6) AIk= r; r e Pml(K), 

the associated function is defined on Fh by 

(2.7) XARK = 
I r. 

It must be emphazised that the vector p defined in (2.4) is not a tangent vector to 

Fh. Its surface divergence on Fh is defined by 

(2.8) divf 'Ilk= 
1 apa 

We can then introduce approximate sesquilinear forms by 

(2.9) ah( p q) = GO(x, y)(p(x), q(y))dyh(x)dyh(y); rhxr, 

(2.10) bh(X, p) = f Go(x, y)X(x) divrhp(y) dyh(x)dyh(y), rhxrh 

forp E Xh and Xh E Wh. We have written dyh for the surface measure of rh. 
The other sesquilinear forms r, a = a + r, etc., are obtained in the same way. 
Remark 2.1. The sesquilinear forms (2.9) and (2.10) actually have the following 

expressions (cf. (2.3), .. ., (2.8)): 

(2.11) a(p, q) EGO(XhF YPa qJ(K) (eah(h)JK eah(7T))d d 
K,TEhKXT 8 )h XT 

(2.12) bh(, d) K?(h Tyr a 

We have written 

(2.13) Xh = FK(O; Yh FT(=I), 

-0 1 
(2.14) q I -= -q 'epB 

We remark that the above expressions only involve integrations of polynomials 
weighted by the kernel Go over planar triangles. E 

We also denote by c a field, defined around r, having as tangential trace on r the 
previously introduced field c'. Given q E Xh, the following integral can be seen 
through the duality pairing as an element c' approximating c in H' 

(2.15) (h f (J, q)dyh. 

The discrete problem can now be stated: 

(find ( Ph Xh) E Xh X Mh such that 

(2.16) Id p(v,15) +q h(Xh )=0q V EMXh 

t h(PI Ph) + Ch(Xh, P) = 0 VP E= Mh 
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Indeed, we shall see below that any solution (Ph, Xh) of this problem satisfies 

(2.17) divr + k2h O on r. 

Thus, the problem which is to be numerically solved is 

find Ph E Xh such that 

J G ( xY y){-7k2 divPh(x) divr h4(x) 

(2.18) l + (Ph(x), q(y))}dyh(x)dYh(y) 

| =ft (c,q3)dyh V4EEXh. 
\ ~~~rh 

The actual form of the above problem which can be handled by the computer is 
the linear system 

(2.19) [Z][I] = [U] 

where [Z] is a complex symmetric (but not Hermitian) matrix. The symmetry of [Z] 
indeed results from a general principle known in electromagnetism as the reciprocity 
principle (cf. [7] and [22] for more details). 

THEOREM 2.1. Consistency or geometrical error: The approximate sesquilinear forms 
ah, Sh' etc., satisfy 

(2.20) ah(p, q) - a(jp, q)| < Ch'ft IIfIIHIqJ1I 

(2.21) Ish(A, P) - s(X, P)I < Ch'IIXIIMIIPIIx, 

where C is a constant independent of h, p, q e Xh and X e Mh. (The other forms 
satisfy identical estimates.) 

Proof. We only outline the essential features of the proof which is obtained by the 
arguments developed in [12]. 

Variable changes in both the integrals over F and Fh yield (cf. (2.11) and (2.12)): 

(2.22) la(p, ) - a( p, q4)1 

| E | ~pa ( ) qfl( t1) { Go (Xh I Yh )h ( Ia ( ),h (0n)) 

-Go (x, y) (e- ((), e-4fl ()) dt d71| 

where x = oFK ((),Y = /o FT(q), and 

(2.23) lsh(X P) - s(X, I)/ 

= r(() apa 
(1) (S(Xhs Yh) -S(X, y))dEO dql 

K,TESfh 

where S(x, y) = (eiklx-yI _ 1)/47rlx - yI. 
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In [12], it is proved that 

(2.24) IGO(Xh, Yh) - G0(X, Y) < C I I 
Ix - 

In the same way, one can prove (cf. [9]) 

(2.25) IS(Xh, Yh) - S(x, A) < Ch'. 

The usual finite element estimates of interpolation error give 

(2.26) - e| < Ch'+'. 

Combining all these estimates, we obtain 

(2.27) Iah(p, 4) - a( p, -)I < Ch'+111|11ovrll4Iovr, 

(2.28) ish(X, P) - s(X, -)I < Ch'+1IIXIIo,1rII3IIov 

Then, the inverse inequalities (1.47) and (1.48) lead to (2.20) and (2.21). OI 

Remark 2.3. It must be emphasized that the sesquilinear form s bounded on 
M x H can be approximated only in M x X. O 

PROPOSITION 2.4. There exist positive constants h*, a*, /3* such that, for 0 < h < h*, 

(2.29) ah(p, P) > a*11 II2 VP E Xh, 

(2.30) sup ( lbh(X, q)I) > A3*IIAIM VA E Mh 

Proof. The coercivity (2.2,9) follows from that of the sesquilinear form a and the 
inequality of consistency (2.20). 

To establish (2.30), we introduce an operator q7h acting from X into Xh and defined 
as follows. Take q to be fixed in X. Remark 3.3 in Part 1 enables us to construct 

e TH1/2(r) such that 

(2.31) divrp = div4q. 

Now, consider the solution ( Ph, Ah) of problem (1.50) associated with - (i.e. Ph iS 

the orthogonal projection of p onto the affine subspace Vh( p) of Xh (cf. (1.49))). We 
set 7h4 = Ph' Thus hThq satisfies 

(2.32) b(', 7Thq) = b(P, q) VP E Mh. 

The estimate (1.74) and the boundedness of the mapping which assigns to each q 
the vector p, yield 

(2.33) II7ThIIy(X,Xh) < C, C constant independent of h. 

Then, estimate (2.30) easily follows from the consistency properties of the discrete 
problem (cf. Theorem 2.2) and the "inf-sup" condition satisfied by the exact 
sesquilinear form b (cf. Lemma 3.2 in Part 1). 0 

The above proposition insures that Brezzi's conditions are satisfied by the sesqui- 
linear forms ah and bh. This enables us to define the operator 

Th GE 2(Xh X Mh , Xh X Mh) 
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in order to approximate the previously introduced isomorphism 

TE-fi(H x M, H x M) 

(cf. (3.27) in Part 1). 
To each (u, A) e Xh x Mh, we assign 

(2.34) Th(u, A) = (Wh, Ih) 

where (jhu yh) is the unique solution, given by Brezzi's theorem (cf. [2]), of the 
following problem: 

(find (Wh, P4) e Xh X Mh such that 

(2.35) ah(wh, V) + bh(h,V )= ah(,V ) + bh(A, v) v E Xh, 

bh(, W*h) bh(v,I ) + Ch(A, P) VP E Mh. 

It is clear that (w, 4) = T(u, A) is the unique solution of 

(find (w, 4) E X x Msuch that 
(2.36) a a(, v + b(, v-) = a(v-, v) + b(A, v Vlv E X, 

b(v, w) = b(, -u) + c(A, v) v E M. 

In order to use the regularity results established in Part 1, we introduce 

(2.37) p= w -u; = -A, 

(2.38) Ph Wh U; 'h -th A. 

Given that ui E Xh and A E Mh, (p, ) and (P5h, h) are the respective solutions of 
the problems: 

(find ( E,) e X x M such that 

(2.39) a a( p, 6v) + b(t, v) = r( u`, v)+s(A,iv) v s X, 

b(v, p) = c(A, v) Vv E M, 

and 

(find (Ph' { h) E Xh X Mh such that 

(2.40) ah(ph, v) + bh(h,v) =rh(u, v) +sh(A,v) vEXh, 

I bh(P,h) = Ch(A, V) VP E Mh 

Remark 2.5. The last equation of (2.40) can be written in the explicit form 

(2.41) f Go(X, y)i(y)(divvh ih(x) - k2A(x))dyh(y)dyh(x) =0 VP e Mh. 
~hiX hh 

Theorem 2.2 and the coercivity of the operator C (cf. (3.18) in the previous part of 
this work) lead to 

(2.42) divvhrh = k A on Fh. 

Thus, the definitions of finite elements on Fh and on F (cf. (2.1),...,(2.8)) give an 
equivalent form of the above equation 

(2.43) divf3h = k2A on F. 
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This, finally, turns into (cf. (1.49)) 

(2.44) Ph E Vh ( P ) 

In the same way, the "discrete conservation law" (2.17) yielding the effective 
resolution of the discrete problem is established. We set 

(2.45) Vh = {qe EX; b(p,q) = 0ov E Mh}. 

The coercivity of the operator C (cf. (2.43) in Part 1) yields 

(2.46) Vh is a subspace of V. 0 

Let us denote 

(2.47) eh Ph P =w w. 

(2.48) Eh = -h Ah A 

Following Thomas' argumentation [19], we get 

(2.49) lIehIIH < C Inf lip - II qllH + h'(llIjjH + IIuIIH)}, h 
4E=-Vh(j5) 

(2.50) Ihl?hlM < C Inf { |1;- TIIM + IIehIIH + h (IIU|IH +IIPhIIH +II|AIIM +IITHIM)1 
T E Mh 

C being a constant independent of (u, AX) E Xh x Mh and of h. 
We have used geometrical error estimates (cf. Theorem 2.2), Brezzi's conditions [2] 

and the following property satisfied by any v' in Vh: 

(2.51) divr v- = 0. 

Observing that (p, A) actually satisfies A( p, T) = 0 (ui, A) and using the regulari- 
zation properties of R and S together with the regularity Theorem 3.6 given in Part 
1, we find that there exists a constant C, independent of (ui, A) and of h, such that 

(2.52) lipII1/2,r + 1ID1I1/2,r < C(II|uIx + IIAIIM). 

Let 0 < a < 2 be a fixed real number. Taking qf and T as the respective projections 
of p and D defined in (1.50) and in the proof of Lemma 1.5, we obtain 

(2.53) IIehIIH + IIEhII M < Ch112 / (IIIH + IITIIM), 

where C is a constant independent of h, u and A (but depending on a). 
Another way of writing (2.53) is 

(2.54) jT(Uii A) - Th ( U, A)IIHXM Ch II(u, A)IIHXM. 

Recalling the estimate (3.28) given in Part 1, we have thus proved the following 
proposition: 

PROPOSITION 2.6. There exists h* > 0 and y* > 0 such that, for all 0 <h < h*, the 
following lower bound holds 

(2.55) IlITh(, AX)IIHXM > Y*11j( US A )I|HXM, 

for all(u,X)EXh x Mh. ? 

The well-posedness of the discrete problem can now be established. 

THEOREM 2.7. The discrete problem (2.16) has one and only one solution. 
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Proof. Obviously, it will be sufficient to check that the discrete problem can have 
at most one solution. Hence, let (Ph, Ah) satisfy (2.16) with Ch = 0. Thus, it follows 
from the definition of the operator Th that Th( Ph, Ah) = 0. The estimate (2.55) then 
implies (h' Ah)=. 0 

3. Error Estimates. We come now to the main results of this work. In this section, 
we shall establish several estimates of the error due to numerical approximations of 
some quantities like surface currents and charges, far-field pattern, etc., which are of 
practical interest and which are computed from the solution of the discrete problem. 

In the sequel, (pl, A) and (Ph, Ah) will, respectively, denote the solutions of the 
continuous and of the discrete problem (cf. (2.50) in Part 1). In general, Ph does not 
belong to Vh( p). So, to compare Ph and p, we first adapt Giroire's results [9] on 
the scalar Helmholtz equation. This and a kind of stability property given by (2.55) 
lead to an estimate of the errors 
(3.1) eh =P -P 

(3.2) eh = A - Ah. 

Finally, error estimates of approximations of the solution of the boundary value 
problem in different zones are given. 

3.1. Some Adaptations of the Scalar Case Results. Consider the following sesqui- 
linear forms given by 

(3.3) d(A, v) = (CA, v) VXA, v E H-1/2(r), 

where C is the operator defined by the kernel G (cf. (0.4) and (2.32) in Part 1) and 

(3.4) dh(A,v)= f G(x, y)A(y) P(x) dyh(y)dyh(x) VXA, v E Wh. 
"hX "h 

Then, d and dh are related to the sesquilinear forms b and bh by 

(3.5) b(,p j) = d( ,div p), v E M,jp E 

(3.6) bh(,p) =d(,divrhp) P E 
Mh,9 E Xh. 

Observe that this last relation may be equivalently written as 

(3.7) bh(', p) = f G(x, y)v(y) divrh p(x) dyh(y)dyh(x). 
X rh 

The following theorem summarizes the properties of the sesquilinear forms d and 
dh which will be needed for the subsequent error estimates. 

THEOREM 3.1. There exists h* > 0 such that, for all 0 < h < h*, X being fixed in M, 
the problem 

fFind Xh E Mh such that 

(dh(Xh, v) = d(X, p) VP E Mh, 

is well-posed. Moreover, we have 

(3.9) IIX - XhIIM < C Inf (lix - i'Ilm + h'IllllM), 
I Mh 

where C is a constant independent of X E M and of h. 
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Proof. We shall only establish the coerciveness estimate 

(3.10) 3a > 0: sup -d(A, P)l > a||AjM VA E M. 
PeRM l|l|IM 

The proof is completed by standard arguments as, for instance, the approximation of 
d by dh (see Theorem 2.2 above) and the regularization property of the operator S 
(see (2.48) in Part 1). 

Suppose that (3.10) does not hold. Then, there exist two sequences { A n} of 
functions in M and { a,n } of real numbers such that 

(3.11) IIAXnIiM- 1, 

(3.12) lim a,n = 0, 

(3.13) ld(;\ ) X|VX f M. 

Possibly passing to subsequences also denoted by { An } and { an }, we may assume 
that 

(3.14) lim An = A weakly in M. 

It follows that X satisfies 

(3.15) (CA, v) = 0 Vv e M. 

CA, having the same null space as the function 1, is thus constant on F. Hence, 
there exists a constant a E C such that A = aTp. qp is the C?-function defined from 
the solution u of the problem (here, the inversion of the operator C involves the 
assumption: k2 is not an eigenvalue of the interior problem, cf. Part 1 and [9]): 

(find u E Hll (R3 ) such that 

(3.16) A lzu + k2u = 0 in 2l U 2e, 
(u= 1 onF, 

au/ar - iku = o(l/r), 

by 

(3.17) = [ylu]. 

Green's formula leads to 

(3.18) fYiulint dy = IujI ai-k2Iuk I,e, 

(3 .1 9) -J Yl u |,ext dy = IU12,S2, - k I2Ul2, Ie - J au dSR 

where 

e= {x e 2e; jXj <R} and SR= {x xR3;jx =R}. 

The radiation condition thus yields 

(3.20) ImJpd-y= -k lim lul2 dSR 
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Rellich's lemma (cf. [18]) then gives 

(3.21) f dy 0. 

It follows from (3.15) and the fact that A E M that 

(3.22) A= O. 

In Part 1, we have seen that C is split into the sum C = C + S. Using the 
compactness of the operator S and the coerciveness of the operator C, we arrive at 

(3.23) lim r n = 0 strongly in M, 

which contradicts (3.11) and completes the proof. U 
3.2. Error Bounds and Convergence Properties. First, we establish a stability 

property of the method. 

THEOREM 3.2. There exists a constant C independent of h such that, (lh Xh) being 
fixed in H' x M', if(Uh, tth) satisfies 

(3.24)l ah(u q) + bh( q)=(h q) vqE , 

( bh(v, Uh) + Ch(1h, 1) = (Xh5 ) vP E Mh, 

then, 

(3.25) K(ah, h) IIHX M < Cl (lh Xh) 11H'x M' 

Proof. Coerciveness estimates, (2.29) and (2.30), and standard arguments give the 
theorem for (Wh, ah) satisfying 

/ ah( wv) + bh(8h,u) = (lh bV) Vi E Xh, (3.26) h~(Wh, 
V 

KxM)O PM 

t h^'W) = (Xh5 P) VP E Mh 

(cf. e.g. [2], [19]). To get the general estimate, it is sufficient to set (5h 8h)= 

Th(uh, Ih) and to use (2.55). 
Let q be fixed in Vh( p) and ' be the solution of (3.8) (we recall that (p, A) is the 

solution of the exact problem). We denote 

(3.27) u =p - q; ,u A- 

(3.28) u =Ph q; th Ah 

It follows that (h. AOh) satisfies 

(3.29) ah(uh, v) + bh(IIh, v) = Kch - c, v) + a(u, v) +(a - a )(q, v), 

(3.30) bh(P, -h) +Ch(Uh ,P) = c(, P)+(c - h)(C ,)+ (b- bh)(P,q). 

Hence, the stability property (3.25) yields 

(3.31) UII_hIIH + III-hlIM < C{ IIIIH + IIl|IIM + II - 
- 

hIIH' + h'(1IqIIx + IID|IM) . 
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Finally, the estimate (3.9) leads to 

(3.32) IIP - PhllH + IA - XhIIM 

q C Inf ( p - qMH{ lip - H +IA |- Mlm + ||' - ` IIH' + h'(IlIqllx + IIAIIm) } 
4E Vh(i),pAE=Mh 

C C 

Suppose now that c is infinitely differentiable in a neighborhood of F. This 
assumption is not restrictive in practice because the problem is stated under the 
physical hypothesis that the currents and charges creating the incident wave are far 
enough from the obstacle; see e.g. [15], [22]. 

Then, regularity results given in Part 1 insure that p and A are infinitely 
differentiable as well. 

We choose 8 > 0 so that Fh is contained in 

(3.33) 16= {xE R3;d(x, F)<S} 

(d(x, F) is the distance of x to F). Then, using Taylor's formula and the inverse 
inequality (1.48), we obtain 

(3.34) |c - ChIIH Ca /h1 112IIc1(p 

where C1(,) indicates the space of continuously differentiable functions endowed 
with its usual norm. 

Finally, given 0 < a < 2, using (1.74) and (1.69), we thus prove 

THEOREM 3.3. Under the above general assumptions, we have 

(3.35) IIP - 
PhilH + IIA - /XhIM CE(h, , A, Ic), 

where 

(3-36) E(h,pI,A,"c) 

(hmU + h')IIuIIm,r +(hm+l/2 + hl)IIAllm,r + hl+1/2I1I(- 
and C is a constant independent of h, p, A, c. 1I 

Remark 3.4. As a particular case, we see that the lower-order method m = 1 = 1, 
i.e. the method of Rao et al. but improved by a suitable treatment of the approxima- 
tion of the tangent plane, converges with an error estimate in h1 for all 0 < a. 
n 

Relevant quantities in many applications can be computed once the discrete 
problem is solved. For instance, here, we consider the approximation of the solution 
of the boundary value problem (cf. (2.9),...,(2.11) in Part 1), and that of the 
following vector, giving rise to far-field calculations, 

(3.37) f(W) = f exp(-ik(#r(y), `)) p(y)dy(y), 

where X is any angular direction, i.e. 1Z4 = 1, and r(y) is the radius vector of the 
point y. 
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The solution e of the boundary problem may be approximated in the Fresnel zone 
(far enough from the obstacle but not in the Fraunhofer, or far-field, zone, cf. e.g. 
[14]) by: 

(3.38) eh(x) = -grad vh(x) + ah(x), 

(3.39) vh(x) = G(x, Y)Xh(y)dyh(y), 

(3.40) ah ( X) = (x, Y) h (y)dyh(y). 

In the same way, we obtain the following approximation of the vector f(W): 

(3.41) fh(o) = f exp(-ik(r(y), w))Phh(y)dyh(y). 

Following the plan used in the study of the scalar case (cf. [9], [12]), we easily 
prove 

THEOREM 3.4. Keeping the above notations and hypotheses, for h small enough and 

Ix > 8, we have 

(3.42) eh(x) -e (x) Ce3(x, F)E(h, p, X, c), 

(3.43) |t()f@|<CE (h, p, A, c), 

where C is a constant independent of h, p, X, c, W, and ej(x, I) is the function (cf. 
[12]) defined by 

(3.44) ej(x, F) = , 1 
j=O di(x , F) 

Final Remark 3.5. We have obtained quasi-optimal error estimates for the ap- 
proximation of the currrents and charges (i.e. p and X). The loss of an order hl/2+a, 
O< a , in the estimates is due to the use of the inverse inequalities and seems to 
be difficult to improve. However, we think that a suitable Aubin-Nitsche trick may 
lead to better estimates for field computations in the Fresnel and Fraunhofer zones, 
respectively. El 
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