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Collocation for Singular Perturbation 
Problems II: Linear First Order Systems 

Without Turning Points 
By U. Ascher* and R. Weiss** 

Abstract. We consider singularly perturbed linear boundary value problems for ODE's with 
variable coefficients, but without turning points, Convergence results are obtained for 
collocation schemes based on Gauss and Lobatto points, showing that highly accurate 
numerical solutions for these problems can be obtained at a very reasonable cost using such 
schemes, provided that appropriate meshes are used. The implementation of the numerical 
schemes and the practical construction of corresponding meshes are discussed. 

These results extend those of a previous paper which deals with systems with constant 
coefficients. 

1. Introduction. In part I of this work [2] (hereinafter referred to as "Part I"), we 
have considered the numerical solution of singularly perturbed boundary value 
ordinary differential equations with constant coefficients. Our attention was focused 
on symmetric collocation schemes, which include the midpoint (or box) and the 
trapezoidal difference schemes as special cases. We have shown that such schemes 
can be used to compute highly accurate numerical solutions at a very reasonable 
cost, provided that appropriate meshes are used. Such a mesh consists, in general, of 
three parts: Two fine grids near the boundaries, to cover the possible two-layer 
regions, and a coarser grid in between. 

Similar results for the variable coefficient case are obtained in Weiss [9] for the 
trapezoidal and midpoint schemes. The eigenvalue of the "fast component" part of 
the differential equations are assumed to stay away from the imaginary axis for all 
values of the independent variable. Thus, in particular, turning points are excluded 
from the discussion. In the passage from constant to variable coefficients, the 
analysis had to be significantly extended. 

In this paper we extend the results of the two papers mentioned above to include 
convergence results for the collocation schemes based on Gauss and Lobatto points 
for linear two-point boundary value problems which have a uniformly bounded 
inverse and which are restricted as in [9]. Our convergence results are summarized in 
Theorem 3.3. In addition, we describe an implementation of these schemes, discuss 
practical mesh construction and demonstrate our results numerically. The ideas 
presented here have been implemented in Spudich and Ascher [13]. 
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158 U. ASCHER AND R. WEISS 

The general problem considered in this paper is of order n + m, with n equations 
singularly perturbed, 

(1.1) ey' = All(t, e)y + A12(t e)Z + f1(t, E), 
0 < t < 1, 

(1.2) Z' = A21(t, e)y + A22(t, e)Z + f2(t, E), 

plus the boundary conditions for x(t) = (G) 

(1.3) Bo ( e)x(O) + B1(e-)x(1) = I 

The assumption (2.3) below on the eigenvalues of All plus the other regularity 
assumptions lead to the conclusion that the solution of (1.1)-(1.3) consists of a 
smooth curve away from the boundaries, possibly connected at each end to the 
boundary by a thin transition layer. As was pointed out in Part I, with Gauss or 
Lobatto schemes these boundary layer solutions must be approximated accurately, 
because otherwise layer errors would propagate throughout the entire interval of 
integration. The meshes used for collocation thus consist of three parts: Two fine 
grids near each boundary, with maximum mesh spacing hL < Ke for a suitable 
constant K, connected to a much sparser mesh away from the boundaries with 
minimum mesh spacing h >> e. The determination of the sparse mesh is based on the 
accuracy needed in the approximation of the reduced solution. A similar mesh 
structure with a symmetric difference scheme for certain second order systems has 
been considered in Kreiss [12]. The total number of mesh points N required to meet 
a given error tolerance can be made to be independent of e. 

The essential features of the convergence results, summarized in Theorem 3.3, are 
as follows. Assume, for simplicity of presentation, that the coarse mesh segment 
away from boundaries is uniform, with mesh spacing h >> e. The error at mesh 
points in the fast solution components y is uniformly estimated by 

O(e + 8). 

Here 8 is an error tolerance, which controls both the absolute error in layer regions 
and the locations where matching between the fine mesh segments and the coarse 
mesh in between takes place; e is the error of approximation away from layers in the 
idealized situation where no error propagates from the boundary layers. For a given 
8, the same layer meshes are constructed for a k-stage Gauss scheme and for a 
(k + 1)-stage Lobatto scheme. However, while for the Lobatto scheme the usual 
superconvergence order e = h2k is retained as E -- 0, for the Gauss scheme we only 
get e = hk+q, q = 0 if k is even and q = 1 if k is odd. In addition, improved 
estimates for the slow solution components z are obtained when, up to 0(E), the 
boundary conditions (1.3) contain a subset of m linearly independent conditions 
involving z alone. In this case, the superconvergence order 0(h2k) is retained both 
with the k-stage Gauss scheme and with the (k + 1)-stage Lobatto scheme, while the 
contribution of the layer error to the global error bound is 0(h8) for Lobatto 
schemes, and a smaller 0(eh-18) for Gauss schemes. 

Of course, the mesh described above becomes highly nonuniform for very small e. 
However, higher order collocation methods can handle such nonuniformity, see Part 
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I and Ascher, Pruess and Russell [1]. Thus they are preferable to convergence 
acceleration methods in this context. 

Following a short section where some results on the analytic solution of (1.1)-(1.3) 
are gathered for later use is Section 3, where the numerical schemes, their implemen- 
tation and properties and the convergence results are presented. In Section 3.1 we 
describe a careful implementation of the collocation schemes which uses local un- 
knowns elimination (or condensation of parameters), resulting in a well-conditioned 
system of linear equations (3.14), (3.16) of a familiar sparse structure, independent 
of the order of the scheme. This implementation is used both for the analysis and for 
the numerical calculations in following sections. The condition number of the matrix 
is a modest O(N) and in particular is independent of E (cf. Theorem 6.2 of Part I). 

Indeed, it is a good practice in actual computation to roughly estimate the 
condition number of the above matrix for two values of e, say. If that condition 
number seems to get large as e decreases, then something is "wrong": The mesh may 
be inadequate, or (3.54) does not hold or, perhaps most commonly, the differential 
problem is not well posed uniformly in e. How to deal with the latter two cases will 
be discussed in a subsequent paper. 

In Section 3.2 we consider a transformation of the dependent variables, needed for 
the analysis. Whereas in Part I this transformation commutes with the collocation 
operator, here it does not, and the resulting residue is shown to be sufficiently small 
in norm so that it can be considered as a small perturbation in regions where the 
mesh is dense, i.e. in boundary layer regions. 

In Section 3.3 the mesh is described, together with the general collocation solution 
decomposition on each of its three parts. Then, in Section 3.4, our convergence 
results are stated. Theorem 3.1 summarizes the results for the layer regions near the 
boundaries while Theorem 3.2 describes our results in the region away from the 
boundaries. Theorem 3.3 then states the combined results of the previous two 
theorems on the entire interval. 

Sections 4 and 5 are devoted almost entirely to the proofs of Theorems 3.1 and 
3.2, respectively. In Section 4 we also discuss the layer mesh construction and show 
that the number of mesh points needed to achieve overall accuracy 8 for any e, 
O < E < e1, is O(8-l/P), where p is the order of superconvergence of the method, 
defined in (3.42). This, provided that the mesh defined in (3.46), (3.47) is used. If a 
uniform layer mesh is used instead, then the number of mesh points needed is 
o(-S -lP ln 8). But the actual advantage of (3.46), (3.47) over a uniform layer mesh 
is more significant than these bounds would indicate; see Table 4.2 of Part I. 

It is interesting to note that, perhaps contrary to one's first intuition, the analysis 
for the "long" interval away from the boundaries, where the solution varies slowly, 
is much more gruelling than the analysis for the layer intervals, where the solution 
varies very rapidly. In fact, the solution in the layer is dominated by a rapidly 
decreasing exponential and so its form is very smooth and simple to approximate, 
provided that we have a layer mesh with step sizes proportional to e, affecting a 
stretching transformation. Indeed, it is the simple, exponential form of the layer 
solution which enables us to come up with the a priori error equidistributing mesh 
(3.46), (3.47), whereas in general such meshes can be constructed only adaptively. 
Markowich and Ringhofer [6] had a similar success with problems on infinite 
intervals. 
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In Section 6, we seal this paper with a numerical example demonstrating our 
theoretical results. 

The extension of the analysis presented here to nonlinear problems of a similar 
form is considered in [10], where nonlinear numerical examples are presented as 
well. 

2. Analytic Preliminaries. In this section we mention some analytic results needed 
in the sequel and develop some notation. Since this section covers the same ground 
as Section 2 of Weiss [9], we allow ourselves to omit some details here. 

Consider the linear problem (1.1), (1.2) where Aij = Aij(t, e) and fi = fi(t, e) are 
assumed, for simplicity, to be in C'([O, 1] x [0, e0]) for some -O > 0, 1 < i, j < 2. 
Further, assume that 

(2.1) A11(t,O) = E(t)A(t)E-1(t), 

with E E CO [0, 1], 

(2.2) A(t) = diag{ Al(t),. . . ,An(t)} 

and 

(2.3) re(Ai(t)) t E [0,1]. 
>0, i= n+ 1,...,n, 

Let n+ := n - n, and denote 

A (t) = diag{Al(t)q . . .,X(t)}, A+(t) = diag{ An +1(t),9...An(t) 

We wish to decouple the slow components z from the fast ones and to (almost) 
diagonalize the remaining system for y. With L(t) a smooth solution to 

(2.4) -L' = -LA41 + e(A22L - LA12L) + A21 

define the transformation 

(2.5) (v ) L I )(Z 

(See [9] for justification.) The system (1.1)-(1.2) is then transformed into 

(2.6) EU' = (A + eB11)u + B12v + g1, 

(2.7) v' = B22v + g2, 

where Bll, B12, B22, g1, g2 are smooth functions of t and e. 
For the transformed system (2.6)-(2.7), a desirable representation of the solution 

is obtained [5]: Writing it compactly as 

(2.8) Hw = g 

with 

w(t) = tv(t) g(t) = g2(t)J 
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and introducing the maps P E Rnx-n and P + e Rn+xn defined by 

X, (Xn-+l 1XJ) 

(2.9) P x = p X x X 

we have 

THEOREM 2.1. The system (2.8) subject to boundary conditions 

(2.10) P u(O) = iE Rn-, P+U(1) = +e R +, v(O) - e R7 

has a unique solution which satisfies 

(2.11) lIwli < const(||g|| + 11i- || + 11 + 11 + 1I%oII) 

provided that e is sufficiently small, 0 < e < e1. Also, for any q > 0 there is a particular 
solution wp(t) = ('PM))) of (2.8) which satisfies 

q dw 
(2.12) f | P const, 0 < c S . 

j=O dtJ 

Now, define matrix solutions WT, W+ and WO to the homogeneous problem (2.8) 
with g = 0 as follows: 

(i) W= (UO-),U e Rnxn-, where U satisfies 

eU'= (A + eBB1)U, PUL(0) = I, P+L() = 0, 

(ii) W+= (U+), U+e Rnxn+, where U+ satisfies 

e4U = (A + eB11 )U+, P.U+(O) = 0, P+U+(i) = I, 

(iii) W0= (uo) UO E RnXm VO E RmXm, where 

HWo = 0; VO(O) =, P Uo(O) = S.(E), P+Uo(l) = S+(E)q 

and S e RnEXm Sm e Rn+xm can be chosen by Theorem 2.1 such that 

(2.13) E|| dt' || < constd 
j=O dt' 

Then we obtain the desired representation of the general solution to (2.6)-(2.7): 

THEOREM 2.3. Any solution w of (2.8) can be written as 

(2.14) w = W + W+t++ WOO +WP 

with t e Rn-, W + E IV+ and to E Rm. The (smooth) particular solution satisfies (2.12), 
and the matrices W, W+ and WO, defined above, have the asymptotic expansions 

q 

W0(t) = L Woj(t)ej + o(_q+l), 
j=o 

q 

(2.15) L (t) = L ULj(t/e)ej + O(eq+l) 
j=0 

q 

U+(t) = , U+j((t - 1)/e)e-j + o(eq+l). 
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From the expansions (2.15) it is clear that 

(2.16) U 0 (t/e) = exp(A(0) t/e), P+ L0(t/) = 0. 
( ) P+U+ ((t - 1)/E) = exp(A+(1)(t - 1)/c), P U+0(t/E) = 0. a 

Consider now the linear boundary value problem (1.1)-(1.3). The boundary 
conditions are transformed by (2.5) into a similar form for w(0) and w(l), and 
substituting the representation (2.14) into these boundary conditions, we get 

(2.17) M(e)~ = 

where 0 = ( , +, r0)' and the matrix M has the expansion 
q 

(2.18) M(E) = E Mjej + O(eq+1). 
j=O 

We assume that Mo is nonsingular. This is equivalent to assuming that the boundary 
value problem (1.1)-(1.3) is well posed, i.e. for E small enough 

(2.19) | i const( + 

with the constant independent of e. 
It is clear that the preceding representation of the general solution of (2.8) can be 

made analogously on any interval [t, t] c [0,1] with the solution matrices ap- 
propriately defined. In particular, in (2.15), (2.16), t would replace 0 and t would 
replace 1. Denoting by (U), and (U+), the lth columns of U and U+ we get 

(2.20) d|( u)j < const E&j[exp{re(X,(t))(t - t)/e} + (e)], 
dtJ 

t '< t < t, I = 1 . .. ,n-,j = 0, 19, . . .,q,9 

(2.21) d|(U+) < constE-&[exp{re(X,(t))(t - t)/e} + 0(e)], 

t < t < t, l = n-+ 1, ... ,n ,j = 0,l,...,q. 

3. Numerical Solutions and Their Convergence. 
3.1. The Numerical Schemes and Their Implementation. In Section 3 of Part I we 

have presented some classes of collocation methods and discussed their equivalent 
Runge-Kutta formulation and some of their properties. Here we mention only some 
of these details again and rely on familiarity with Part I for the rest. 

A collocation procedure under consideration is completely determined in terms of 
k points (k> 1), 

(3.1) 0 < PI < ... < Pk < 1, 

which we take to be either Gauss or Lobatto points, and a mesh 

(3.2) h: = t1 < t2 < 
1 

* * < tN < 
tN+m a1 

*) hi: ti+ .-t (9 i <N h :=max( hi, <i <N. 
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On a given mesh A, the collocation solution 

(t) ( IZ' I 

to (1.1)-(1.3) is a continuous piecewise polynomial vector function of degree at most 
k satisfying the boundary conditions (1.3) and the differential equations (1.1), (1.2) 
at the collocation points 

(3.3) tij:= ti + hiPj, i = 1,.. .,N,j = 1, ...,k. 

Inside each subinterval [ti, ti +], the polynomials y,(t) and zA(t) can be represented 
in terms of the values 

(3.4) Yi:= YA(ti)q Zi = ZA(ti)g I < i < N + 1, 

Yij := YA(tij), zij:= zA(tj1), 1 < i < N, 1 < j s< k 

(strictly speaking, for Lobatto points some additional derivative values are required 
as well), which satisfy the difference equations 

k 

(3.5) - (Yi -Yi) = a dj1(A1j(tij, e)yil + A12(til, e)zil + f1(ti1)), 

1~~~~= 1 <- j <-k 
k 

(3.6) h (Zij - zi) = E ajj(A21(tiz1 E)yil + A22(til, E)Zil + f2(ti,)). 
a 1=1 

FoI Lobatto points, Pk = 1 and p1 = 0. Thus Y+1? = Yik9 Zi+1 = Zik and Eqs. (3.5), 
(3.6) are trivial forj = 1. For Gauss points, Pk < 1, P1 > 0, and we extend the range 
of j in (3.5), (3.6) to include j = k + 1 as well, with Yi+ 1 = Yi,k+l Zi+1l = Zi,k+l and 

ak+l,l = b,, 1 = 1,... ,k; see Section 3 of Part I for the definitions of the constants 
aj1, bl, as well as the matrices A and A used later. 

In the sequel, we shall adhere to the following notational convention, used already 
above. The collocation approximation to a function A (t) is denoted by 'A(t). Its 
values at mesh points are {i, 1 < i < N + 1, and those at collocation points are f j, 
1 < i < N, 1 < j < k. Also, ipc will denote the vector formed by the restriction of 
A(t) to AU {tij; 1 < i < N, 1 j < k}. Furthermore, c, K and 1, j =0,1,2,... 
will denote constants independent of E and A. 

Next, we describe a particular, careful implementation of the collocation schemes 
which is used both for the numerical calculations reported in Section 6 and for the 
analysis in Section 5. The differential equations (1.1), (1.2) are written as one system 

(3.7) x' = A(t)x + f(t), 

for which the numerical method is written in Runge-Kutta form 
k 

(3.8) xi+1 = Ai + hi + Fij, I < i < N, I < i < k, 

(3.9) Fij = x,,(tii) =A(tij)x jj + f(tij) =A(tij) xi + hi 5 a',,Fiz + f(ti.j). 
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The unknowns Fij (or xij) for each interval [ti, ti,j] are local and can be 
eliminated locally. (This is sometimes referred to as "condensation of 
parameters"-see Ascher, Pruess and Russell [1].) We choose to locally eliminate the 
Fij in case that Pk < 1, and the xij in case that Pk= 1. These choices avoid 
unnecessary loss of digits due to cancellation error, as can be readily verified for the 
exampley' = y/e + 1/e with 0 < E << 1. 

Consider Gauss points first. Equations (3.9) can be written as (n + m)k linear 
equations 

(3.10) J F; =R, 

where 

F; = (Fil,... Fik)T, Ri = CAXi + fi, 

(3.11) ACA= j ] f= I 1 

A(tik) f(tik) 

allAtil) 12 A (til) ... alk A(til) 

(3.12) Jj = I-hj l a21 (ti2) a22A(ti2) ... a2k(ti2) 

aklA(tik) .* .- 
. - . . 

akkA(tik)- 

= I-hiD,(A X I), 

in which I stands for an identity matrix of the appropriate dimension (n + m or 
(n + m)k) and DA = diag{A(til), .. ,A(tik)}. (The dependence on i is suppressed in 
CA and DA.) Introducing for notational purposes the (n + m) x (n + m)k matrix 

;(3.13) B = [bl,*.., bkI], 

we can write (3.8) as 

(3.14) xi+1 = Tixi + g, 1 < i < N, 

where 

(3.15) Fi = I + hiBJi CA, gi = hiBJi1fi 

The difference equations (3.14) together with the boundary equations correspond- 
ing to (1.3) 

(3.16) B0xj + B1XN+1 = 

form a set of (N + 1)(n + m) linear equations for the solution values at the mesh 
points, whose size and structure are independent of k. 

For Lobatto points we perform a similar elimination of local parameters, but now 
our parameters are xi = xil,xi2,... . ,Xi k - 15,Xik = xi+ . Instead of (3.8), (3.9) we 
write, as in (3.5), (3.6), 

k 

(3.17) 1/hi(xij - xi) = E aj(A(til)xi + f(til)), 2 s]j < k, 
l=l 
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and this can be written as (n + m)(k - 1) linear equations 

(3.18) fixi = i 

where 

Xi= (Xi2,... ,Xik) 
T 

Ri = (kRi2 . ik 
T 

(3.19) Rij = [I + hciajA(ti)Jxi + hi ajk 
A l=1 

A(ti2)... a2kA(tik) 

(3.20) Jf =I-hi j = - h(A ?I)DA, 

where DA = diag{A(tj2),... ,A(tik)} and where A is a nonsingular matrix, as in 
(3.14) of Part I. 

Since Pk = 1, X i1 is obtained as the last n + m rows of Ji-1R1. Partitioning Jj 
into blocks of size (n + m) X (n + m), Tij1 = ((jij)1)>2, we get difference 
equations of the form (3.14) where now, instead of (3.15), 

k k k 

(3.21) a =E(j) [+hdS(f)J(gtiS (3.21) ri = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~E ( fi_% kl[ + hi 111A( tifl, gi = hi 5? (ji- ) kl ,f(ts 
1=2 1=2 s=1 

An advantage of the difference equations (3.14), (3.16), obtained both for Gauss 
and for Lobatto points, is that, even when some rows of A(t) of (3.7) depend on 1/E 
and E << hi, the components of ri and gi remain bounded and are constructed 
accurately. 

3.2. Transformation of Variables. Consider the linear problem (1.1)-(1.3) and the 
transformed system (2.6), (2.7). Since the latter has a structure more amenable to 
analysis, we will rely on it in parts of our treatment. However, we stress that the 
actual numerical procedure is applied to (1.1), (1.2) and not to (2.6), (2.7). 

In the constant coefficient case, the operators of collocation and the transforma- 
tion (2.5) commute. Here they do not, in general. Thus, if we define vector functions 
uA(t), vA(t) by 

(3.22) ( J -eL IEJ1 Za)/' 

then UA, vA collocate the transformed equations, but are not necessarily piecewise 
polynomials of degree at most k. Correspondingly, applying the transformation 
(3.22) to the difference equations (5.5), (3.6), we obtain 

k 

(3 .23) h-(uj - ui) = E {[ aj{ A (til) + EB11 (til)] uil + B12(til)vi, + g (til)} 

+ h Ri , 1 < i < N, 
hiJ 

1 ~~~~k1 
(3.24) hi ~(vi - v1) a= l d11B22(til)Vil + 92(til)} + hisj~ 



166 U. ASCHER AND R. WEISS 

where e/hiRij and 1/hiSij consist of linear operators acting on ui1v, I 1 = 1,...,k 
for Lobatto points and 1 = 1,. . . , k + 1 for Gauss points, and inhomogeneities. We 
now show that their norms are O(hi), and so they can be dealt with as small 
perturbations when hi is small. 

LEMmA 3.1. For each i, 1 < i < N, 

(3.25) ( = hi{1j [uilI.. Ujq; Vi1,.. .,Viq] 
ll1h 1S1j 

+hCij[9l(tiJ), .. I 91 (tiq), 92(til), I .. 192 (tiq)] }II 

where 4ij, 4ij are bounded linear operators, 

lljiill, jj4iiJl < C, 1 < i < N, 1 < j < q, 

with q = k for Lobatto points, q = k + 1 for Gauss points. C1 

Those readers who wish to skip the proof of this lemma can do so without loss of 
continuity. 

Proof. Writing uX (t) and vA(t) in terms of their polynomial interpolants of order k 
on [ti, ti+l], we get 

k t - t~ k 

,&() I & u(t11) h( + # ( J7J (t - t(i), i s -, ti+1 
J=l h~~i j=1 

where Lj are the Lagrange polynomials. Integrating, 
k k 

ui1-ui = h1 , uA,(ti) a, + itiju(1)(k t ) 7 (t- ) dt l=l aj tii l=l 

and so, by (3.23), 

( 3.26) R ij=k!|iU(^k + 1) (; -i t (3.26) =~~i (0 H (t - 
ti1) dt, 

with a similar expression for Sij, v, replacing uA. 
Next, since y& and zA are polynomials of degree at most k on [ti, ti+ ], by the 

transformation (3.22), 

k+l 

(3.27) u k1)(T) kT k 
(k 1 + (E (T))( )y(k+l-)(T) 

V=1 

ti T t + 

k+l 
(3.28) v k+l)(T) = - (k + l L(v)(T)y(k+l-p)(T) 

and 

(.9dl- 1 k dl1 / (- th 
(3.29) dT C,1 (y(d)T y(t1) L I hi 

j=l ~ ~ h 
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Replacing the vectors eyA(tij) through the collocation equations (3.9) and the 
transformation (3.22), and substituting into (3.27), (3.28), we obtain 

(3.30) 1ju(k+1)I < hi(/e, IVek+l)I I< h 

(3.31) k = chykmax{IIuijII, jjv1j11 jgj(tij)j, 9g2(tii)JI, 1 < j < q}. 

Finally, substituting (3.30), (3.31) into (3.26) and the corresponding expression for 
Sij, the desired result (3.25) is obtained. Q.E.D. 

3.3. The Mesh and the Decomposition of Numerical Solutions. The meshes consid- 
ered in this paper have the following structure. Near the boundaries, the step sizes hi 
are comparable to e. Specifically, there are given numbers 0 < No, N1 < N and 
constants Ko K1, such that 

(3.32) 
hi < KoE, i1 ,... ,No 
hi < KjE, N - N-N + 1,...,~N. 

In between, much larger step sizes may be used, i.e. hi >> E, i = No + 1,...,N - N1. 
We will assume for convenience of notation that h, the largest step size, occurs away 
from the boundaries. Such a mesh is depicted in Figure 1 below. 

index of meshpoint 1 No +1 N-N +1 N+1 

index of meshspacing No + 1 = 
h h t 

FIGURE 1: The mesh 

For brevity of notation we set i = No + 1, i = N - N1 + 1 and write 

(3.33) t1 = T0e t[= 1 -T1e. 

Our next step is to write down a decomposition representation to the discrete 
solution of (3.23), (3.24), similar to the representation (2.14) for the analytic solution. 
Moreover, we write down such a representation for each of the three parts of the 
mesh. 

We write the system (3.23), (3.24), in analogy to (2.8) as 

(3.34a) (Hwa)(ti) = g(ti1), j = 1,... ,q, i = 1,...,N, 

or in shorthand as 
(3.34b) Hw = g, 

where wA(t) = (v') is in the class S of functions defined by (3.22) with YA(t), zA(t) 

continuous piecewise polynomial vector functions of degree at most k. Let 

(3.35) WA(t) = uA ( t) E ER(n+m) Xn, t E [tmo, tM,] 

be matrix-valued functions with columns in class SA. Here s stands for -, + or 0, 
no := m, M stands for I, II or III, to denote the three mesh regions considered, and 
so I = 1, 11 = i = 110, II, = 1= Il0o, 111 = N + 1. 

On the interval [0, Toe]: Define WI, wI E S as follows (omitting the superscript 
I): 
(3.36a) HWA= 0, PUJ(0) = I, P+LU (TOE) = 0, V (0) = 0; 



168 U. ASCHER AND R. WEISS 

(3 .36b) HA,WA,+ =O0, P UA,+(O) = 0, P+ UA+ (Toe) = I, VA+ (0)=; 

(3.36c) HWAO=O?, P UO(O) = S(e), P+UAO(Toe) = P+ Uo(Toe), 

VAO(O) =I; 
(3.36d) HwpA = g&, P.up:\(0) = PIup(O), P+upA(Toe) = P+up(Toe), 

vPA(O) = vp(O). 

The general solution of (3.34) on the left layer mesh is written formally as 

(3.37) wI = W ' + WA' ++ W0+wp, 
with rIE- IV-, E- IV+, toI E- W. 

On the interval [1 - T1e, 1]: In precise analogy to the above, define WAIII and wp,, 
again omitting superscripts: 

(3.38a) H,WA = 0, P.UA( 1-WT1e) = I, P+UA.(i) = 0, V - T(1-T1e) = 0; 

(3.38b) HAW,A+= 0, P U+( - T1e) = 0, P+LUJ+(i) = I, V (1-T1e) = 0; 

(3.38c) H,Wo = 0, P UO (1 - T1e) = PUO (1 -Tj), 

P+UAo(i) = S+(e), VAO(1 - T10) = V(i -T1 

(3.38d) HAwPA = g,, P.uP,(l - T1e) = up(l -TE), 

P+uPAM() = P+uP(), vPA(i - T1e) = vp(1 - T1e). 

The general solution of (3.34) on the right layer mesh is written formally as 
(39 III - TI IiIII + wIIIS III+ wiiit III III (3.39) WAI 

II 
A_ + 'A~ V0S + WP'A 

with E" E Rn-, E- R7 II, E Rm. 
On the interval [Toe, 1 - T1e]: Define WI", WI, and wpI as follows: Let Yo(t), 

ZO(t) be obtained from UO(t), Vo(t), via the (inverse) transformation (2.5). Then 
Wii and Wii are obtained via this transformation (3.22) 

fromXA= () and xAO=(zo), 

respectively, which are defined as follows: 

(3.40a) XA and XA0 satisfy the homogeneous equations (3.8), (3.9) with f = 0. 

(3.40b) YA(TOE) = I, ZA(T0e) = 0; 

(3.40c) YA (Tot) = Yo(TTo), ZAo(Toe) = Zo(T0e)- 

The particular solution wp, is defined, e.g., by 

(3.40d) HAwpA = gA, WPA&(TOT) = wp(TT). - 

The general solution of (3.34) on the long interval away from the layers is written 
formally as 

(3.41) wgI = W]'AI + WA' I + WPIA' 

with " E 
- 

I E Rm. 

3.4. Convergence Results. Below we state the various results regarding the conver- 
gence of the numerical methods, culminating in Theorem 3.3. The proofs for those 
results which have not been given elsewhere are contained in the next two sections. 
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Denote by p the "regular" superconvergence order of the schemes under considera- 
tion, i.e. 

(3.42) 
p = 2k for a k-stage Gauss scheme, 

(3.42) = 2(k - 1) for a k-stage Lobatto scheme. 

Also, define the seminorms on collocation solutions, 

(3.43a) II4AIIA:= max{||Iijj; 1 < i < N + 11, 

(3.43b) II4AIIC:= max{ jIiPjI; 1 < i < N, 1 < j < k 

where the vector norms used are maximum norms. Thus IIij,1 = max{ II'PAI II4AIII. 
Also m,'AIIa, IImAIIc will denote the seminorm where the range of i in (3.43) is 
restricted to MO < i < M1, M = 1,11 or III. For a matrix whose columns are 
collocation solutions, a maximum on the column norms is taken. 

For the "short" intervals [0, t1] and [t- 1] we have 

THEOREM 3.1. (a) The solution representations (3.37) and (3.39) are valid (i.e. their 
components can be computed in a stable way). 

(b) With hL the maximum step size in the layers (hL I emax{ Ko, K1) by (3.32)), 
the "smooth" components satisfy 

(3.4) 1 W0 - Woll', | WAO - Woll"', IIwpA - wp, I' II WpA - wpi4I 
p ch 

(c) The auxiliary solution components in the layers (for which there are no counter- 
parts in the exact solution decomposition) satisfy 

(3.45) WA'+(TOE) =Inxn+ + 0(e), WA''(1 -T1c) = ( nXn) + 0(c). 

(d) For a given accuracy tolerance 8, 0 > cE, the layer meshes can be constructed as 
follows: With 

:= max{/Aj(O)/,j= 1,...,n}, v':= min{-re(Xj(O)),j= 1,...,n4) > 0, 

define 

(3.46) h1= 4Lc 1/ 

(3 .47) hi := hi_ lexpt 
I 

e hi_ 1 )until ti+ 1 >_ T0e, 

where cy is a known constant (cf. Part I) and 

(3.48) To:= vr111n8I. 

The right end layer is constructed in an analogous way, depending on XiM, 
j =n +1 ...,n. Then 

(3.49a) L- (t ) = (exp(AIO()ti/e)) + 0(s), 

VA (ti) = (00), 1 < i < i, 
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(3.49b) U^Lll( ti) = ( exp(A+(1)(ti - 1)/e) + 

VA+(ti) = O(),i < < N + 1. CI 

The proof of this theorem is given in Section 4. We note that the assumption 
8 > ce is not essential, see Section 6, it just leads to a simpler presentation of the 
results. 

For the "long" interval [ti, ti-] we have 

THEOREM 3.2. Let 

K = eh-l, h:= min{ hi; i < i < i} 

(3.50) - 
K = ( -i )K > e Eh i1. 

i=i 

(a) The solution representation (3.41) is valid for e sufficiently small such that K < C, 

where c is a constant of order 1. 
(b) The first n fundamental solution components satisfy 

W3* A(ti) =( 1)(( E1(ti)) + k O(K)1 

for Gauss points and 

(3 .51b) WAllI( tE) = (-1) (k + 1)(i - i) A 1 (ti )E -1( ti) A11 ( tZ)) 

+ 
O(h) ) 

< I 

for Lobatto points. 
(c) Define the error e as follows: For a k-stage Gauss scheme, e:= hk and, if k is 

odd and the mesh is locally almost uniform, i.e., 

(3.52) hi+1 = hi(1 + O(hi)) forallioddorallieven, 

then e:= hk+1. For a k-stage Lobatto scheme e := KhP + ehk-1, and, if k is even and 
the mesh is locally almost uniform, then e = Khp + chk. Also, if the slow components z 
are absent from (1.1), (1.3), then K = 0. 

Then we have 

(3.53a) I- 
I 

w - |< ce 

and, for the slow components, also 

(3.53b) I- - VOI|A < ch , 

(3.53c) IIZP - zPill&, ||zo - 
ZOV& 5 c(hp + ce). O 

The proof of this theorem is given in Section 5. 
The central theorem, summarizing our effors for linear problems with variable 

coefficients, follows: 
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THEOREM 3.3. Assume that the boundary value problem (1.1)-(1.3) is well posed, 
uniformly for 0 < e < eo, and denote the solution by x(t) = (Y(,)). Assume further that 

(3.54) dt 
P E -1(0) #0 UL 
PE-1(1)) 

Then for 0 < e < e1 there are positive constants c0, 80, ho and Ko such that for any 8, 
0 < coe < 8 < o, and any mesh A = A(e) satisfying (3.46), (3.47), and similar conditions 
at the right end layer, K < Ko and h < ho, the k-stage collocation scheme based on 
Gauss or Lobatto points has a unique solution xA,(t) which satisfies 

(3.55a) lix - xII,, < c(e + 8), 

where e is defined in part (c) of Theorem 3.2. 
Further, the following improved estimates hold for the slow components when, up to 

O(e), the boundary conditions (1.3) contain a subset of m linearly independent condi- 
tions involving z alone. For Gauss schemes, 

(3.55b) lz, - zll,, < c(hp + W(e + 8)), 

while for Lobatto schemes 

(3.55c) Ilz, - zll,, < c(hp + h(e + 8)). 

The proof of Theorem 3.3 is similar in essence to that of Theorem 5.3 in Weiss [9], 
so we only give a detailed outline here. 

Proof Outline for Theorem 3.3. The basic task is to patch together the solution 
representations (3.37), (3.41) and (3.39) on the three segments of the mesh. The 
problem in transformed variables (3.23), (3.24) (or (3.34) for short) is considered, 
first under the boundary conditions 

(3.56) P_ul = X_E R--, P+UN+l =N +E1 ?R+, V1 ='X0 E Rm. 
This corresponds to the differential problem (2.8), (2.10) which Theorem 2.1 
guarantees to be well-behaved for any given parameter vectors m- ?+ and i. 

Thus, the 3(n + m) components of the parametric representations (3.37), (3.41) 
and (3.39), i.e. of A:= (t, t, 5, , tI, tIII ', t+, go), are fixed by the 3(n + m) 
linear equations consisting of (3.56) plus the matching conditions 

(3.57) wI(ti) = wI'(t0), W,'(ty) = w,\ (). 

In analogy to (2.11), the resulting 3(n + m) x 3(n + m) constraint matrix should 
have a uniformly bounded inverse for 8, h and K sufficiently small. Theorems 3.1 and 
3.2 furnish us with information on the structure of key blocks of this matrix in 
(3.45), (3.49) and (3.51). Examining the resulting structure, it becomes apparent that 
the principal part of the constraint matrix is nonsingular if and only if the matrix 

PE-l(ti) 

PE-l(t1.)) 

is nonsingular. The condition for the latter to hold uniformly in e is (3.54). 
Now Theorem 2.3 guarantees that the exact solution w(t) has a decomposition 

similar to that of the discrete problem, with a parameter vector t corresponding to 
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t. Up to exponentially small terms, 

t = (LAtog ,0C,,o,?r t+1to)q 

with -, t+, to determined by (2.17). The stability of the constraint matrix plus the 
convergence results of Theorems 3.1 and 3.2 imply that 

(3.58) IIr _AII<c(e + 8)_ 
Further, considering only those blocks of the constraint matrix which pertain to 

the smooth solution components and using (3.49), (3.51), (3.53b) and (3.58), we 
obtain for Gauss schemes 

(3.5) Ilto - tmll c(hp + W(e +8)), 
and for Lobatto schemes 

(3.60) Ilto- tm|l < c(hp + h(e + 8)), 

M = I,II, III. Combining (3.58)-(3.60) with (3.44), (3.45), (3.49), (3.51) and (3.53) 
yields the estimates (3.55a) for w instead of x and (3.55b, c) for v instead of z, for the 
special set of boundary conditions (3.56). Representing w in terms of iq, i+, i and 
returning to the original variables 

() (Z(t) ) (eLE I )(V(Z) ) 

the parameters -, i+, o are determined such that the original boundary conditions 
are satisfied, leading to (3.55a, b, c) and completing the proof of Theorem 3.3. 

4. Boundary Layer Regions. In this section we consider the linear problem (1.1), 
(1.2) on the subinterval [0, TOE], where a fine mesh satisfying (3.32) is assumed. 
Analogous results hold for the subinterval [1 - T1e, 1]. Let 

(4.1) hL:= max{hi,1 <i No1. 

Following Weiss [9] we consider the transformed system (2.6)-(2.7) for an easier 
analysis. 

4.1. Stability and Convergence Results for Smooth and Auxiliary Solution Compo- 
nents. First, consider one equation 

(4.2) ey' = Ay+f, 0 < t TOE, 

with re(A(t)) < -K < 0 and A(t) is piecewise constant: A(t) = A(ti), ti < t < ti+,. 
From (3.5) we get for Gauss points 

hk 
(4.3) y1j = yi + e E dj[X(ti)Yi, + f(ti1)], 1 < j < k- 

l=1 

So, eliminating the local unknowns yij and substituting into the corresponding 
expression for yi+, we get (see Part 1, Section 4) 

(4.4)~ ~ ~ ei+ =) Yi + e [ X ( t ) h -A )A + I ]fi 

where fi = (f(ti),.. *,f(tik)), 1 = (1,.. . ,)T E Rk, and 

(4.5) -y(a) = 1 + iT(W'i - A)- 



COLLOCATION FOR SINGULAR PERTURBATION PROBLEMS. II 173 

is the growth factor. The matrix - 'I - A is nonsingular for all D satisfying 
re(D) < O. 

Solving the recurrence relation (4.4), we get 

X i (ti)hl i 1 - (ti) hz 
(4.6) yj + [Py ( tI)hi)] + h=0 L, Pi ( t )hI] f 

where 

(I -j =b [( A(ti )hi 
A A 

] 

is a bounded vector by (3.32). Now, since the method is A-stable, we have 

(4.7a) IY(01 I 1, re(D) < O. 

Furthermore, since y'(O) = 1, it follows that for any set S of the form 

S=S(a1,a2,/3)= {;10<1 /113 + a1 S arg2' 2 - a2} 

with a,, a2 > 0, a1 + a2 < v, /3 < xo, there is a positive constant I = y(al, a2, ,B) 
such that 

(4.7b) IY(0)I < e/re(D) E E S. 

By (3.32). 

X(t1)h, < |X(t1)IKo 
/ 

C 

for some well-defined constant /3 of moderate size. Using (4.7b), we get 

, Iy1( X(ti)h1) < 1 1 e e-eA(ti+1-ti+1 j)/E 
l=i-j+1 E lI=i-j+1 

and 

E H - [=-+ h E )h-i e-A'(ti+1-ti+1-j)1Ehi_ 

< 1 e-A(ti+-s)hds e 
t1 MAX 

So, substituting in (4.6), we get 

LEMMA 4.1. When applying a Gauss or a Lobatto difference scheme to (4.2), with 

hi < K0e, 1 < j < i, the following stability result holds: 

(4.8) Yiy+ d < Iy1I + cIIfCII, 

where 

(4.9) c = (X[t)_1 max. 

Note that we have proved the lemma above only for Gauss points. However, it is 
straightforward to show that a similar result is obtained also for the Lobatto points. 
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This is the desired stability result for one equation. Next, consider the differential 
system (2.6)-(2.7) and its corresponding collocation discretization (3.23)-(3.24). 

THEOREM 4.1. The difference equations (3.23), (3.24), subject to the boundary 
conditions 

(4.10) P_u1 = XqE Rn-, P+ui = l+ e R+, v1= - E Rm, 

have a unique solution uc, v c which satisfies 

(4.11) jucjj, jjvjcll <s K{ 'q_ 11 + 11'h + II"mII + jgc1j },g 

provided that E is small enough, 0 < E < Eo. 

Note: Eo is sufficiently small to enable a contraction argument below and depends 
on the bounds in Lemma 3.1 and on maxo,t<ToeII A'(t)II. (To recall, by uc we mean 
the restriction of uA(t) to the mesh points plus the collocation points. ) 

Proof. We consider the case for Gauss points; the case for Lobatto points is 
treated similarly. Our strategy is to consider first the simplified difference equations 

k 

(4.12) h (Uj1 - ui) = E acj,{A(tj)uil + f (til) 

1 k 1< jk+1, 
(4.13) h (Vij- vi) = E a1{B22 (til)vi, + 92 (til) 

i 1=l 

where f1(ti,) := g1(ti) + B12(ti,)vd, and to treat the difference between (4.12)-(4.13) 
and (3.23)-(3.24) as a perturbation term of order hL. 

The components {vij} in (4.13), (4.10) are now completely separated from the 
components {uij }. For v,,(t) the usual theory applies. This is a Runge-Kutta scheme 
for a nonstiff initial value problem, and certainly for e small and hL satisfying (3.32), 
v,,(t) exists and satisfies 

(4.14) livcIl < c { f II'rX + 11g211 }- 

Now, for (4.12) note that since A(t) is diagonal, the vector system decouples into 
n scalar components, so Lemma 4.1 can be applied to each equation separately. For 
each of the first n_ components we can apply the estimate (4.8) directly, since 
re(Xj(t1)) < 0, 1 < j < n _. For the last n+ components, re(\j(ti)) > 0, and we have 
to reverse the direction of integration, from right to left. Thus, for such a compo- 
nent, (4.8) is changed to read 

(4.15) VYi I < lyil + cIf C11, 

which is compatible with the end conditions (4.10). We obtain that the difference 
equations (4.12) subject to (4.10) possess a solution u, satisfying 

(4.16) IU IIAu _ 11 I+ II1+11 + ciIf 1 

<II'ii-II + 1'T[j 11 + c1{ IIgAII + II-no 11}- 

It is now easy to show a similar result for uij by expressing them in terms of ui using 
(4.12). 
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This completes the treatment of the major part of the difference operator. Now, 
the equations (4.12)-(4.13) differ from (3.23)-(3.24) by terms of order hi (or E) only, 
and a standard perturbation argument completes the proof. Q.E.D. 

Now, with the stability result (4.11) and the linearity of the problem, part (a) of 
Theorem 3.1 easily follows. Next, consider the "smooth" components W,Ao(t) and 
wp,A(t). These correspond to the components in the exact solution decomposition 
which vary slowly across the boundary layer region. Substitution of W 0 - W0 and 

wp,, - wp into (4.11) immediately yields that 

(4.17) 11Wc0 - WocII, IIwp, - wp|I < ChL = c (E), 

and this is really all we need. However, more can be obtained by applying the 
standard collocation analysis (Russell [7], Weiss [8]) to the original variables (i.e., 
analyzing the error in (3.5), (3.6)). After transforming back to w, part (b) of Theorem 
3.1 is obtained. 

Consider part (c) of Theorem 3.1. We write 

(4.18) W,+= F + G, F=( F+J G= (G+) 

with F satisfying the homogeneous equations (4.12), (4.13), subject to 

(4.19) F(ti) = I(I 

and G is the rest. The difference equations for F are again decoupled, and so 
A-stability immediately implies that F is bounded. We now have to show that G is 
small. But comparing (3.36b) with what F satisfies, it is apparent that G satisfies the 
difference equations (3.23), (3.24), with inhomogeneous terms of size 0(E + hL) = 

0(E) and under homogeneous boundary conditions as in (3.36b). Using stability, 
part (c) of Theorem 3.1 is proven. 

4.2. Mesh Selection in the Layer Regions. In Section 4.1 we have shown parts 
(a)-(c) of Theorem 3.1. Here we treat the dominant components of the solution 
decomposition, W,,A(t). Analogous results for WIIt) will be omitted. 

First, consider one homogeneous equation with constant coefficients, 

(4.20) cy' = Ay, y(O) = 1, 

with the solution y(t) = exp(At/e), and denote A := -re(A) > 0. In Part I it was 
shown that, given a tolerance 8 < 1, the following mesh generates an approximation 
accurate to within this tolerance, 

(4.21) h, := psAl P P: [IAIIcyIJ] 

(4.22) hi:= h _exp( ?hi_li=h exp( e i)'5..5 o 

Here cY is a known constant depending only on p, and No is determined so that 

tNo+1 > TOe > tNo. Since we would like the contribution of the fast decaying solution 
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to be below 8 on the "long" interval [ti, tj], it is natural to set To so that 

exp( Te = 8, 

i.e. 

(4.23) To= A(-In 8). A 

Note that the mesh defined by (4.21), (4.22) satisfies (3.32) because its steps are 
monotonically increasing and hi = ecp/lAI. Also, beyond ti the mesh becomes much 
sparser, depending only upon the accuracy needs for the reduced solution. Thus, the 
magnitude of ly(ti)l is propagated essentially undamped by the numerical scheme 
outside the layer region. 

Next we let A in (4.20) vary as in (4.2), i.e. A(t) = A(ti), ti < t < ti+1. Then (cf. 
Part I, Section 4.2) 

(4.24) yi? =p ( h ) - (( ) e R) 

where 

(4.25) R ii( t )li1 + 0(t<)) 

It is easily verified that 

(4.26) iRi I < cE, 

provided that -(ln 8)2 is bounded by a constant, see [9, Lemma 4.11. Thus the mesh 
(4.21), (4.22) with A(0) replacing X yields an approximation of exp(X(O)t/E) to 
within O(8) + O(E), establishing (3.49a) for the case of one equation. 

Turning to the differential system (2.6), (2.7), we once again consider the dif- 
ference equations (3.23), (3.24) as an 0(E) perturbation of (4.12), (4.13). The 
homogeneity and boundary conditions of (3.36a) plus the decoupling of (4.13) from 
(4.12) clearly imply that VA(t) 0 and P+ U (t) 0. Also, for each of the first n 
components, the previous result for one equation applies, provided that the mesh in 
(4.21), (4.22) is chosen accordingly. Taking the most stringent of these choices will 
produce O(8) accuracy for all fast components. This is clearly achieved by the 
choice (3.46), (3.47). The result (3.49) for the slow components is easily obtained by 
applying standard collocation theory. Part (d) of Theorem 3.1 is then proven and 
hence, the proof of Theorem 3.1 is complete. 

The practical importance of using the mesh (3.46), (3.47) instead of, say, a 
uniform mesh has been demonstrated in Table 4.2 of Part I. We now supplement 
this by some a priori estimates of No, the number of mesh points needed in the layer. 

THEOREM 4.2. Asymptotically, for E and 8 small, 

(4.27) No0= o(-81P). o 

Note that in (4.27) No is independent of e. Also, a uniform mesh with To given by 
(4.23) would yield No = O(8'-/P(-ln 8)). 
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Proof. It is sufficient to consider (4.21), (4.22). Then 

o 1 h / C 1 TO 

- 
-APh [1- exp - ?}]. 

Substituting (4.23) for To and (4.21) for hl, 

P Xl (3-i/P - 1) IXlPP1-/ (4.28) No _ pc- 3. 
p A ~~~A 

This proves our claim. Q.E.D. 
Further, the constants cp of (4.21) can be shown to increase as p is increased (see 

Part I for Icy j). Thus, the estimate (4.28) also indicates that for a given accuracy 8, No 
decreases as p (or k) is increased. Note that cp also reflects a relative efficiency of 
higher-order methods for problems where the eigenvalues have significant imaginary 
parts. 

The mesh (3.46), (3.47) may be more demanding than necessary in case that 
eigenvalues of different magnitude are present in A (t). At a given t, 0 < t < TOE, 
the eigenvalue which imposes the smallest step size is the one for which the 
magnitude of the pth derivative of the solution, (IA I/e)P exp{-Xt/e}, is largest. 
Thus, if for instance, lAI = max{IA 1, j = 1,... ,n , then we can use (4.21) with 
A := A1 in place of (3.46) and then construct the mesh using (4.22) (with A := A1) 
until ti+1 > tl, where 

(4.29) t: min{ tlj; tlj > 0 ti := ep (J)n - r(1) 

Then, in case that t1 < TOE, switch to A := A, where 1 gives the minimum in (4.29) 
and continue with (4.22), etc. However, the overhead involved in constructing such a 
mesh is worthwhile only in special cases, as described above. 

5. The Long Interval. On the "long" interval [ti, tj] we use the original problem 
variables and do not apply the transformation (2.5), because we can deal with the 
system (1.1), (1.2) directly in a simpler fashion. Thus our difference equations are 
(3.5), (3.6). For ease of presentation we treat Gauss and Lobatto points separately. 
Throughout this section we suppress the dependence of the problem coefficients 
on E. 

5.1. Gauss Points. To examine the stability of the scheme we consider 

k 

(5.1) (Yij- yi) a 
' 
d1(Ajj(ti,)yjj + A12(ti,)Zil) + rij, 1 sj <k +1, 

1 ~~~~k 
(5.2) -(zij - zi) = a1j(A21(ti1)yi1 + A22(til)zil) + Sij, 

hi 1=1 
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where rij E Rn, sij E Rm. With 

(5.3) r A~ )1. 
r* ] rik| 

and 

(5.4) ri : hi(ri,k+l Bri) 

we rewrite (5.1) as 
k 

(5.5) h-(Yyj-Y1) = Y ac(A11(tij)y1j + A12(ti,)zi, + ri), i j < k 
h 
i1=1 

k 

(5.6) h?(Yi+i - y1) = b, (AII(tij)yjj + A12(til)zil + r,* ) + h r*. 
hi 1=1 

With 

(5.7) fij: A12(tij)Zij + riJ5 fi = (fil* .. fik. 

we can consider (5.5), (5.6) separately from (5.2). As in (3.10)-(3.15) we obtain 

(5.8) y1+1 = Fly, + gi + r*i 

where Fi and gi are given by (3.15), (3.11)-(3.13) with n replacing n + m, 
replacing A and &-1 replacing f1. We have 

(5.9) jij = (I - hi,--'DA(A ? I)) = ehh1(ehy1I - Gj) 

G =DA11(A ? I) 

As in Eq. (4.15) of Part I we write for the singular matrix G1 

(5.10) (ehi 1I Gi) = (eh-1i - I)G-1 

provided that e < h iIGi-1. Now, 

BG 1c =B(A 0 I)-1D-1CAll 

where 1 = (1,. .. , 1) E Rk. From (4.17) of Part I, 

(5.11) I- BGiC = (1 - 4TA-11)I = 

and this is the leading term of ri. We get in (5.8) 

(5.12) y = (-1)kyi + ehi1Hiyi + B (eh - I)G' fi + r*, 

where the matrix Hi is bounded and depends on b, A and All(tij), j= 1,...,k. 
Clearly, both Hi and the matrix multiplying fi in (5.12) vary smoothly with i. 
Further, since 

(5.13) = Aj1(t1j)(-f(tij) + eFi) 

(cf. (3.9)), we get for 
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the equations 

(5.15) 9i = i - ehi lDl(ehi Ci I)Gi1(fi + CA11yi). 

Equations (5.12), (5.15) are equivalent to (5.1). We next state and prove the stability 
result, recalling (3.50). 

LEMMA 5.1. There are constants Ko and ho such that, provided K < Ko and h < hog 
the initial value scheme (5.12), (5.15), (5.2) for i = i,... ,9i -1 has a unique solution 
which satisfies 

(5.16) IIy,ILc < d, IIZCAII < c{IIzill + K 113IIY + IIrAII + ISIAI} A 

(5.17) I y IIA < d + c max E (_1)k(i-j)r 

- j=i 

where c is a constant, 

(5.18) d:= c { 113Y + Ilzi 1K + KlrAluc + IIsAll } 

(5.19) r: BGj-1i* - rj* , i < j i, 

(Thus rj relates to the original inhomogeneities through (5.3), (5.4).) [ 

Proof. Consider (5.12), (5.15) with E = 0 first. Together with (5.2), we refer to this 
as the "reduced system". Then (5.15) yields 

(5.20) = -Al(tij()[A12(t1)z1 + r,], 1< j < k, 

and substituting into (5.2), we see that 

k 

(5.21) h-1(zij - zi) - a1j[A22(til) -21(tj)A-1(tj)A12(ti1)z 
1=l 

k 

= - a dI,A21(til)r* + sij, i < < k + 1. 
1=l 

The difference operator on the left-hand side of this equality is the collocation 
scheme for the differential operator 

Z- [A22 - A2jAqlA12] Z- 

Hence standard collocation theory not only implies (5.16) (using (5.20)), but also 
yields the explicit dependence of zij on zi, r, s,P, in terms of a discrete analogue of 
the variation of constant formula, as discussed for the box scheme in Weiss [9]. To 
derive (5.17), note first that by (5.12), 

i-l 

(5.22) ~Yi = (_1) k(i-i)yi - _L(-)k(i-1-j)( B-f_r 
j=i 

Hence the contribution of rj to (5.17) is correct, in view of (5.7), (5.19). 
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The remaining term to be dealt with in (5.22) is 

i-l A12(tjl)Zjl 

(5.23) A E ()Gk(il)G-1 

j i 
A12 ( tjk ) Zjk 

We distinguish between two cases. If k is odd, then we essentially have to consider a 
sum of pairs of terms of the form 

(5.24) A12(ti)zjl - A12(tj_lj)zj_1 1 

In view of the discrete variation of constant formula mentioned above, the expres- 
sion in (5.24) is bounded by chj(I1z iI + I IrIIc + IIscII). The sum in (5.23) is bounded 
and (5.17) is obtained. If k is even, then there is no sign alternation in (5.23), but by 
(5.9), (5.11), 

(5.25) BG-' = BJ(A ? I)1DD1, MA-11 = O. 
Thus thejth term in the sum of (5.23) can be written as 

A-' (tjl) A2(l)j 

(5.26) A (A? I)-'1 
A-i'(tjk)A12(1)1 All ( 1j )2 (tjk )Zjk 

Al 1(tjJ)Al(y)i All(tj,)A2(i)j z 

=B(A X )1._.. 

Al 1 jk)A2 ( tjk )Zjk A11 ( y 12 (tjl )Zjl 

This brings us to examine again terms like (5.24) and the remainder of the proof is, 
therefore, as for the case when k is odd, yielding (5.17). 

Next we turn to the "full system" (5.12), (5.15), (5.2), with E > 0. We write it as 
the reduced system plus additional terms of size Eh,. We also write the solution as 

(5.27) y(t) = y(t) + t1A(t), zA(t) = z(t) + gA(t), 

where yA(t), z,(t) solve the reduced system and 

%l(t) = tA(ti) = 0. 

Then 'q%(t), gN(t) satisfy the "full system" with inhomogeneities r* and ri*j of size 
eh7 1 and s = 0. Applying (5.16), (5.17) for the reduced system, we get the bounds 

(5.28) iiNAii cK(Ily9?fl + z + IIii1I + II) 
lltcll < CK (119Al + liaI+ ln + iC) 

where 
i-l1 

(5.29) K:= eE h1 < K. 
i=i 

For K small enough, a contraction argument now yields the bounds (5.16), (5.17) for 
the full system. This completes the proof of Lemma 5.1. Q.E.D. 
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Part (a) of Theorem 3.2 now follows for Gauss points. 
Next, consider the first n fundamental solution components. The collocation 

approximations Y,(t), Z,(t) are defined by the homogeneous difference schemes 
(3.5), (3.6) and the initial conditions (3.40b). Thus, for the "reduced" problem with 

= 0 we get 

(5.30) Zt)-0,9 t) (li(-) < i < i 

Furthermore, by repeating the argument of the above lemma it becomes clear that 
Y,(tj), Z,(ti) are only O(K), O(K) away from Yj(tj), Zj(tj), respectively. Thus, 
applying the transformation (3.22), (3.51a) is obtained. 

Finally, for a smooth solution x(t) = (Y()), which may be a transformation of 
wp(t) or of a column of Wo(t), consider the approximation error. We write the 
difference scheme (5.1), (5.2) for the error, with 

ri = eO(h k) sij=k = 0(h ) ri eO(hP) 

with p = 2k. From Lemma 5.1 it immediately follows that 

(5.31) IIY - YAll = 0(hk), liz - z.11 = O(hk). 

Furthermore, we now show that sharper bounds hold. 
Assume for simplicity that the mesh on the long interval is quasiuniform (this 

assumption can be easily dispensed with, as in de Boor and Swartz [11] ). Then, since yA, 
z, are piecewise polynomials of degree at most k and y, z are smooth, we obtain 
using (5.31) 

(5.32) 11(y - yA)(/) ||, l(z - zA)(1) || < const, / = 0,1,... ,p + 1. 

Consider the approximation error in 

(5.33) e,(t):= vA(t) - v(t) = -eL(t)(yA(t) - y(t)) + zj(t) - z(t) 

(cf. (2.5), (3.22)). Since (2.7) does not contain the fast solution components any 
more, we can follow [11], even though vj(t) is not a polynomial. Thus we write 

(5.34) Le,(t):= eA(t) - B22(t)eA(t):= 4A(t) 

and note that, since 4IL(tij) = 0, 1 < i < N, 1 < j < k, ip(t) can be written for 

ti < t < ti+I as a remainder of polynomial interpolation using the divided difference 
form, 

k 

(5.35) +,(t) = MAtiD . . . 9 tik 9 t] Fl (t -ti,). 
Upon writing e,(t) in terms of 4,j(t), using Green's function, it becomes apparent 
that for t1 < t i t+ 1, 1 < i < N, 

(5.36) eA(ti= h0+1((ti) + 0(hi)) + 0(hP), 

for some smooth functions qj(t), and 

(5.37) IIeA(tj)jj= 0(hP)= 

provided that C4k)(t) is bounded; see [11]. But, substituting (5.33) into (5.34) and 
using (5.32), this is evidently true, hence (5.36), (5.37) are established, yielding 
(3.53b). 
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Now we replace z - z, by e, in (5.1) and, using (5.36), apply the stability result 
(5.17), obtaining 

Ily -YII (% k(-)k(1-KIh+1 + hk+1) 

for suitable constants Kj satisfying Kj - Kj1 = 0(h). 
Thus, if k is odd and (3.52) holds, 

(5.38) IlyA - YIIA = 0(hkll). 

Now, for the slow components z, the improved estimate 

(5.39) ljz - zAll = 0(hP) + elly-YAII 
(with (5.31) or (5.38) used for y) is obtained by combining (5.33) and (5.37). This 
completes the proof of Theorem 3.2 for Gauss points. 

5.2. The Case of Lobatto Points. For Lobatto points we proceed, as before, to 
establish stability first. Consider 

k 

(5.40) ehy-(yij - yi) = aj {All (tj)y + A12 (ti)zi} + rj, 
1=1 

i < i < i, 2 < j < k, 
k 

(5.41) h-'(zij - zi) = a 4j{ A21(til)yil + A22(til)zl} + s11. 
l=1 

Rewrite (5.40) as 
k 

(5.42) h - (yi j- yi) = a aj{ All (tjj)yi + A12 (ti,)Z + r }, 2 < j -<k 
1=1 

where 
k 

(5.43) ajlr*l r11, ri*, = r,*-1k, 
l=1 

so 

(5.44) rI):= (.(iJ =( k iY{(). (& I)r}*l 

(See Lemma 3.1 of Part I for notation.) Denoting the last rows of (A I)' by 
[ak2I-**akkI] we have k=4akd,d, = y( = (-1)' (cf. Eqs. (4.19), (4.20) of 

Part I). Thus, the last n rows of (5.44) yield the recursion 

(5.45) = (-1)krzlk + ri i < i <i, 

where 
k 

(5.46) ri aklril, i i < i, 
1=2 
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whence 

(5.47) r= (j1)(+)(iJ).j + (rl)(k?l)(i-i-)* 
j=i 

and r* is an initial value parameter. Thus, using (5.47), (5.46) and (5.44), we may 
consider the form (5.42) for arbitrary inhomogeneities rij and initial values yi. 

Next, with f ii as in (5.7), we obtain (5.8) where ri and gi are given by (3.21), (3.20), 
with n replacing n + m, &'A11 replacing A and &-f i replacing f . Then, 

(5.48) Uij' = ehy'(ehy'I G1)', GI= (A I)DJA , 

and we write, as in (5.10), provided that E < hillIGIV', 

(5.49) (ehI - = (eh-Ci - I)GU. 

The last rows of Gi-j are 

(5.50) All (ti+l1) ( 'k2I9.. 9 * ,kkI 

Substituting in (3.21) yields that the difference equations (5.42) are equivalent to 

(5.51) yAil = (-1)kAjl(ti+?)All(ti)yi + Afl(ti+f)(()1 - fik) 

+,-hi-(Hiyi + 'i) 

where Hi and Qi are bounded matrices independently of E, which vary smoothly with 
i. For the other collocation points we obtain in precisely the same way (cf. (3.18)) 

(5.52) = CAl(tij)All(4i)yi + ehi'Hijyj + (eh-lyi'- I) Qii f- 

2 < j < k - 1, 

for appropriate constants cij and bounded matrices Hij, Qij. Now, to obtain the 
equivalent of Lemma 5.1, set e = 0 in (5.42) (or (5.51)) first. Then 

(5.53) yi, = -Ajl(til)(AI2(ti,)zi, + r,), 1 < i < N, 1 s / s k. 

This is substituted in (5.41), obtaining 
k 

(5.54) hj'(zijj - z) = a j, { [A22 (ti,) -2l(tj)All(tj)Al2(tj)] Z 

-A2l(ti,)A-l (tij)r,*, 
+ sij, 

1 < i < N, 2 < < k. 

These are collocation equations for the decoupled slow components and the usual 
stability theory applies. Since, by (5.43), (5.47) and (5.53), 

k 

E d1jA2l(ti)Ajl(tij)r* = A21(ti)Ajj(ti)rs1 + o(IIrAII) + O(hA)llyII, 
1=l 

we obtain 

(5.55) IIz,II < c { IIzill + hllyill + llscII + IIrAII 1 
Substitution in (5.53) and use of (5.47) then yield 

(5.56) IIYACII < c { 11Yj + Ilzill + IIsIll + IIrACII 1} 
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(5.57) 
Ilyci 

c C{|1,11 ?jjs|j +||r,j| + max 

_)(k)(ij) 
A standard contraction argument for e > 0 small then completes the proof of the 
following lemma. 

LEMMA 5.2. There are constants Ko and ho such that for K < K0, h < ho, the 
difference scheme (5.41), (5.42) with yi, zi prescribed has a unique solution which 
satisfies (5.55)-(5.57). 

Remark. Comparing Lemma 5.2 to Lemma 5.1, note that unlike for Gauss points, 
the contribution of yi in (5.55) does not vanish as e -* 0. On the other hand, no 
bound like (5.56) is available for Gauss schemes. 

This establishes part (a) of Theorem 3.2 for Lobatto points. Next, consider the 
collocation approximation to YA(t), ZA(t). Inserting the trial solution 

(5.58) Z,t-O ,t)=(_l)(k+)(i --i)A-1(tj)Ajj(tj) 

into the (homogeneous) difference equations (5.41), (5.42), we readily find residuals 
of order hi for Z, and ehy1 for Y. Lemma 5.2 then yields (3.51b). 

Finally, consider the approximation error for a smooth solution x(t). Writing the 
difference equations for the error, we have 

rij = eO(hk), sij = o(hik), rik = eO(hP), Sik = O(hJP), 

where p = 2(k - 1). Proceeding precisely as for Gauss points, we obtain from 
Lemma 5.2 the estimates (5.32)-(5.37). 

Substituting these estimates in (5.51) interpreted as the equations for the error in 
the fast components, we obtain inhomogeneities of the form (-l)kqi - qi,1 with 
qill = O(hP), i < i < i, and of the form ehip(tij), where qp(t) is smooth. As in 

Theorem 5.2 of Part I (cf. (5.15) there) this readily yields the bound 

(5.59) IIyA - yll < ce, 

with e defined in part (c) of Theorem 3.2. Now, combine (5.33), (5.37), (5.59) to 
obtain for the slow solution components, 

(5.60) lIZA - zll < c(hP + ce). 

This completes the proof of Theorem 3.2. 

6. Numerical Examples. The following numerical results were computed on an 
Amdahl 470-V/8 computer with a 14-hexadecimal-digits mantissa. The notation 
a - b a X 10b is used throughout. 

Example (Hemker [3]). Consider 

(6.1a) EU"i +(2 + cos 7t) u' - u =f(t), 0 < t < 1 

where 

(6.1b) f(t) = -(1 + e_72)cosrt - iT(2 + cos iTt)sin Tt 

+ - a + 3 qT2t2)e-3t/e 
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subject to 

(6.1c) u(O) = a, u(l) = -1. 

The solution is 

(6.2) u(t) = cosgt +(a - l)e3t/e + o(E2). 

Thus, when a + 1 we have a boundary layer at t = 0 only. 
When converting to a first order system note that if we use the usual variables 

u, u', then the problem does not have a bounded inverse (since u'(O) - 1/E). Instead 
we integrate once, as in Kreiss and Kreiss [4], Kreiss and Nichols [5], obtaining with 
y := u the system 

(6.3a) ey' = -(2 + cos w7t) y + z, 

(6.3b) z' = (1 - 7T sin iTt)y + f(t), 

(6.3c) y(O) = a, y(l) = -1. 

So our matrix All is a negative scalar function of t here. 
First we choose a = 1 and use uniform meshes. The results are listed in Table 1, 

where under "E" we list the maximum error at mesh points and under "rate" the 
measured convergence rate in h. The results for Gauss and Lobatto points confirm 
part (c) of Theorem 3.2. In addition, we list for comparison numerical results using 
collocation at the unsymmetric Radau points (see Part I). The usage of the latter 
schemes is possible here because all the eigenvalues of Al, have the same sign in their 
real part. For the examples discussed in Weiss [9] or in Section 6 of Part I, for 
instance, the Radau schemes are unstable unless the transformation (2.5) is explicitly 
applied (and this time not just for analysis) and the schemes are upwinded. 
Therefore, we stay with the symmetric schemes. 

TABLE 1 

Example 1 with a smooth solution throughout, e = 1O-1 
Gauss points Radau points Lobatto points 

k N cond E rate k N cond E rate k N cond E rate 

1 10 .23 + 3 .64 - 1 1 10 .62 + 2 .20 2 10 .40+ 3 .65 - 1 
20 .45 + 3 .16 - 1 2.0 20 .12 + 3 .10 0.9 20 .76 + 3 .17 - 1 2.0 
40 .88 + 3 .40 - 2 2.0 40 .25 + 3 .53 - 1 1.0 40 .15 + 4 .43 - 2 2.0 

2 10 .87 + 2 .47 - 2 2 10 .66 + 2 .33 - 3 3 10 .16 + 3 .30 - 4 
20 .16 + 3 .12 - 2 2.0 20 .13 + 3 .40 - 4 3.0 20 .29 + 3 .19 - 5 4.0 
40 .31 + 3 .29 - 3 2.0 40 .25 + 3 .49- 5 3.0 40 .55 + 3 .12- 6 4.0 

3 10 .23 + 3 .16 - 3 3 10 .66 + 2 .18 - 5 4 10 .40 + 3 .41 - 6 
20 .45 + 3 .98 - 5 4.0 20 .13 + 3 .54- 7 5.0 20 .76 + 3 .68 - 8 5.9 
40 .88 + 3 .61 - 6 4.0 40 .25 + 3 .17 - 8 5.0 40 .15 + 4 .11 - 9 6.0 

4 10 .88 + 2 .88 - 5 4 10 .66 + 2 .21 - 8 5 10 .16 + 3 .70- 10 
20 .16 + 3 .55 - 6 4.0 20 .13 + 3 .17 - 10 7.0 20 .29 + 3 .28 - 12 8.0 
40 .31 + 3 .34 - 7 4.0 40 .25 + 3 .13 - 12 7.0 40 .55 + 3 .12 - 13 * 

*rate polluted by roundoff errors 

Next we set a = 0, obtaining a steep boundary layer near t = 0. Results are listed 
in Table 2. Here the meshes are constructed by taking the corresponding meshes of 
Table 1 and adding a layer mesh according to (4.21), (4.22) with X = -X = 3. The 
accuracy tolerance 6 is chosen to be just below the smooth solution error for the 
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finest mesh in Table 1, for each scheme. Here we list under " E" the maximum error 
of all mesh points with "rate" the convergence rate in the maximum mesh width h. 
Note the relatively small number of mesh points needed to achieve high accuracy 
with the higher-order schemes, particularly of Lobatto types. 

Also listed in Table 2 are some results when 8 << ? << 1. This is not covered by 
our analysis (see part (d) of Theorem 3.1), because we are primarily concerned in 
this paper with what happens when E -- 0. However, as indicated by the numerical 
results, the analysis can be extended to cover this case as well. Indeed, when 8 << e, 
then a denser mesh is constructed in the layer regions and this only makes the 
situation more regular. 

Other examples have been tried as well. In particular, numerical solutions for the 
example in Weiss [9], which for some particular values violates condition (3.54), have 
been computed. Their behavior is similar to that reported in [9] for the midpoint and 
trapezoidal schemes and their discussion is therefore omitted. 

TABLE 2 

Example I with a boundary layer, a = 0 

Gauss points Lobatto points 
e k 8 N E rate k 8 N E rate 

10-10 1 1-3 32 .21 - 1 2 1-3 32 .13 - 1 
42 .54 - 2 2.0 42 .32 - 2 2.0 
62 .15 - 2 1.8 62 .80 - 3 2.0 

2 1-4 20 .63 - 2 3 1-7 57 .22 - 4 
30 .16 - 2 2.0 67 .13 - 5 4.0 
50 .39 - 3 2.0 87 .82 - 7 4.0 

3 1-7 26 .10 - 3 4 1-10 54 .75 -7 
36 .62 - 5 4.1 64 .11 -8 6.0 
56 .39 - 6 4.0 84 .10- 9 3.5 

4 1.-8 22 .12 - 4 5 1-10 30 .11 - 9 
32 .73 - 6 4.0 40 .70 - 10 
52 .45 - 7 4.0 60 .70- 10 

10-4 3 1-7 25 .10 - 3 3 1-7 56 .20 - 4 
35 .62 - 5 4.1 66 .11 - 5 4.2 
55 .38 - 6 4.0 86 .86 - 7 3.7 

4 1-8 21 .12 - 4 4 1-10 53 .61 - 7 
31 .66 - 6 4.1 63 .11 - 8 5.7 
51 .26 - 7 4.6 83 .94 - 10 3.6 
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